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O TEH30PAX U MHOI'OMEPHBIX MATPUIIAX B MHOT'OMEPHOM
BEPOATHOCTHOM MOJAEJIMPOBAHUH

B. C. Myxa

Benopycckuii 2ocyoapcmeennulii ynusepcumenm uHGOpMamuku u paouodieKmpoHuKu,
va. I1. Bposxu, 6, 220013, 2. Munck, Pecnyonuxa benapycs, mukha@bsuir.by

BrinonHsieTcss aHanmu3 OCHOBHBIX MOHSATHH TEH30PHOIO U MHOTOMEPHO-MaTPUYHOTO MOAX0/10B
B MHOI'OMCpPHOM BCPOATHOCTHOM MOACIHUPOBAHHNHN, U ACTAJIbHO BBIACHAIOTCA B3aWMMOCBA3HU MCKAY
TEH30paMH U MHOTOMEPHBIMU MaTpullaMu. VI3BecTHOe B iuTepaType MaTpUYHOE Ipe/ICTaBICHHE
OTIpe/IeTICHUs] TEH30pa BTOPOTO TOPSAIAKAa 0000IIaeTcs Ha TEH30PBI MPOU3BOJILHOTO MOPSIKA.
JlokazaHbl TEOPEMBI O TEH30PHOW MPUPOJIE KOBAPUALMOHHOW MATPHUIbI I MHOTOMEPHON MAaTpHUIIbI
MOMEHTOB IPOU3BOJILHOTO TOPSIKA CIy4ailHOrO BEKTOpa, 00 OPTOTOHAIBHOCTH MHOTOMEPHOM
MaTpullbl MpeoOpa3oBaHUs MHOTOMEPHO-MaTPUYHOTO MOMEHTa IPOU3BOJBHOTO  MOPSJKA
CIIy9aifHOTO BEKTOpPa MIPH OPTOTOHAIIBHOM MpeoOpa3oBaHUM CIIy4aifHOTO BEKTOpA.

Kniwowuesvle cnosa: MHOTOMEPHOE BEPOSTHOCTHOE MOJICIUPOBAHUE; JIMHEHHOE BEKTOPHOE
MPOCTPAHCTBO; TEH30P; MHOTOMEPHAsl MaTPUIAa; MHOTOMEPHO-MAaTPHYHOE MPECTABICHHE TEH30Pa;
MHOTOMEPHO-MaTPUYHBIC BEPOSTHOCTHBIC MOMEHTHI.

Introduction
The distinct non-classical approaches are used today in multidimensional
probabilistic modeling, such as matrix and multidimensional-matrix and, to a lesser
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extent, tensor and multiway approaches. In this article, the quite minor analysis of the
multidimensional-matrix and tensor approaches is performed in order to reasonably
compare their capabilities in multidimensional probabilistic modeling.

The matrix and tensor approaches are based on two independent areas of
knowledge: the tensor analysis [1-8] and the matrix analysis [8—12]. The tensor
analysis is developed for the tensors of the arbitrary order. The matrix analysis is
limited to the two-dimensional matrices. The situation in the generalization of the
two-dimensional matrices to the multidimensional case is as follows: on the one
hand, the very well fundamentals of the theory of the multidimensional matrices there
exist [13—15], on the other hand, the searches for other approaches to its development
are known. These approaches assume the continuation of the development to the
mathematical completion, in some cases [16-19], or lead the theory of the
multidimensional matrix into the tensor analysis, in other cases [20-21].

The notions of a tensor and a matrix are clearly distinguished [8, 9]. It would be
a confusion of concepts to identify a matrix with a tensor [6]. However, the situation
is somewhat different in the literature related to the data analysis. Sometimes, the
notion tensor is attracted to the multidimensional data analysis [20, 21]. So, in [20] it
is noted that the multidimensional matrices and tensors are convenient mathematical
tool for such an analysis, and a tensor is used instead of a multidimensional matrix.
We will call this approach as the tensor approach. The tensor approach is reduced to
accepting a tensor as a multidimensional matrix without taking into account the
definition and properties of a tensor. We find in [21] that tensors are
multidimensional generalizations of matrices. The illegality of such an approach is
noted shortly in [15]. We want to emphasize by this article that the generalization of
the matrix to the multidimensional case should be performed in the matrix analysis
but not in the tensor analysis. The two-dimensional (usual) matrix should be the
natural particular case of the multidimensional matrix. We shell consider the some
questions of the tensor theory and multidimensional matrix theory and state the
relationships between tensors and multidimensional matrices to achieve our goal.

1. Transformations of the coordinate systems
Tensor i1s an object in the linear finite-dimensional space. Linear n-dimensional
space 1s defined by a set of n linearly independent elements (vectors) e,,e,,....e,.

This set is called the basis e;, i =1,2,...,n, of the n-dimensional space. Each point x
in the n -dimensional space is represented in the following form:

n .
x=x'e,+x%e, +..+x"e, = x'e,, (1)
i=1

where xl,x2 ,...,x" are real numbers which are called the coordinates of the point x.

We will call x as the position vector of the point or simply vector x. The expression
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(1) 1s called the expansion of the vector x by the basis e;. We will use the term

“coordinate system x' with the basis e;” or simple “coordinate system x'” along
with the term basis e; .

In tensor analysis, the so called Einstein summation convention is used: if an
index is repeated in some term of the expression then the term must be summed with

respect to that index for all admissible values of the index. For example, xiei is

n . .

; . i o

written instead of X x'e; ,and b; = x/,
i=1

The tensor definition is inextricably connected with the transformation of the

n .
e; means the equality b; =3 x’e; .
i=1

basis (coordinate system). Let x’ be the initial coordinate system with the initial basis
e; and x™ be the new coordinate system with the new basis e,;. The reciprocal bases

are introduced along with the initial bases: e’ (with the coordinate system x;) 1s the
reciprocal to the initial basis e; and e (with the coordinate system X,;) 1s the
reciprocal to the new basis e,;. We will call the basis e’ reciprocal to the initial basis
e; as the initial reciprocal basis ¢' and the basis e™ reciprocal to the new basis e,; as

the new reciprocal basis e™. The reciprocal bases are the bases which are orthogonal
to their caused bases, i.e. the following equalities hold

. (1, i=,
(e;,e’) =35,/ :{ i i=12,m, )
0, i#],
i . 1, *i=x*j,
(ey;,€7)=8,;" :{ . ‘] i, jxi*j=12,.,n, (3)
0, *i#x*]

where (el-,ej ), (e*i,e*j ) are the dot products of the vectors and Sij , 8*1.*] 1s the

Kronecker delta.
The notations of the bases and vector coordinates are given in the table.

Table
The notations of the bases and vector coordinates
Initial basis, New basis,
coordinates coordinates
e.
i v Cxi >
X — contravariant *]
: X
coordinates
Reciprocal basis, e, el
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coordinates X;— covariant Xy
coordinates

The position vector of the point with respect to two bases is given by the
expression

x= e*l-x*i = ejxj. 4)
We find from (4) that
x" =", e )x) =a" jx/, (5)
where
atl; = (e*i,ej)- (6)

The equality (5) defines the transformation of the initial coordinate system x’ to
the new coordinate system x™ as determined by the bases ¢;, and e,;. We find the
expression (5) by taking the dot product of both sides of (4) with the new reciprocal
basis e¢” and taking into account the equality (3): (e, (e,;x™))=(e™,(e x7)),

(e",e,)x" = (e*i,ej W/, x" = (e*i,ej x/

We also find from the equality e,x' = e, jx*j that

X' =(e e )x" = alsx", (7)
where
a'sj =(e',e;). (8)

The equality (7) defines the transformation of the new coordinate system x™ to
the initial coordinate system x'. We find the expression (7) by taking the dot product
of both sides of the equality ¢;x’ =e, jx*j with initial reciprocal basis ¢’ and taking

into account the equality (2): (ei,(eixi)):(ei,(e*jx*j)), (ei,ei)xi :(ei,e*j)x*j,

x' = (ei,e*j)x*j.
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It is clear that the transformations o™ ; = (e*,e;) (6) and o'+ = (¢, e, D ®

are mutually inverse.
The expressions (5), (6), (7), (8) can be represented in the vector-matrix form. If

one introduces the row-vectors X7 =(x!,x%,..,x"), X7 =(x*,x",..,x™) and
the matrix A" =(); ;) = (a;) with elements o™ ; =(e",e;) (6), then one gets
instead of (5)

X "=AX, )
where
N =0 )=(@@"))=("e,). (10)

If one introduces the matrix A, =(A,; j):((xi*j) with  elements

a's; =(e,e, ;) (8) then one gets instead of (7)

X=AX",
where
Ay =(hy ) = (') = ((¢'e5))). (11)
It is clear that (A*) ™' = A,, A} = A%, ie.
ANA, =ANN =1. (12)
The property (12) in element form looks like this
ocj-i(x,{k = 82.

It is clear, that if A* =(a*;), then A" =(a,"/), and if A, =(a'+,), then

AL = (a*l.j ). The mutually inverse transformations are following: o j and als s

*

J J
a;’ and a,;”.
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2. Transformations of the bases
The following transformation of the initial reciprocal basis e/ to the new
reciprocal basis e™ follows from (6):

e’ =a el (13)

We get the expression (13) by multiplying the both sides of (6) by e’ and taking into
account the equality (2): o™ je/ =(e™,e,)e’, a* je/ =e™.
The following transformation of the new basis e,; to initial basis e; follows

from the equality o,”/ = (e,,e*/):
e, =a e, (14)

We get the expression (14) by multiplying the both sides of the equality

Oti*j =(e;,e”’) by e,; and taking into account the property (3):
*J _
i e =¢.

We write also the following transformations as the inverse to the
transformations (13), (14) respectively: the transformation of the new reciprocal basis

e™ to the initial reciprocal basis e :
e =a've,
and the transformation of the initial basis e; to the new basis e,;:

3. Transformations of the vectors. Covariant and contravariant components

Any vector a in n-dimensional space can be represented by different
expansion, for instance, by the initial reciprocal basis ¢’ and by the new reciprocal
basis e™,

Y
a=e’a;=e a,, (16)

J

or by the initial basis e; and by the new basis e,;
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a=e;a’ =e.a . (17)

The components a; of the vector a in the initial reciprocal basis e’ are called the
covariant components of the vector a, and the components a' of the vector a in the
initial basis e; are called the contravariant components of the vector a.

If we take the dot product of e, with both sides of (16) noting that

(e,,e™/)=38,,"/, we find the transformation of the initial reciprocal components g,
to the new reciprocal components e,;, i.e. the transformation of the covariant
components:

The relationship (18) has the same form as the relationship (15) of the initial basis e,
to the new basis e,;. Thus, the initial reciprocal components a; transform to the new
reciprocal components a,, in the same fashion as the initial basis vectors e,
transform to the new basis vectors e,;, and for this reason they are called covariant
components [5].

Similarly by taking the dot product of both sides of (17) with e, we get the

transformation of the initial components a' to the new components a™, i.e. the
transformation of the contravariant components:
a’ =", e )a’ :(x*ijaj. (19)

The transformation (19) has the same form as the transformation (13) of the
initial reciprocal basis e’/ to the new reciprocal basis e™. Thus, the initial

components «' transform to the new components a™ in the opposite fashion as the
initial basis vectors e; transform to the new basis vectors e,;. Accordingly, the

i

components a' are called contravariant components of the vector.

4. The case of the orthogonal bases
If the initial basis e; 1s orthogonal, then the initial reciprocal basis e’ is the same

as the ¢; [5], i.e. e =e,;. If the new basis e,; is orthogonal too, then the new
reciprocal basis ¢*" is the same as the e.;, 1.€. et = e,; . In this case, the elements of

the transition from the new coordinate system x™ to the initial coordinate system x'
satisfy the equalities (see (8))
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'y = (€ e;) = (e,e.;) = (e,¢7) = ('), (20)

and the elements of the transition from the initial coordinate system x’ to the new

*]

coordinate system x = satisfy the equalities (see (6))

o' =(" ;) = (en,e;) = (e e’) = (7, e”). 1)

Note that the elements o'«; (20) and o™ ; (21) represent the matrices A, (11)
and A" (10) respectively. Comparing the expressions (20), (21) shows that A" = AL
Since A*A, =1 then A,AL =1 and AL = A7!. This means that the matrices A* and

A, are orthogonal. The orthogonality property of the matrix A* in tensor notation
looks like this:

ooy = 8k (22)

5. Definition of a tensor
Definition of a tensor [5]. A tensor a of the order p =r +s of the type (r,s) (r

time covariant and s time contravariant) is the geometrical object which

1) is defined by n"™ components af“ “k in the initial basis e, i=12,..,n,of

s
1o025Jr

the real n-dimensional linear space L",

T :
2) has such a property that its components a,'"",* in the new basis e,;,

1’ oy
*7=1,2,...,n, are connected with the components "% in the initial basis e; by the
1o )r

relations

) : L kyk,
a. v =y, o, ]’ocll N AL it (23)

* ¢ ’
*lla >klr ll S T dr

in which o,/ are elements of the transition from the initial basis e; to the new basis

e,;, and a*'; are the elements of the inverse transition from the initial reciprocal
basis e/ to the new reciprocal basis e

Note that the components afl””’lfs of a tensor are the functions of the coordinates

1o°o5)r

of the coordinate system in which they are considered. If a tensor is considered in the

initial coordinate system x' then its components are the functions of the variables x':
= gfien (x x2...

P P ,x"). The components of the tensor in a new coordinate
JEE N LoeesJr
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*]

system x" are the functions of the variables X
g el g et (0 x*2 X*). The definition (23) means that the equalities

(23) hold for all values of the variables x!,x?

transformation.
If we suppose in the definition (23) s=0 then we receive the following
definition of the covariant tensor of the order r:

,...,x" provided the coordinate system

_ _ i oL Jr g (24)

a.: =0, ' . .
*i] ¥, *) i Jiseeordy

Supposing in the definition (23) »=0 give the following definition of the
contravariant tensor of the order s :

c_l*ll,...,*ls _ Ot*ll Py OL*IS k. akl,...,ks - (25)

The separate definition is applied for the order zero tensor [7].
Definition of a tensor of the order zero. A tensor a of the order zero (a scalar) is

the geometrical object which is defined in the initial coordinate system x' by the

2

scalar function a(x',x?,...,.x") and in the new coordinate system x* by the scalar

*2

function a(x*',x*?,..,x™) connected with the function a(x',x?,..,x") by the

equality a =a for each point of the space.
Definition of the outer product of the tensors. The outer product of two tensors

a’r and b k,l . 1s the tensor which defined by the following expression:
! 1k,

iy ey oKy ek

kyseek

e
a. .,’bk, e
ekl

o o ’ ’ - ’
ll,...,ls,kl,...,kq B 5eeesly

Definition of the inner product of the tensors. The inner product of two tensors
is a contraction of the outer product with respect to two indices, each belonging to a
component of the tensors.

Example 1. The simple example of the tensor of the order zero is the Euclidean
distance in the Euclidean space with the orthogonal initial basis e, and the orthogonal

2

new basis e,;. Indeed, let (x',x?,..,x") and (x'",x"?,..,x"") be two points in

pointed space. Euclidean distance between these two points is defined by the formula
(in tensor notation)

dZ _ (xi _x!i)(xi —X,i).

X
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The new coordinates x™ of the points in the new basis e,; are defined as follows (see

(3):

x'=ax, X =a xY .

Therefore, we receive in the new coordinate system

dj* =M =X ="y = (=X )a (xF — X)) =

=o' ;oM (x) = X' = x'K).
Since a”;0"c =3 ,, (see (22)) then
d2 =8, (x) —x " —x") = () —xHF - x*) =4y

We have the equality d j =d f , so the Euclidean distance between two points is the

tensor of the order zero in accordance with the definition of a tensor of the order zero.
Example 2. The vector is the tensor of the order one. Indeed, the transformation

(18) of the covariant components of a vector is the definition (24) provided r =1.
Example 3. The simple example of the tensor of the order two is the outer

product of the two vectors. Let (a',...,a") and (b',...,b") be two vectors in the initial
coordinate system x' (with the basis e; ). The quantities a™/ =a'b’ are the elements
of the so called outer product of these vectors. The new components of the vectors in
the new basis e, are defined by the formulae ™ = a*ra®, b*/ =a™/;b'. Then we
have the following string:

a“ b =g = oM afat b = 0o 1a* b = oot 1t

This expression is the definition (25) of the contravariant tensor of the order s = 2.

6. Multidimensional matrices
Definition of a multidimensional matrix. A multidimensional ( p -dimensional)

matrix is a system of numbers or variables a; ; ;
b )""p

, iy =12,..,n,, a=12,.,p,
located at the points of the p-dimensional space defined by the coordinates

I50) sy
The p-dimensional matrix is denoted as
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A= (ailaiza'"aip ) i, = 1,2,...,I’la, o= 1,2,...,p ) (26)

> T

or A= (a;), where i = (iy,1p 551 ) is @ multi-index, i, =1,2,...,n,, a=12,..,p.

If ny =n, =..n, =n, then the matrix (26) is called a p-dimensional matrix of

P
the order n (a hyper-square matrix). In this connection, the matrix (26) with distinct
ny,n,,..n, could be called a hyper-rectangular matrix.

Thus, a zero-dimensional matrix is a scalar, a one-dimensional matrix is a vector
and a two-dimensional matrix is an ordinary matrix in traditional notation.

Any p-dimensional matrix A=(a; ; ;) can be represented in the form
iy s

A=(a;z.), where I=(l,l5,.... 1), s=(8,52,5,), ¢=(c},.rc,) are multi-
indexes, k+A+p=p. We will say that the matrix 4 has (x,A,u)-structure and
denote it A, -

Transpose of a multidimensional matrix. The matrix A’ z(ag ... ) the
22905 p

T

elements a; ;
15025045 p

of which are connected with the elements a; ; ; of the matrix

sy sl

A=(a; i, ) by the equalities

151y 5ees

r _
Ly iy iy, = Ry iy, ol (27)
where ial,iaz,...,i% is some permutation of the indices I1509 505l ) is called the

transposed according to the substitution

matrix 4. For example, let

LLl 1,2 L21 1,22

A ~~ o =

_ _| X 2 Y Xy

A=(a; ;)= 211 212 221 2272
~ Il [ .
7 B z t

i, ],k , : T
and T = il Then, in accordance with the formula (27), a; ; , = a; ;;, and
,J,l WA
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-
T, T ~_| x
A" =(a; ;)= 201 212 221 22,
-~
2

Note, that the Matlab function ipermute.m performs a transpose of a
multidimensional array in accordance with the definition (27).

The some standard substitutions are introduced in the work [15] which allow us
to form various substitutions. They are substitutions of the types ‘onward’, ‘back’,
‘onward-back’.

The substitution on the p indices the lower string of which is formed from the

upper string by the transfer of the r left indices to the right (onward) is called
substitution of the type ‘onward’ and is denoted B, , or simple B,:

p.r . .
Livlts Legns ooy lp, , T

iy dys e Gpps gy e
B =[1 ? o ,pj,er. (28)

The substitution on the p indices the lower string of which is formed from the

upper string by the transfer of the r right indices to the left (back) is called
substitution of the type “back’ and is denoted # , , or simple H,.:

il) i2) Y ir) ir+1, ceey ip
]—[p’r :[_ ) ) _ . , p2r.
r

lp—r+1’ lp—r+2’ ooy p? I, X lp—

The substitution on the p indices the lower string of which is form from the

upper string by the transfer of the r left indices to the right (onward) and the s right
indices to the left (back) is called substitution of the type ‘onward-back’ and is
denoted B . H;:

il’ o ] _ l
B H :(. 5 r > p.s+19 s .p),pZI"-i-S.
l

r N
p_S+1’ ceey p, ceey ll’ LEEYY l’,

Multiplication of two multidimensional matrices. If a p -dimensional matrix A

is represented in the form of A=(aq;, l-p):(al’s’c), where [ =(/,l,,..., 1),

S = (81552558 ) C:(cl,...,cu) are multi-indices, k+A+pu=p, and a ¢-

dimensional matrix B is represented in the form of B = (b J, )=(b.s.m)> where

Jisasees
m = (my,...,m,) 1s a multi-index, A + p+v = g, then the matrix D =(d, ) is called
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a (A,n)-folded product of the matrices 4 and B, if its elements are defined by the
expression

dl,s,m = Zal,s,cbc,s,m = ZZ'”Zal,s,cbc,s,m .

c ¢ C Cu

The (A, p)-folded product of the matrices 4 and B is denoted **(4B) . Thus,

D=1k (AB)= (Z Clz,s,cbc,s,m) = (dl,s,m) .

In the case of the (0,0)-folded product we often omit the left upper indices and
write AB instead of *° (AB) .

In the general case ™ (4B)="*(BA).
The associative law of multiplication of the multidimensional matrices holds:

Ao (Mt (4B) C):x’“ (Aw’”, (BC)).

The distributive law of multiplication of the multidimensional matrices is as
follows:

“R(A(B +C)="M(4B)+"H(AC).

Degree of multidimensional matrix. The matrix D="*(44)="*4? is called a
(A, p)-folded square of  the matrix A, and the matrix

D="H (4 (4 (44))="P 4% is called a (L, p) -folded % -th degree of the matrix
A. If it is (0,0)-folded k-th degree of the matrix A4, then we omit the left upper
indices and write 4" instead of *° 4%

Identity multidimensional matrix. The matrix E(A,u) is called a (A,p)-identity

matrix if the equalities
MAEL, pw)="" (E(L,w)4) = 4

are satisfied for any multidimensional matrix 4. The matrix E(A,u) is (A +2u)-
dimensional matrix whose elements are defined by the formula
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I, if c=m,
E(K,H):(ec,s,m):({o lf c?’—'MJ,

C=(CloeesCy)s § = (S1500s83 ), m=(my,ecmy, ). (29)

7. Multidimensional-matrix representation of tensor
It follows from (25) that the definition of the contravariant second order tensor
has the form
C—Z*ilo*iz - a*il J a*iz i) afpjz ) (30)
It is convenient to express a second order tensor in form of a matrix [3]. It allows
using the matrix notation in the operations with tensors. Introducing the matrix

A= (X:-’ )= (o™ j) (10) and the matrices of the second order tensors a = (a’t),

*il,

a =(a™"™) allows us to obtain the following form of the representation of the
definition of the second order tensor (30) [3]:

a=AaNT. (31)
Indeed, we have the following transformations:

ki * * * JisJar — * JisJay * — * J1sJan*T
a - Z K*iu]’l}\“*iz,ha - z k*il’jla 7\'*1'2’]2 - Z K*ilsjla 7\’j2,*i2
J1sJ2 J1sJ2 J15J2

The last expression has the matrix form (31). Since A" = A}!, then the inverse
to the (31) transformation has the following matrix form:

a=A,all, (32)

where A, is the matrix A, =(A,; ;) = (a'+;) (11).

The matrix representation is more convenient for the visual perception and
computer calculations since the matrix algebra is very good represented in all
programming systems.

It is noted in [3] that the matrix notation fails for tensors of higher order.
However, this statement is refuted below. We give below the generalization of the
expression (32) for the arbitrary order tensor in the framework of the theory of the
multidimensional matrices. Let us turn for this to the tensor definition (25) in the case
of the arbitrary bases e;, e, and introduce apart the two-dimensional matrix

1
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A= ;)= (@*;) (10) also the s-dimensional matrices a = (a’""),

a=(a Hheetly ) of tensors. Then we can write the definition (25) in compliance with
the summation convention in terms of these matrices:

—*),.,%] * * akl,...,ks

R

a 7\'*]1,/(1 7\(*[5 ’ks

If we use the summation sign then the last expression takes the following form:

Z*h el L 2 3 [
= Z DI *ll,kl"' k@ =
k. =1
1 s

n n
kyook
=2 2 Zat sy dy sl kDT (33)
b=l k=l

where we introduce the 2s -dimensional matrix
* *
z=(Zag g, #t, oyt ) = Mg e g e ) (34)

The matrix z (34) is the (0,0)-folded s-th degree of the matrix A" =17 ):

z=%0 (A™)*. On the other hand, we can write the following equation along with the
equation (33) by introducing the matrix A=A, .« & i ):

_*ll L 1 }\l kl""7ks 35
Z ) sl Ky kO - (35)
: V:1

If
Z1 kel ey sl e, = Mal s (36)

then the expressions (33), (35) are equivalent. Taking into account (34), we will have
instead of (36):

* *
Mot ool ey e, = Moty Mt k- (37)

The equality (36) means, that the matrices z and A are connected by transpose
operation, namely

z=Alr, (38)
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Lokl kg sl

Loy ey Kok,

in which we use the index / instead of the index */. In rank form this substitution is
defined by following expression:

where T, =( j 1s the transpose substitution on the 2s indexes,

1,2,3,....s, s+1Ls+2,..2s—12s
25 = : (39)
2406,..,2s, 1, 3, ..2s5s-32s-1
It is follows from (38) that
A=z =) (40)

where 7, is substitution inverse to the substitution 75, .

Thus, we received the following form for representation the tensor definition
(25):

0,s 1
a=" (Ao (A a), (41)

where A is the matrix (40), z is defined by the formula (34), A” =(X; ;) is the

matrix (10), 75, 1s the transpose substitution (39), 05 (Aa) is the (0,s)-folded
product of the matrices A and a [15].

The known expression (32) is the particular case of the expression (41) provided
s =2. We can write the following expression instead of (32):

1,2,3,4 4 (L2,3,4
where T, = , Ty = .
24,13 3,1,4,2

8. Probabilistic applications
Let us prove the theorems related to the probabilistic applications.
The linear transformation of the random vector which reduces its covariance
matrix to the diagonal form is considered in the principal components method [22].
The following theorem applies to such a transformation.
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Theorem 1. The elements R ; ; of the covariance matrix R; =(R;; ;) of the

random vector &7 = (&!,...,&") can be considered as the components of the second
order tensor.

Proof. The covariance matrix of the random vector &7 = (€',...,&") is defined in
the initial basis ¢; by the expression R; = £ (EET), where & is the centered random
vector, and E means the mathematical expectation. If we introduce the linear

transformation 1 =A"E (9) with the transformation matrix A* (10), then we get for
the covariance matrix of the random vector n:

R, = EAWT) = E(WEAE)T )= E(AEETA'T )= A*R. AT .

We can see that the covariance matrix is transformed in accordance with the
transformation (31) of the second order tensor. Thus, the elements R;;; of the
covariance matrix R; =(R;;;) of the random vector gl =(e!,....,e") can be

considered as the components of the second order tensor.
The following theorem is more general then theorem 1.

Theorem 2. 1f & = (ék), k=12,....,n, 1s the random vector in the n-dimensional
Euclidean space with the initial basis e;, and v, = E(*?&")=(v¥1--%) is the s-th

order multidimensional-matrix initial moment of the vector & [15] (s -dimensional

Ky ook

matrix), then the elements v

¢ of the matrix v, can be considered as the
components of the s -th order tensor.
Proof. Let n = (n*l), [ =1,2,...,n, be the random vector & in the new basis e,;,

A" =(X;;)=(a";) be the transformation matrix from initial basis e, to the new

basis e,;, V, = F (®*n") be the initial moment of the order s of the vector 1 = (n*l)

in the new basis e,;. Since n* =\%, . &F = a™4&", then

k=1 k=l

v, = E(O’OT]S) — (V:ll ..... *] )= E(( Z . Z }\‘*11 " E’;kl K*lz,kz akz .. .}\‘*ls’ks E-’ks j} -

:E([ z z k*ll’klx*lzakz -.-x*ls’ks &_,kl &-’kz E.,k‘ jj:

k=1 k=l

Z[ 2 2 Mg Mt "'Mzs,ksE(ik‘ gha gl )J—

k=1 k=1
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{ D D Mg R, g, oy g VAL J=°’S«<A"‘)S>T2s v,)=""(Av;).(42)
k=1 k=1

We can see that the equality (41) holds. Theorem 2 is proved.
The following theorem defines the structure of the transformation matrix A of
the s-th order initial moment v in (42) provided the orthogonal transformation of

the random vector.
Theorem 3. If the transition matrix A" = (1} ;)=(a";) (10) from the initial
coordinate system x' to the new coordinate system x™ is orthogonal, then the 2s-

dimensional matrix A in tensor definition (41) and in the s-th order initial moment
v, transformation (42) is orthogonal too.

Proof. Orthogonality of the matrix A™ = (A} ;) = (a "1 ) (10) means that

YNNG g = XN Ny =85,
k=1 k=1
where 3, ; is Kronecker delta, or in matrix form
AN AT =AY A =1,

where [ 1is identical matrix of the order n. The 2s-dimensionality matrix
A=A 1s called (s,0,5) -orthogonal if the following equality holds [22]:

=5 (AA="5(ATA) = E(0,5),

where IT = B, ; is the transpose substitution at the 2s indices of the type ‘onward’
(28) and E(0,s) is the (0,s)-identical matrix (29) [15].
Let us rewrite (37) using other indices:

% % *
OL JioJs+l sz’j.wz o }\'js,jzs ) ’

A = (}\IJI 5j2 5"'ﬂjs’js+l’js+2 5"7j23 )

Then

e )= —
A _(7\“ J15J 2500 ]saJs+ls-]s+2a"9]2s)_(7\'j5+1ajs+25"’j2s’j1’j2 """ ]s)_
* * *

(}ij 5 J1 }Ljs+2aj2 o .}\UjZ.sz ) ’
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Further,

0,5 A ATl L L 1
V: (AA ) = Z o Z }\‘jl’jZ """ js ’ks+1 k k2v7\(ks+1’ks+2 ""k2s ’js+1’js+2 """ j2.v =
ks+l =1 k2‘ =1

= (vjlﬂjb“"js 7js+17js+2"-’j2s )_

n n

* £ * % * %

o Z o Z }\‘Jl ’k.Hl }LJZ ’ks+2 o }\’Jq ’k2s }\’jsﬂ ’k5‘+1 xjs+2 ’ks+2 o }\dj2s ’k2s -
ks+l_1 k2 =1

N

n n " "
- (kz o Z (7\( kv+1 ]v+l7kv+l )( ]2 s+2 ]?+2 kv+2) (}\'jv k2s }\‘]2€ k2v )j

s41=1 k=1

la if jl :js 19j2 :js 29""js :j2s’
:((8j17js+] )(6j27js+2)“.(8js’j23 )):({O ' + -

otherwhise.
=E(0,s).

The proof is completed.

9. Relationship between a tensor and a multidimensional matrix

Let us list the signs characterizing the relationship between a tensor and a
multidimensional matrix.

1. A tensor is not a matrix; a tensor is a set of scalars represented by an
indexed variable. The work with tensors in the framework of the tensor analysis is the
work with indexed wvariables, 1i.e. with scalars but not with matrix or
multidimensional-matrix variables. A tensor (covariant for simplicity) is denoted

a; ;> while a multidimensional matrix is denoted a =(a; , ) and is considered as

a “hypercomplex number” [9].

2. All of tensor indices are written out in tensor notation explicitly. The
tracking of the indices in tensor expressions is difficult with a large number of
indices. “The writing out of the indices leads to cumbersome formulae with tensor
notation” [20].

3. All of tensor indices run the values 1,2,...n, where n 1is the
dimensionality of the space in which the tensor is defined, while the indices of a
multidimensional matrix can run the arbitrary number of values. This means that a
tensor can be represented only by the hyper-square matrix, and it is impossible to
receive a hyper-rectangular matrix provided declaring a tensor as a matrix.
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4. A tensor is the set of functions defined in the linear vector space L. Its

2

component a (xl,x ..,x") in the coordinate system x' with the basis e;

1o tr

provided the fixed values of the indices j,...,j is the some characteristic of the

r

mutual connections of the components with numbers jj,...,j. of the vector

?..,x") e L". A multidimensional matrix is not connected with a specific space.

(xl,x
A multidimensional matrix can be a number matrix (constant) or a function of other
multidimensional matrix, and it is impossible to assert in general case that the

element a . . of the matrix a=(a; ;) is a characteristic of some mutual

J1 o Jy
. . ok ok
connections between the components with the numbers j ..., j,.

5. The operations of the outer and inner product of the tensors do not allow
realization of the (A,p)-folded product of the multidimensional matrices provided

A#0.

6. It is not possible to represent a mixed (covariant and contravariant)
tensor with a multidimensional matrix, since no way of ordering covariant and
contravariant indices has been established.

7. The multidimensional-matrix notation can be used in tensor analysis,
what was shown by representation of the definition of a covariant tensor in
multidimensional-matrix notation.

8. Any mathematical object should develop in the framework of his theory:
tensor in the framework of tensors, matrix in the framework of matrices. A
multidimensional matrix should generalize the usual (two-dimensional) matrix
inheriting or generalizing the methods of the theory of usual matrices. A tensor as a
multidimensional matrix is not such a generalization. Tensor as multidimensional
matrix transfers the matrix into the framework of the other theory. The use of the
term tensor without taking into account its properties seems unacceptable.

Conclusion

So, the article analyzes two approaches used in the multidimensional
probabilistic modeling: multidimensional-matrix and tensor approaches. As the
result, the differences and interconnections of these approaches are revealed. In
particular, the multidimensional-matrix interpretation (multidimensional-matrix
representation) of the arbitrary order tensor, which is absent in the literature, is
obtained. This opens the way for generalization of tensor concepts to the
multidimensional-matrix spaces. The number of theorems establishing the
connections between the multidimensional probabilistic concepts and tensors are
proved. At the same time, the performed analysis shows the illegality of the formal
using a tensor as a multidimensional matrix.
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