
Citation: Mrozek, I.; Yarmolik, V.N.

Linked Coupling Faults Detection by

Multirun March Tests. Appl. Sci. 2024,

14, 2501. https://doi.org/10.3390/

app14062501

Academic Editor: Juan A.

Gómez-Pulido

Received: 3 February 2024

Revised: 28 February 2024

Accepted: 13 March 2024

Published: 15 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Linked Coupling Faults Detection by Multirun March Tests
Ireneusz Mrozek 1,* and Vyacheslav N. Yarmolik 2,*

1 Faculty of Computer Science, Bialystok University of Technology, 15-351 Białystok, Poland
2 Faculty of Computer Science, Belarusian State University of Informatics and Radioelectronics,

220013 Minsk, Belarus
* Correspondence: i.mrozek@pb.edu.pl (I.M.); yarmolik10ru@yahoo.com (V.N.Y.)

Abstract: This paper addresses the problem of describing the complex linked coupling faults of
memory devices and formulating the necessary and sufficient conditions for their detection. The main
contribution of the proposed approach is based on using a new formal model of such faults, the critical
element of which is the introduction of roles and scenarios performed by the cells involved in the fault.
Three roles are defined such that the cells of the complex linked coupling faults perform, namely,
the roles of the aggressor (A), the victim (V), and both (B), performed by two cells simultaneously
in relation to each other. The memory march test and applied address sequence and background
determine the scenario for implementing the roles of memory faulty cells. The necessary and
sufficient conditions for detecting linked coupling faults are given based on a new formal model.
Formally, the undetectable linked coupling faults are defined, and the conditions for their detection
are formulated using multirun memory march tests. The experimental investigation confirmed the
validity of the proposed formulated statements. Based on the example of a linked coupling fault,
this study demonstrates the fulfillment of the necessary and sufficient conditions for its detection
using a single march test. As demonstrated in this article, employing the approach proposed by the
authors, a two-pass march C test, for instance, enables the attainment of 55.42% fault coverage for
linked coupling faults, inclusive of undetectable faults identified by the single-pass march test.

Keywords: memory tests; march tests; coupling faults; linked faults

1. Introduction
Memory devices occupy a dominant place among the hardware components of mod-

ern computer systems. Demand for high-speed, highly integrated, low-power memory
is growing unprecedentedly because cloud computing, artificial intelligence, and fifth-
generation (5G) communications, among others, are positioned as the main directions of
the fourth Industrial Revolution. To ensure the characteristics of modern memory of com-
puter systems that meet the requirements of new technological advances, the necessity and
importance of testing memory devices have increased sufficiently [1,2]. The main task of
memory testing is to detect faulty states described by various models of their failures [3–5].
Among the large variety of memory faults, coupling faults, CFs, involve two memory cells,
ai and aj. The types of such faults are discussed below [3,6–9].

First, in an inverse coupling fault , CFin, two cells, ai and aj, with addresses i ̸= j
participate in the model CFin(ai, aj) in the fault; here, one cell ai influences the second aj
and is called the aggressor (A), and the second aj, which is affected, is the victim (V). In
this fault, a logical transition from 1 to 0 (↓) or from 0 to 1 (↑) in the aggressor ai leads
to inverting (↕) the logical value in the victim cell aj, which is described by two models
of inverse faults CFin(ai, aj): <↑, ↕> and <↓, ↕> [3]. To represent the relation of address
i of the aggressor and j of the victim, in the memory address space, the symbols ∧ and
∨ are used, which define four inverse faults CFin(ai, aj) = {∧<↑, ↕>, ∧<↓, ↕>, ∨<↑, ↕>,
∨<↓, ↕>}. According to the classical definitions, the symbol ∧ indicates that the address
of the aggressor is less than the address of the victim i < j. In contrast, for the symbol ∨,
it is greater, i > j. One-run march tests implement sequential access to memory cells by
enumerating all addresses in an increasing or decreasing sequence. Therefore, the relation

Appl. Sci. 2024, 14, 2501. https://doi.org/10.3390/app14062501 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14062501
https://doi.org/10.3390/app14062501
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2779-7569
https://doi.org/10.3390/app14062501
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14062501?type=check_update&version=2

Appl. Sci. 2024, 14, 2501 2 of 14

i < j compares the values of the cells ai and aj addresses and the time of accessing them.
When implementing an element of a march test with an increasing sequence of addresses
(⇑) and the relation of addresses is i < j, the address for cell ai is generated initially, and
only after some time is the address of cell aj generated.

Second, in an idempotent coupling fault, CFid, during a logical transition from 1 to
0 or from 0 to 1 in the aggressor cell ai, a certain logical value 0 or 1 is forced to be set in
the victim cell aj [3]. Eight faults of direct action are recognized: CFid(ai, aj) = {∧<↑,0>,
∧<↑,1>, ∨<↑,0>, ∨<↑,1>, ∧<↓,0>, ∧<↓,1>, ∨<↓,0>, ∨<↓,1>} [3].

Third, in a static fault, CFst, the transition of a victim cell to any state aj ∈ {0,1} occurs
at a certain value ai ∈ {0,1} of the aggressor cell. Eight faults are possible: CFst(ai, aj) =
{∧<0,0>, ∧<0,1>, ∨<0,0>, ∨<0,1>, ∧<1,0>, ∧<1,1>, ∨<1,0>, ∨<1,1>} [3].

There are single coupling faults, which can be any of the above fault models, and
multiple coupling faults, consisting of a subset of single coupling faults [3]. In the set of
multiple faults, unlinked multiple coupling faults are distinguished. Thus, a particular
memory cell is involved in only one coupling fault included in the considered multiple
faults. In general, n unlinked coupling faults involve an even number r = 2n of memory
cells, half of which are aggressors and half are victims. Thus, each cell of a single CF has
only one role: the aggressor (A) or victim (V).

Due to the tremendous capacity of modern memory devices, tests are currently widely
used. They are still being developed with a time complexity that depends linearly on the
memory capacity. Such tests are called march tests [1,3,5–10] and are used for bit-oriented
memory, where each cell stores one bit. A march test consists of a finite number of march
elements [3]. Each march element contains a symbol that determines the order of formation
of the address sequence of the cells of the memory, determining the order in which the
cells are accessed. The symbol ⇑ indicates a sequential enumeration of memory addresses
in increasing order (forward), and the symbol ⇓ indicates decreasing order (in reverse
order). March elements contain a sequence of read (r) and write (w) operations, enclosed
in parentheses and separated by semicolons. The transition to the next cell, according to the
address sequence, is conducted only after performing all the operations with the current
cell according to the march element [1,3,6,7]. For example, the simplest march element
used in many tests has the form {⇑(r0, w1)}. In accordance with this element and the
address sequence, 0 is read from each cell, and 1 is written. The read operation compares
the read value with the expected value (0). A flowchart of this march element is presented
in Figure 1.

The detection of faults in memory, as a result of the march test, is based on receiving
incorrect values read from its cells that are different from the reference ones. Thus, a
faulty memory state is fixed, and a diagnostic procedure is performed if necessary [3,8,9].
Detecting single and multiple unlinked coupling faults within the march tests framework is
considered solved [3]. Effective tests have proven to detect them in practice [3,6,7,11]. March
tests that detect coupling faults assume a one-run memory test with a standard initial state
of storage cells, usually zero, and a standard counter address sequence [3]. The problem
of detecting linked coupling faults, LCFs, using one-run march tests remains practically
open, requiring further research due to the variety and complexity of the manifestation
mechanisms of such faults [6–9].

This article proposes a formal model of linked coupling faults, describing the roles of
all cells involved in the fault and the scenario of their manifestation regarding the march
test and its address sequence. The necessary and sufficient conditions for detecting such
faults within the framework of one-run tests are determined, and the efficiency of their
detection using multiple tests is evaluated.

In the era of rapidly advancing computing technologies and the ever-increasing im-
portance of data integrity, our research plays an important role in ensuring the reliability
of memory devices. The formal model and conditions we propose for detecting com-
plex linked coupling faults have significant implications in various computing domains,
including big data analytics, where memory errors can have cascading effects on data
processing and reliability. Moreover, the ability to detect and address such faults is of
paramount importance in networked systems, cloud computing infrastructure, and data
storage, where data integrity and availability are critical. Our results not only contribute to

Appl. Sci. 2024, 14, 2501 3 of 14

the field of memory testing but also contribute to the overall robustness and reliability of
computing systems.

addr = 0

value = Memory[addr]

value == 0
FALSE

ERROR

Memory[addr] = 1

addr = addr + 1.

TRUE

END

TRUE

addr < N
FALSE

Figure 1. Flowchart of simple march element.

One well-known march test is the MATS+ written as:

{⇕(w0); ⇑(r0, w1); ⇓(r1, w0)}.
M0 M1 M2 (1)

It has three march elements M0 :⇕(w0), M1 :⇑(r0, w1), and M2 :⇓(r1, w0). Algorithm 1
presents the interpretation of this notation in pseudocode.

Algorithm 1 MATS+ march test algorithm

1: for cell = 0 to N − 1 do
2: Memory[cell] = 0;
3: end for
4: for cell = 0 to N − 1 do
5: value = Memory[cell];
6: if value <> 0 then
7: goto error;
8: end if
9: Memory[cell] = 1;

10: end for
11: for cell = N − 1 downto 0 do
12: value = Memory[cell];
13: if value <> 1 then
14: goto error;
15: end if
16: Memory[cell] = 0;
17: end for

However, these studies are limited to the detection of linked coupling memory faults.
The proposed research aims to establish the necessary and sufficient conditions for de-
tecting such faults in modern memory devices. Currently, there are no one-run march

Appl. Sci. 2024, 14, 2501 4 of 14

test approaches for detecting undetectable linked coupling memory faults. Most of the
recent research in this area focuses on developing and enhancing march tests to detect
new faults introduced by Very Deep SubMicron (VDSM) memory devices, such as CFir,
CFdrd, CFwd, and CFir. The problem of detecting linked coupling memory faults has been
tackled for neighborhood pattern-sensitive faults (NPSFs). Several test algorithms have
been developed to detect NPSFs, but they come with very high test complexities. As
mentioned in [12], a 68N arch test algorithm can be used for ANPSFs and PNPSFs, while
it requires a 96N march test to detect all ANPSFs, PNPSFs, and SNPSFs. Detecting very
complex NPSFs is not only time-consuming but also does not guarantee the detection
of undetectable faults, including CFs. The approach proposed in this paper enables the
identification of previously undetectable linked coupling faults. Additionally, the proposed
mathematical model for describing linked coupling memory faults may be applicable to
other memory faults involving more than two cells. Nonetheless, this necessitates further
rigorous and time-consuming research.

2. Linked Coupling Faults
In the structure of classical models of memory faults, linked faults occupy one of

the most prominent places due to the difficulty of their detection using existing march
memory tests [3,6,7]. Linked faults are understood as faults of various types, including
typical cells involved in several single faults. In the case of linked coupling faults consisting
of n single CFs, r < 2n memory cells are involved. An example of an LCF1 consisting of
two (n = 2) single coupling faults is illustrated in Figure 2 [3]. In this figure, memory cells
with addresses i < j < k are presented sequentially from left to right in the time dependence
of their access during the execution of the direct phase of the march test. The designations
LCF1 and LCF2 refer to the same LCF where the manifestation mechanism (scenario) differs
and depends on the formation time of the address of the participating cells.

ai aj ak ai ak aj

LCF1 LCF2
Figure 2. Linked coupling faults for n = 2.

As depicted in Figure 2, LCF1 and LCF2 involve r = 3 cells and include two single
CFs, each consisting of two cells. The above example of LCF1 is presented in numerous
literary sources and is positioned as an example of an undetectable fault in the framework
of classical march tests [3]. If we assume that the addresses of the cells ai, aj, and ak are
formed in the sequence i, j, and k; that the cells ai and ak participate in the fault ∧<↑, ↕>;
and that the cells aj and ak form a similar fault ∧<↑, ↕>, we have an undetectable fault
LCF1. The fact that this fault was not detected refers to one-run march tests using an
address sequence satisfying the condition of generating address i first, then j, and finally k.
Then, the successive manifestation of two single faults included in the linked fault LCF1
(Figure 2) leads to a sequential double inversion of the state of the cell ak. Thus, the state
of cell ak, when accessed, is always correct, and the LCF1 is undetectable. The considered
example of the LCF1 linked fault is given as an argument regarding the nondetection of
linked faults in general. However, in particular, the linked fault in Figure 2, consisting of
two faults ∧<↑,0> or ∧<↑,1>, is detectable. Moreover, when using a one-run march test
in which the addresses are generated in the time sequence i, then k, and finally j, the LCF1
designated as LCF2 is detectable regardless of which two CFs form LCF2.

Thus, the linked coupling fault, LCF, depends on the number, n, of single linked faults
and their varieties and the number, r, of cells participating in the LCF. For the general
case, the number of roles and their types, A and V, for each LCF cell is also crucial. For
example, for the LCF1 where cells ai and aj play the aggressor role A, this is the only role

Appl. Sci. 2024, 14, 2501 5 of 14

for both cells, whereas cell ak has two victim roles, V. The concept of a role defines the
interaction between two cells, so the cell ak has two roles, V, resulting from the interaction
with ai and aj within the single CFs that comprise the LCF1. Abstracting from realistic and
unrealistic LCFs, the sets of which are primarily determined by the design and technological
features of the memory, we formulate several statements for the general case of an LCF.
First, assuming that r cells participate in the LCF, we estimate the minimum, min(n), and
maximum, max(n), number, n, of single coupling faults organized in the LCF. Thus, the
LCF consists of single CFs, and each of the r cells is included in at least one CF. Statement 1
presents the critical factor for obtaining the boundary values of min(n) and max(n).

Statement 1. If a CF(ai, aj) is included in an LCF consisting of r cells, then the number of roles
for one of the cells ai or aj forming the CF must be at least two, and the total number for both cells of
the CF lies in the range from 3 to 4r − 6.

The validity of this statement follows from the fact that if each of the cells ai and aj
forming a single CF has only one role, then this CF is not included in the LCF. Such a fault
is not associated with other CFs because the cells included in this fault do not have roles
that connect it with other memory cells or other CFs. Thus, the presence of at least one
of the cells ai and aj of the CF of more than one role provides a connection between other
single CFs, including in the LCF. Thus, the minimum number of roles for a CF in an LCF is
three. The upper bound of the number of roles for the fault cells of a CF participating in the
LCF (equal to 4r − 6) is achieved when each of the two fault cells plays the roles of both
the aggressor and victim in relation to the other r − 2 cells. Two more roles are possible
between the CF cells ai and aj. Then, the maximum number of roles of CF cells included in
the LCF is defined as 2(r − 2) + 2(r − 2) + 2 = 4r − 6.

The minimum number (min(n)) of single CFs that form an LCF is r − 1. This result
follows from Statement 1, corresponding to the minimum number of roles for each CF,
two describing the CF itself, and the third defining the relationship with another CF. An
example would be when, in each subsequent CF, the aggressor cell is also the victim,
for which the victim cell of the current fault acts as the aggressor. Thus, min(n)= r − 1,
which is also achievable for the second extreme case, where one of the r LCF cells is the
aggressor for the remaining r − 1 cells. We also have r − 1 single CFs, where one of the
cells performs more than two roles, in this case, r − 1 roles. Examples of such faults LCF3
and LCF4 for r = 3 are depicted in Figure 2. The maximum number (max(n)) of single
CFs generating an LCF is achieved when any possible pair of cells from r cells forms two
CFs, respectively, and the first cell plays the role of A, the second V, and vice versa. Thus,

max(n) = 2 ·
(

r
2

)
= r(r − 1). An example of an LCF consisting of the maximum number

of single CFs for r = 3 is presented in Figure 3 as the LCF5.

ai aj ak

LCF3

ai aj ak

LCF4

ai aj ak

LCF5

Figure 3. Linked coupling faults for r = 3.

Thus, for an LCF consisting of r cells, the number n of single CFs forming this fault is
in the following range:

min(n) = r − 1 ≤ n ≤ max(n) = r(r − 1). (2)

The resulting limit values for the number of CFs included in the LCF correspond to
similar values for the number of edges in connected labeled directed graphs consisting of r
vertices. Using graph theory, the number of types of LCFs, consisting of r memory cells,
can be estimated as the total number of simple labeled directed graphs with r vertices. This

Appl. Sci. 2024, 14, 2501 6 of 14

number 2r(r − 1) grows exponentially with the number of cells r and can be used as an
upper bound for the number of LCF varieties.

The min(n) and max(n) values of the number of single CFs that form an LCF (2),
including r memory cells, were obtained without considering the type of CFs, their location
in the memory, and the specifics of their mutual influence on each other. Therefore, the
above estimates of the number of LCF configurations only tentatively indicate numerous
LCFs. We explain this by the example of the minimum number (r = 3) of memory cells
participating in the LCF and the minimum number n = r − 1 = 2 of single CFs describing
LCFs. Considering the specific type of CF, whether it is a CFin, CFid, or CFst, and the
number is 20 (see the previous section), we can conclude that two CFs involving three
cells form 400 different LCFs. The estimation of 400 is given only for one of the various
LCF failures that can occur in the case of r = 3 specific physical memory cells, considering
their relative position. As indicated in the above example of the number of LCFs involving
only three cells, the number of such faults is exceptionally high. Even in this case (a small
number of cells participating in the LCF), the number of LCFs and their diversity do not
allow for analyzing each of these faults for detection or nondetection, which was possible
for single CFs [3].

3. Necessary and Sufficient Conditions for LCF Detection
The problem of detecting single and multiple CFs has long been the primary stimulus

for developing new march tests [3]. The widely known March C and March C- tests,
developed to detect all kinds of single CFid faults, are very effective in detecting faulty
memory states and their low time complexity [3,7]. Within the framework of one-run march
tests, the March M test was developed, in which the conditions for detecting coupling
faults were implemented for the first time, including double coupling faults of various
configurations [13]. More efficient tests were proposed by ascertaining the presence of
undetectable LCFs using one-run march tests, such as the March LR and March LA [13,14].
These tests provided conditions for detecting realistic LCFs within the considered models
of linked faults and determining the technological and design features of the memory
under testing [13,14]. Various modifications of the March LR and March LA tests are
effectively used to detect dynamic unlinked faults [15], test dynamic memory (DRAM) [16],
and implement memory built-in self-tests (BISTs) [17,18]. Specific march tests, such as
March SS, March BLC-Opt, March SR, March MSS, and March m-MSS, are applied to cover
bit-line coupling faults [19–21] and their diagnoses by applying March Cd [22].

The required sets of march elements and their sequence in the testing were determined
as conditions for detecting various types of LCFs, ensuring the detection of all faults of
the considered type [3]. For example, the condition for detecting all single CFids and
all linked double LCFids is the presence in the test of the following marching elements
⇑{ra, wa, . . . , wa, . . .}; ⇑{ra, wa, . . . , wa, . . .};⇓{ra, wa, . . . , wa, . . .}; ⇓{ra, wa, . . . , wa, . . .}. In
turn, the conditions for the presence of the necessary march elements in the test were for-
mulated based on the conditions for activating a particular fault and the conditions for its
detection. Similar conditions apply to the memory cells directly involved in the fault and
describe the sequence of actions necessary to detect the fault. For the simplest CF of the
form ∧<↑,0>, where cell ai is the aggressor (↑) and cell aj is the victim (0), the following
conditions must be fulfilled sequentially. First, the initial setting of both cells to the initial
state is necessary: cell ai to State 0 and cell aj to State 1. Then, the fault activation condition
is executed to perform a 0 to 1 state change in cell ai. Finally, the condition for detecting
the fault results from reading the content (0) of cell aj and comparing it with the reference
(previously set in cell aj) value equal to 1.

To obtain and formulate the conditions for detecting complex, numerous, and diverse
configurations of linked coupling faults LCF(ai, aj, ak, . . . , az) including r cells ai, aj, ak, . . . , az
with an ordered relation of addresses i < j < k < . . . < z, we introduce their formal de-
scription. The basis of such a description is the role of each cell of the considered LCFs
concerning all other cells included in the fault description. Similarly, as in the simplest case
of a CF, two cells, ai and aj, where i ̸= j, can influence each other. One can be a victim (V)
and the other an aggressor (A). In the examples of fault models LCF1, LCF2, LCF3, LCF4,
and LCF5, the roles of each cell are indicated by links and arrows. For the general case,

Appl. Sci. 2024, 14, 2501 7 of 14

within the framework of linked faults that combine two single CFs that include the same
two cells, ai and aj, we introduce the third role (both, B) of cell ai, which means two roles, A
and V, for cell aj. Accordingly, cell aj in relation to ai also has two roles, V and A, denoted
by the same symbol B. The absence of a connection (roles) between cells ai and aj is denoted
by the symbol (-). Thus, in the description of the LCF, all participating cells and all their
respective roles are presented.

In the formal description of LCF(ai, aj, ak, . . . , az), the information is sequentially pre-
sented in the form of a set of symbols (−, A, V, and B) for all cells ai, aj, ak, . . . , az. When
describing cells, their sequence ai, aj, ak, . . . , az is also preserved (i.e., the first position of all
the descriptions contains information about cell ai, then aj, and so on). This sequence is
determined by the cell access time, corresponding to the sequence of their addresses for
single march tests. As an example, we consider LCF6 presented in graphical form and the
form of a new formal model (Figure 4).

LCF6

a
i

aj ak al

LCF6(ai, aj, ak, al)= {⟨ai, A, A,−⟩;⟨V, aj,−,−⟩;⟨V,−, ak, B⟩;⟨−,−, B, al⟩}

Figure 4. Linked coupling fault LCF6 with description.

In the above example, LCF6 cells ak and al , included in this fault, form two simple CFs
and act in relation to each other in both roles, indicated by the symbol B in the description
of LCF6 (Figure 4). As explained, B indicates that the cell has two roles, and which one it
performs is determined by the scenario, set by the sequence of accessing the cells within the
framework of the march test. Depending on the direct ⇑ addressing, when the addresses
are related as follows i < j < k < . . . < z, or are reversed ⇓, when i > j > k > . . . > z, the
LCF6 description is presented as follows:

LCF6(ai, aj, ak, al) = {⟨ai, A, A,−⟩;⟨V, aj,−,−⟩;⟨V,−, ak, B⟩;⟨−,−, B, al⟩} =
⇑{⟨ai, A, A,−⟩;⟨V, aj,−,−⟩;⟨V,−, ak, A⟩;⟨−,−, V, al⟩},
⇓{⟨ai, A, A,−⟩;⟨V, aj,−,−⟩;⟨V,−, ak, A⟩;⟨−,−, V, al⟩}.

(3)

As noted, the ordered ratio of cell addresses involved in the LCF failure corresponds
to the time sequence of access to them within the framework of one-run march tests with a
fixed address sequence. The relation of the values of the physical cell addresses in the LCF
and the relation of the access times to these cells can be different. An example of such a
situation is the failure presented in Figure 2. Physically, this is the same fault. However, its
manifestation depends on the address sequence, which is displayed in the description of
this fault for two cases of address sequences:

LCF1 = LCF(ai, aj, ak) = {⟨ai,−, A⟩;⟨−, aj, A⟩;⟨V, V, ak⟩}
LCF2 = LCF(ai, ak, aj) = {⟨ai, A,−⟩;⟨V, ak, V⟩;⟨−, A, aj⟩}

(4)

Similarly, any of the possible LCFs are described. Examples of such descriptions for
the previously given LCFs are provided below:

LCF3 = LCF(ai, aj, ak) = {⟨ai, A,−⟩;⟨V, aj, A⟩;⟨−, V, ak⟩};
LCF4 = LCF(ai, aj, ak) = {⟨ai, A, A⟩;⟨V, aj,−⟩;⟨V,−, ak⟩};
LCF5 = LCF(ai, aj, ak) = {⟨ai, B, B⟩;⟨B, aj, B⟩;⟨B, B, ak⟩}.

For LCF6 (3), the LCF5 failure is represented as ⇑{⟨ai, A, A⟩; ⟨V, aj, A⟩; ⟨V, V, ak⟩},
⇓{⟨ai, V, V⟩; ⟨A, aj, V⟩; ⟨A, A, ak⟩}.

The main advantage of the formal model for describing the configurations of linked
faults is its compact notation containing complete information about all single CFs that

Appl. Sci. 2024, 14, 2501 8 of 14

form the LCF. For example, from the description of LCF1, it follows that this linked fault is
formed from two single CFs: CF(ai, ak) = ⟨ai, A⟩, ⟨V, ak⟩ and CF(aj, ak) = ⟨aj, A⟩,⟨V, ak⟩.

The ordered access to the cells ai, aj, ak, . . . , az of the fault LCF(ai, aj, ak, . . . , az), when
implementing the march test element, is determined by the time sequence of generating
their addresses i, j, k, . . . , z. This sequence is a crucial element of the formal description
of the LCF, which, for example, can be observed from the descriptions (4) of the LCF in
Figure 2. Indeed, for the sequence of addresses i, j, and k, we have the LCF1 description
of the fault, and for i, k, and j, another description is used: LCF2 (4). The position of a
particular cell (e.g., cell ak in its description) and the description itself in the formal LCF
model correspond to the temporal order of accessing this cell when implementing the march
test element. For example, in the formal model LCF1 = {⟨ai,−, A⟩;⟨−, aj, A⟩;⟨V, V, ak⟩}, the
description of cell ak is in the third position because the test generates the address k after
forming addresses i and j. In the description of ⟨V, V, ak⟩ of cell ak, its designation is also
given in the third position.

Thus, the basis of the new formal LCF model is the three roles that the cells of the
linked coupling fault perform, aggressor (A), victim (V), and both (B), performed by two
cells simultaneously in relation to each other. In reality, the proposed model describes the
scenario for implementing the roles of memory fault cells, determined by the march test
and the address sequence in this test to access the cells. For tests with a maximum fault
coverage CF, the scenario is specified only by the address sequence, displayed in the formal
LCF model, as demonstrated in the examples of LCF1 and LCF2.

For each cell ai, aj, ak, . . . , az, the LCFs distinguish between the left and right in the
description. Moreover, those fault cells activated before activating the current cell are on the
left side and are on the right side after activation. Activation refers to accessing a memory
cell under the march element of the test and performing the corresponding write and read
operations. The formal LCF model allows us to formulate the conditions for detecting such
faults using one-run march tests.

Statement 2. The necessary and sufficient conditions for detecting a linked coupling fault
LCF(ai, aj, ak, . . . , az) are listed below.

1. The application of a march test with an arbitrary address sequence, which detects all kinds of
single coupling faults.

2. The presence in the formal model LCF(ai, aj, ak, . . . , az) of a fault that corresponds to the
address sequence of the applied test, at least one cell al , l ∈ {i, j, k, . . . , z}, where only one role
V is present in the right, or on the left side of the description, or in both parts.

As demonstrated, an arbitrary fault LCF(ai, aj, ak, . . . , az) is a composition of single
CFs, where the entire set is detected by march tests, for example, the March LA and
March LR [13,14]. All possible single CFs are guaranteed to be detected by the indicated
tests only if they are not included in the LCF fault. When single CFs are included in the LCF,
these tests detect them either by the wrong state of the aggressor cell or are guaranteed
to provide a condition for their activation by changing the state of the victim cell and
detecting the wrong state. When the aggressor cell cannot fulfill the activation condition,
the presence of a faulty memory state (an LCF) is detected by the wrong state of this cell
because tests that detect single CFs provide the conditions for activating all such faults
by setting the required initial state of the aggressor cell (0, 1) or performing a transition
(↑, ↓) in it (see CFin, CFid, and CFst) [3]. Thus, all CF aggressor cells included in the LCF
are either the cause of their detection, becoming victims within other CFs, or exercise their
influence on the victim cells.

In most cases, these tests detect changes in the victim cells relative to the original
reference values [3], which follows from the properties of tests that detect the complete set
of single coupling faults [3]. The exception is cases of masking that occur when several
aggressors influence one cell of the victim. For example, one aggressor changes the reference
value of the victim to the opposite, and the second aggressor returns the original value of
the victim cell. An example of masking is illustrated in Figure 2 and is described by the
formal model LCF1 (4). As observed in this case, cell ak has two victim roles ⟨V, V, ak⟩ (4),
and both are on the same (right) side in the description. When the victim cell has only one

Appl. Sci. 2024, 14, 2501 9 of 14

victim role (i.e., only one aggressor) before accessing this cell, masking is impossible. If
the cell has two victim roles simultaneously, but in both parts of the formal description,
the cell content is only read after a single change in its state due to the manifestation of a
CF. Accordingly, an LCF is detected. A similar case is illustrated by an example of an LCF2
with the formal description of two roles of the victim LCF3 of cell ak. However, in this case,
one role, V, is on the right, and the second, V, is on the left in the formal description.

The masking mechanism is very diverse and is typical for memory devices. However,
within the framework, this article considers the case of a memory LCF and the possible
masking of the CFs included in them [23].

The guaranteed detection of any fault in the mutual influence of the CF, regardless
of whether it is included in the linked fault of the LCF, is provided by analyzing the state
of the victim cell by reading its state after realizing the influence of only one aggressor on
it (see Statement 2). An example of the implementation of such a scenario is described
by the formal model LCF3, where the state of the victim cell aj (⟨V, aj, A⟩) is analyzed
after only the aggressor cell ai has been influenced. The presence of at least one cell al ,
l ∈ {i, j, k, . . . , z} of the formal model LCF(ai, aj, ak, . . . , az) in the description, where there
is only one victim role (on the right or left or both simultaneously), ensures the detection of
LCF(ai, aj, ak, . . . , az), which is a necessary and sufficient condition for LCF detection using
a test covering single CFs.

As demonstrated, the cell role B in the LCF consists of two roles, each realized in one
of the two phases of the test, direct or reverse, which is equivalent to having one role of
the victim on the right or left side of the LCF description. The presence of two roles (V and
B) on the right or left of the description of at least one cell in the LCF also guarantees the
detection of this fault because, in one of the phases of the test, the role of B is equivalent to
the role of A. Accordingly, this case is reduced to the case of the presence of one role of the
victim. Thus, in the formal model LCF(ai, aj, ak, . . . , az), corresponding to the scenario of the
address sequence of the test, a necessary and sufficient condition for detecting this fault is
at least one cell al that has only one of the roles of the victim V or B, or both simultaneously
on the right or left.

Returning to the fault in Figure 2 for a sequence of addresses i, j, and k of a test that
detects single communication faults and its description {⟨ai,−, A⟩;⟨−, aj, A⟩;⟨V, V, ak⟩}, this
fault was not detected because the conditions of Statement 2 were not met. Using other
address sequences (other scenarios) can ensure its detection, as demonstrated by various
descriptions of this fault, depending on the time sequence of access to the cells in this fault:

LCF(ai, aj, ak) = {⟨ai,−, A⟩;⟨−, aj, A⟩;⟨V, V, ak⟩};
LCF(ai, ak, aj) = {⟨ai, A,−⟩;⟨V, ak, V⟩;⟨−, A, aj⟩};
LCF(aj, ai, ak) = {⟨aj,−, A⟩;⟨−, ai, A⟩;⟨V, V, ak⟩};
LCF(aj, ak, ai) = {⟨aj, A,−⟩;⟨V, ak, V⟩;⟨−, A, ai⟩};
LCF(ak, ai, aj) = {⟨ak, V, V⟩;⟨A, ai,−⟩;⟨A,−, aj⟩};
LCF(ak, aj, ai) = {⟨ak, V, V⟩;⟨A, aj,−⟩;⟨A,−, ai⟩}.

(5)

In two (LCF(ai, ak, aj) and LCF(aj, ak, ai)) of the six cases in (5), the conditions of Statement 2
are satisfied, providing the necessary and sufficient conditions for their detection.

4. Multirun March Tests for LCF Detection
Multi-cell faults such as pattern-sensitive faults (PSFs) or linked coupling faults (LCFs)

are triggered when specific bit patterns occur in the cells affected by these faults or when
a certain value change occurs in one of the cells. Due to the limitations of march tests, a
single run of such a test can only generate a limited number of patterns in the selected
memory cells. Increasing the number of generated patterns in memory cells cannot be
achieved by simply increasing the test’s complexity. One effective solution for achieving
high fault coverage for multi-cell faults, as demonstrated in [24–30], is multirun testing.
This testing concept involves executing the same test procedure multiple times, each time
with different initial conditions (different initial memory backgrounds and/or address
sequences). Executing the same march test under varying initial conditions generates

Appl. Sci. 2024, 14, 2501 10 of 14

different bit patterns in memory cells, thereby enabling the detection of a wider range of
potential multi-cell faults, including various types of linked coupling faults.

The low coverage of LCFs by classic one-run march tests is explained by the sequential
procedure for accessing memory cells and the unchanged test implementation scenario [23].
Analyzing the example of six formal descriptions (5) of the LCF1 in Figure 2 reveals that
only two of the six scenarios guarantee the detection of this fault. Accordingly, the fault
can be detected only by changing the scenarios and repeatedly applying the test. In this
case, the scenario is the address sequence of the march test that detects the entire set of
single coupling faults. Multiple (multirun) memory testing was considered within the
exhaustive, pseudo-exhaustive, and transparent memory testing frameworks [3,23]. In
all cases, it was necessary to repeat the march test for various scenarios determined by
the degrees of freedom inherent in march tests [20]. March memory tests detect complex
faults by applying them repeatedly for various address sequences or initial memory cell
states [31]. An essential result of multirun memory testing is detecting all possible faulty
states. However, achieving 100% coverage may require a sufficient number (multiplicity)
of test applications.

For the variable address sequence that defines the scenario for LCF(ai, aj, ak, . . . , az),
a time sequence always exists for accessing cells ai, aj, ak, . . . , az, satisfying the conditions
of Statement 2. An example is LCF1 (5), where two of the six sequences of cell addresses
ai, aj, and ak are detectable for this fault. In the general case, for any faulty memory
state, a set of address sequences exists for which this memory state is detected by a
single test. Accordingly, in a random address sequence selection procedure, the ratio
p, representing the number of address sequences for which a fault is detectable, to the
total number of sequences, expressed as a percentage, determines the fault coverage, FC,
when detecting this fault using a one-run memory test with randomly selected address
sequences. The value of p = FC/100% can be understood as the probability of fault
detection, while the probability of this fault remaining undetectable is 1 − p. For an f -
run memory test with a random address sequence selection procedure, the probability
of this fault being undetectable is (1 − p) f and the detection probability is estimated as
1 − (1 − p) f . Assuming that a single application of the march test allows for detecting the
LCF failure with FCTest, its f -time use with arbitrary (random) address sequences allows
for reaching the value FCTest(f) determined as follows (6) [23]:

FCTest(f) =

(
1 −

(
1 − FCTest

100%

) f
)
× 100%; f = 1, 2, 3, . . . (6)

As f increases, the value of the fault coverage FCTest(f) tends to 100%. For the LCF1
failure, considering (5), FCTest = (2/6)× 100% = 33.33%.

5. Experimental Investigations
The first experiment was provided according to the following conditions:

1. Memory size: 1024 one-bit cells;
2. LCF1 consisting of two single CFins: CFin(ai, aj) = ⟨↑, ↕⟩ and CFin(aj, ak) = ⟨↑, ↕⟩ in

cells ai, aj, and ak with addresses i < j < k;
3. Address sequence: random;
4. Number of one-run march test (f = 1) executions for the average value of FCTest(f)

calculation: 100,000.
The results for the one-run memory testing in Table 1 satisfy the theoretical esti-

mation (6) for march tests. The results in Table 1 originate from computer simulations
conducted using custom tools developed by the authors. These simulations involved
generating LCF1s in random memory cells and then executing the relevant test to detect
the faults. For each test, 100,000 simulations were conducted, and the result of the test was
recorded each time. Finally, the average fault coverage (FC) was calculated based on these
simulations. The number of simulations was limited to 100,000 because it was observed
that further increasing the number of simulations did not significantly affect the obtained
average result.

Appl. Sci. 2024, 14, 2501 11 of 14

Table 1. Fault coverage FCTest(f) of LCF1 for one-run march tests.

MATS++ March C- March LA March Y

33.21% 33.45% 33.15% 32.92%

The next experiment confirms the validity of the relation (6) for multirun memory
testing (f > 1) by applying the March C- test. The results of this experiment for the same
LCF1 are provided in Figure 5. The results demonstrate the high efficiency of detecting
LCF1s using multirun memory tests.

0 2 4 6 8 10 12 14
0

20

40

60

80

100

Number of iterations

Fa
ul

tc
ov

er
ag

e
[%

]

Figure 5. Fault coverage FCTest(f) of LCF1 for multirun March C- test (address sequences: random,
and background: zeros).

The efficiency of multirun memory testing for detecting linked coupling faults was
validated for various LCF and memory tests. The experiment conditions are similar to the
previous ones, except for the LCF fault configurations. The critical element of the multirun
testing for this experiment is a random address sequence applied at each test iteration.

It should be noted that the proposed approach is applicable for detecting previously
undetectable memory linked coupling faults using march tests. March tests exhibit com-
putational complexity that linearly depends on the memory size N in bits. The approach
shares comparable computational complexity with classical march tests and also linearly
depends on the memory size. For instance, the March LR test has a complexity of 22N, but
it does not enable the detection of undetectable linked coupling faults. Conversely, based
on the proposed approach, the MATS+ application (5N), in a multirun scenario (four runs),
facilitates the detection of 89.57% of the undetectable linked coupling faults (see Table 2).
The complexity of this procedure is estimated as 4 × 5N = 20N.

Tables 2 and 3 list the high efficiency of detecting complex faults with multirun tests.
With an increase in the number of iterations, the test efficiency levels off. As listed in
Tables 2 and 3, after four iterations, test MATS+ has the same effectiveness as the more
complex test March C- designed as a CF detection test.

A similar dependence is also observed for the case of multirun tests based on a variable
initial memory state (random backgrounds) of the tested memory. The same faults were
analyzed as in the previous experiment, and the March C- and simplest one-phase tests
{⇑(ra, wa)} were used. The results for both cases are presented in Tables 4 and 5.

As presented in Tables 4 and 5, multirun testing with a random background technique
results in the same FCTest(f) for both simple tests like “one march element” ({⇑(ra, wa)})
and complex tests, such as March C-.

Appl. Sci. 2024, 14, 2501 12 of 14

Table 2. Fault coverage FCTest(f) of the LCF for the multirun MATS+ test (address sequences: random,
and background: zeros).

CFin(ai, aj) CFin(aj, ak)
FCTest(f)[%]

f = 1 f = 2 f = 4 f = 8 f = 10 f = 12

∧<↑, ↕> ∧<↑, ↕> 33.53 55.93 80.51 96.25 98.53 99.31

∧<↑, ↕> ∧<↓, ↕> 66.35 88.59 98.64 99.99 100.00 100.00

∧<↓, ↕> ∧<↑, ↕> 66.47 88.83 98.62 99.98 100.00 100.00

∧<↓, ↕> ∧<↓, ↕> 33.52 56.06 80.49 96.23 98.53 99.34

TOTAL FCTest(f) 49.97 72.35 89.57 98.12 99.27 99.66

Table 3. Fault coverage FCTest(f) of the LCF for the multirun March C- test (address sequences:
random, and background: zeros).

CFin(ai, aj) CFin(aj, ak)
FCTest(f)[%]

f = 1 f = 2 f = 4 f = 8 f = 10 f = 12

∧<↑, ↕> ∧<↑, ↕> 33.65 55.91 80.41 96.24 98.52 99.33

∧<↑, ↕> ∧<↓, ↕> 100.00 100.00 100.00 100.00 100.00 100.00

∧<↓, ↕> ∧<↑, ↕> 100.00 100.00 100.00 100.00 100.00 100.00

∧<↓, ↕> ∧<↓, ↕> 33.24 56.06 80.40 96.24 98.53 99.30

TOTAL FCTest(f) 66.72 77.99 90.20 98.12 99.26 99.65

Table 4. Fault coverage FCTest(f) of the LCF for the multirun March C- test (address sequences:
counting sequences, and background: random).

CFin(ai, aj) CFin(aj, ak)
FCTest(f)[%]

f = 1 f = 2 f = 4 f = 8 f = 10 f = 12

∧<↑, ↕> ∧<↑, ↕> 49.97 75.26 93.70 100.00 100.00 100.00

∧<↑, ↕> ∧<↓, ↕> 50.04 74.25 94.65 99.51 100.00 100.00

∧<↓, ↕> ∧<↑, ↕> 49.99 75.03 94.11 100.00 100.00 100.00

∧<↓, ↕> ∧<↓, ↕> 50.15 75.24 95.27 99.71 100.00 100.00

TOTAL FCTest(f) 50.04 74.95 94.43 99.80 100.00 100.00

Table 5. Fault coverage FCTest(f) of the LCF for the multirun {⇑(ra, wa)} test (address sequences:
counting sequences, and background: random).

CFin(ai, aj) CFin(aj, ak)
FCTest(f)[%]

f = 1 f = 2 f = 4 f = 8 f = 10 f = 12

∧<↑, ↕> ∧<↑, ↕> 49.98 74.42 93.57 100.00 100.00 100.00

∧<↑, ↕> ∧<↓, ↕> 49.93 74.09 94.69 100.00 100.00 100.00

∧<↓, ↕> ∧<↑, ↕> 50.05 75.27 94.46 100.00 100.00 100.00

∧<↓, ↕> ∧<↓, ↕> 50.15 75.07 93.29 100.00 100.00 100.00

TOTAL FCTest(f) 50.02 74.71 94.00 100.00 100.00 100.00

6. Conclusions
A formal mathematical model is proposed to describe linked coupling faults, based

on the behavior of cells involved in the fault. The cell behavior scenario is determined
by the address sequence of a one-run march test. The necessary and sufficient conditions
for detecting linked coupling faults are provided. Theoretically and experimentally, unde-
tectable LCFs are effectively detected by multirun tests using random address sequences

Appl. Sci. 2024, 14, 2501 13 of 14

and variable initial memory states. The experiments demonstrate the high efficiency of
detecting LCF1s using multirun memory tests. For instance, an eight-run test with a ran-
dom background technique achieves 100% coverage of LCF1s, even for simple tests, like
the “one march element” ({⇑(r0, w1)}). The proposed mathematical model for linked
coupling faults appears promising for their identification and diagnostic localization. It
is crucial in further research to utilize the mathematical model proposed by the authors
to describe other complex memory faults, including other types of undetectable faults,
especially neighborhood pattern-sensitive faults (NPSFs). This approach, according to the
authors, will enable the formulation of necessary and sufficient conditions for detecting
other types of complex memory faults.

Author Contributions: Conceptualization, V.N.Y.; Methodology, V.N.Y.; Validation, V.N.Y. and I.M.;
Formal analysis, V.N.Y. and I.M.; Investigation, V.N.Y. and I.M.; Writing—review & editing, V.N.Y.
and I.M. All authors have read and agreed to the published version of the manuscript.

Funding: This paper was supported by grant WZ/WI-IIT/3/2023 from the Faculty of Computer
Science at Bialystok University of Technology, Ministry of Science and Higer Education, Poland.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lee, K.; Kim, J.; Baeg, S. Fault Coverage Re-Evaluation of Memory Test Algorithms With Physical Memory Characteristics. IEEE

Access 2021, 9, 124632–124639. [CrossRef]
2. Wojciechowski, A.A.; Marcinek, K.; Pleskacz, W.A. Configurable MBIST Processor for Embedded Memories Testing. In

Proceedings of the 2019 MIXDES—26th International Conference “Mixed Design of Integrated Circuits and Systems”, Rzeszow,
Poland, 27–29 June 2019; pp. 341–344. [CrossRef]

3. Goor, A.J.v.d. Testing Semiconductor Memories: Theory and Practice; John Wiley & Sons: Chichester, UK, 1991.
4. Hamdioui, S.; Gaydadjiev, G.; Van de Goor, A.J. The state-of-art and future trends in testing embedded memories. In Records

of the 2004 International Workshop on Memory Technology, Design and Testing, San Jose, CA, USA, 10 August 2004; IEEE:
Piscataway, NJ, USA, 2004; pp. 54–59. [CrossRef]

5. Koshy, T.; Arun, C.S. Diagnostic data detection of faults in RAM using different march algorithms with BIST scheme. In
Proceedings of the 2016 International Conference on Emerging Technological Trends (ICETT), Kollam, India, 21–22 October 2016;
pp. 1–6. [CrossRef]

6. Caşcaval, P.; Bennett, S. Efficient march test for 3-coupling faults in random access memories. Microprocess. Microsystems 2001,
24, 501–509. [CrossRef]

7. Caşcaval, P.; Caşcaval, D. March test algorithm for unlinked static reduced three-cell coupling faults in random-access memories.
Microelectron. J. 2019, 93, 104619. [CrossRef]

8. Nor, A.; Zakaria, N.; Wan Hasan, W.; Abdul Halin, I.; Sidek, R.; Wen, X. Fault Detection with Optimum March Test Algorithm. In
Proceedings of the 3rd International Conference on Intelligent Systems Modelling and Simulation, ISMS 2012, Kota Kinabalu,
Malaysia, 8–10 February 2012; Volume 47. [CrossRef]

9. Cockburn, B.F. Deterministic Tests for Detecting Single V–Coupling Faults In RAMs. J. Electron. Test. 1994, 5, 91–113. [CrossRef]
10. Harutyunyan, G.; Shoukourian, S.; Vardanian, V.; Zorian, Y. A New Method for March Test Algorithm Generation and Its

Application for Fault Detection in RAMs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2012, 31, 941–949. [CrossRef]
11. Jidin, A.Z.; Hussin, R.; Mispan, M.S.; Fook, L.W. Novel March Test Algorithm Optimization Strategy for Improving Unlinked

Faults Detection. In Proceedings of the 2021 IEEE Asia Pacific Conference on Circuit and Systems (APCCAS), Penang, Malaysia,
22–26 November 2021; pp. 117–120. [CrossRef]

12. Jidin, A.Z.; Hussin, R.; Fook, L.W.; Mispan, M.S. A review paper on memory fault models and test algorithms. Bull. Electr. Eng.
Inform. 2021, 10, 3083–3093. [CrossRef]

13. van de Goor, A.; Gaydadjiev, G.; Mikitjuk, V.; Yarmolik, V. March LR: A test for realistic linked faults. In Proceedings of the 14th
VLSI Test Symposium, Princeton, NJ, USA, 28 April–1 May 1996; pp. 272–280. [CrossRef]

14. van de Goor, A.; Gaydadjiev, G.; Yarmolik, V.; Mikitjuk, V. March LA: A test for linked memory faults. In Proceedings of the
European Design and Test Conference. ED and TC 97, Paris, France, 17–20 March 1997; p. 627. [CrossRef]

15. Ying, L.W.; Hussin, R.; Ahmad, N.; Fook, L.W.; Jidin, A.Z. Modified March MSS for Unlinked Dynamic Faults Detection. In
Proceedings of the 2022 IEEE 20th Student Conference on Research and Development (SCOReD), Bangi, Malaysia, 8–9 November
2022; pp. 68–72. [CrossRef]

http://doi.org/10.1109/ACCESS.2021.3110594
http://dx.doi.org/10.23919/MIXDES.2019.8787161
http://dx.doi.org/10.1109/MTDT.2004.1327984
http://dx.doi.org/10.1109/ICETT.2016.7873754
http://dx.doi.org/10.1016/S0141-9331(00)00103-4
http://dx.doi.org/10.1016/j.mejo.2019.104619
http://dx.doi.org/10.1109/ISMS.2012.88
http://dx.doi.org/10.1007/BF00971966
http://dx.doi.org/10.1109/TCAD.2012.2184107
http://dx.doi.org/10.1109/APCCAS51387.2021.9687791
http://dx.doi.org/10.11591/eei.v10i6.3048
http://dx.doi.org/10.1109/VTEST.1996.510868
http://dx.doi.org/10.1109/EDTC.1997.582440
http://dx.doi.org/10.1109/SCOReD57082.2022.9974097

Appl. Sci. 2024, 14, 2501 14 of 14

16. Chou, C.W.; Chen, Y.X.; Li, J.F. Testing Inter-Word Coupling Faults of Wide I/O DRAMs. In Proceedings of the 2015 IEEE 24th
Asian Test Symposium (ATS), Mumbai, India, 22–25 November 2015; pp. 67–72. [CrossRef]

17. Manasa, R.; Verma, R.; Koppad, D. Implementation of BIST Technology using March-LR Algorithm. In Proceedings of the 2019
4th International Conference on Recent Trends on Electronics, Information, Communication Technology (RTEICT), Bangalore,
India, 17–18 May 2019; pp. 1208–1212. [CrossRef]

18. Jidin, A.Z.; Hussin, R.; Mispan, M.S.; Lee, W.F.; Zakaria, N.A. Implementation of minimized March SR algorithm in a memory
BIST controller. J. Eng. Technol. (JET) 2023, 13, 67–80.

19. Irobi, S.; Al-Ars, Z.; Hamdioui, S. Detecting memory faults in the presence of bit line coupling in SRAM devices. In Proceedings
of the 2010 IEEE International Test Conference, Austin, TX, USA, 2–4 November 2010; pp. 1–10. [CrossRef]

20. Zordan, L.B.; Bosio, A.; Dilillo, L.; Girard, P.; Pravossoudovitch, S.; Virazel, A.; Badereddine, N. Optimized march test flow for
detecting memory faults in SRAM devices under bit line coupling. In Proceedings of the 14th IEEE International Symposium on
Design and Diagnostics of Electronic Circuits and Systems, Cottbus, Germany, 13–15 April 2011; pp. 353–358. [CrossRef]

21. Azevedo, J.; Virazel, A.; Bosio, A.; Dilillo, L.; Girard, P.; Todri, A.; Prenat, G.; Alvarez-Herault, J.; Mackay, K. Coupling-based
resistive-open defects in TAS-MRAM architectures. In Proceedings of the 2012 17th IEEE European Test Symposium (ETS),
Annecy, France, 28–31 May 2012; p. 1. [CrossRef]

22. Hasan, W.Z.W.; Halin, I.; Shafie, S.; Othman, M. An efficient diagnosis march-based algorithm for coupling faults in SRAM. In
Proceedings of the 2011 IEEE Regional Symposium on Micro and Nano Electronics, Kota Kinabalu, Malaysia, 28–30 September
2011; pp. 198–201. [CrossRef]

23. Yarmolik, V. Testing and Diagnoses of Computer Systems; Bestprint: Minsk, Belarus, 2019. (In Russian)
24. Cockburn, B.F. Deterministic tests for detecting scrambled pattern-sensitive faults in RAMs. In Proceedings of the MTDT

’95: Proceedings of the 1995 IEEE International Workshop on Memory Technology, Design and Testing, San Jose, CA, USA,
7–8 August 1995; pp. 117–122.

25. Yarmolik, V.N.; Klimets, Y.V.; Demidenko, S.N. March PS(23N) Test for DRAM Pattern-Sensitive Faults. In Proceedings of the
Asian Test Symposium, Singapore, 2–4 December 1998; p. 354.

26. Malaiya, Y.K. Antirandom Testing: Getting The Most Out Of Black-Box Testing. In Proceedings of the 6th IEEE International
Symposium on Software Reliability Engineering, ISSRE ’95, Toulouse, France, 24–27 October 1995; pp. 86–95.

27. Mrozek, I. Analysis of multibackground memory testing techniques. Int. J. Appl. Math. Comput. Sci. 2010, 20, 191–205. [CrossRef]
28. Mrozek, I.; Yarmolik, V. Optimal Backgrounds Selection for Multi Run Memory Testing. In Proceedings of the 11th IEEE

Workshop on Design and Diagnostics of Electronic Circuits and Systems, DDECS 2008, Bratislava, Slovakia, 16–18 April 2008;
pp. 332–338. [CrossRef]

29. Das, D.; Karpovsky, M. Exhaustive and Near-Exhaustive Memory Testing Techniques and their BIST Implementations. J. Electron.
Test. 1997, 10, 215–229. [CrossRef]

30. Huzum, C.; Cascaval, P. A Multibackground March Test for Static Neighborhood Pattern-Sensitive Faults in Random-Access
Memories. Electron. Electr. Eng. 2012, 119, 81–86.

31. Mrozek, I.; Yarmolik, V.N. Transparent Memory Tests Based on the Double Address Sequences. Entropy 2021, 23, 894. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ATS.2015.19
http://dx.doi.org/10.1109/RTEICT46194.2019.9016784
http://dx.doi.org/10.1109/TEST.2010.5699246
http://dx.doi.org/10.1109/DDECS.2011.5783110
http://dx.doi.org/10.1109/ETS.2012.6233034
http://dx.doi.org/10.1109/RSM.2011.6088323
http://dx.doi.org/10.2478/v10006-010-0014-6
http://dx.doi.org/10.1109/DDECS.2008.4538812
http://dx.doi.org/10.1023/A:1008215624768
http://dx.doi.org/10.3390/e23070894
http://www.ncbi.nlm.nih.gov/pubmed/34356435

	Introduction
	Linked Coupling Faults
	Necessary and Sufficient Conditions for LCF Detection
	Multirun March Tests for LCF Detection
	Experimental Investigations
	Conclusions
	References

