ИНФОРМАЦИОННАЯ ЗАЩИЩЕННОСТЬ АВТОМАТИЗИРОВАННЫХ СИСТЕМ ЭКСПРЕССНОЙ ОЦЕНКИ ЭФФЕКТИВНОСТИ ПРОТИВОМИКРОБНЫХ ПРЕПАРАТОВ

М.В. ПАРКУН, А.И. ДРАПЕЗА, В.А. ЛОБАН, Г.А. СКОРОХОД, Ю.М. СУДНИК

Экспрессная оценка эффективности противомикробных препаратов является одной из проблем экспериментальной и практической микробиологии. Для решения этой проблемы необходим поиск универсальных и объективных критериев определения жизнеспособности инактивированных микроорганизмов, которые отражали бы характер их повреждения в популяции. Современные подходы к объективной идентификации поврежденных микроорганизмов по категориям их жизнеспособности требуют значительных материальных, временных и интеллектуальных затрат.

Эффективное решение данной проблемы лежит в области создания аппаратно-программных средств получения и обработки многопараметрической информации, с помощью которой физиологическое состояния микроорганизмов, подвергнутых инактивирующему воздействию, может быть отражено более объективно с помощью фазового портрета.

В тоже время перспектива коммерциализации такого рода систем требует и решения вопросов по их информационной защищенности от несанкционированного воспроизводства. При создании автоматизированных систем негосударственного типа требования по их информационной защите, а также выбору для этого необходимых средств, определяются собственником автоматизированной системы, а не нормативно-правовыми документами.

Для защиты информации в разрабатываемой нами системе используется принцип ограниченного доступа к аппаратным и программным ее ресурсам. Это обеспечивается как использованием технологических особенностей изготовления датчиков, так и алгоритмами выделения и предварительной обработки информационных сигналов с помощью программно защищенных микроконтроллеров.

ЭКРАНИРУЮЩИЕ ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ ЦЕМЕНТНЫЕ МАТЕРИАЛЫ

М.Ш. МАХМУД, Н.Х.М. АЛАЛЛАК, Е.А. КРИШТОПОВА

Использование экранирующих электромагнитное излечение (ЭМИ) строительных материалов позволяет защитить информацию от утечки через побочные электромагнитные излучения и наводки, а также создать экологически благоприятные условий труда для персонала.

На этапе строительства зданий предлагается использовать цементные растворы с проводящими наполнителями, а также наполнителями, удерживающими капиллярную воду от испарения. В качестве первого наполнителя в настоящей работе использовался минерал шунгит в порошкообразном состоянии с размером фракции до 20 мкм, содержащий 68% кварца, 29% глобулярного углерода, а также оксиды щелочноземельных металлов, связанную воду и органические вещества. В качестве добавки, удерживающей в материале воду в затвердевшем цементном растворе, использовался хлорид кальция.

Были изготовлены образцы экранов ЭМИ, содержащие 40% шунгита, 40% стандартной цементной смеси и 20% хлорида кальция. Жидкая смесь наносилась