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Abstract. The solvability o f  the Navier-Stokes equations system in a rectangular 

pipe (three-dimensional case) is investigated. The study is performed on time 
layers with a step t .
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The paper investigates the existence and uniqueness of a solution to a bound
ary value problem for the Navier-Stokes equations in a rectangular pipe with 
smoothed corners. First, we smooth out all the dihedral and trihedral angles and 
obtain the region shown in Figure 1 (first smoothing). The vertices are also marked 
on it. A, B, C, D, A1, B1, C1, D j  of the original rectangular pipe, which are numbered 
in the order specified above by digits (in the figure, the digits are shown in paren
theses near the corresponding vertices).

Rectangle AAjBjB is the entrance to the original pipe (before smoothing the 
corners), rectangle CCjDjD is its exit. Continuing smoothing, we smooth the en
trance and exit in such a way that the smoothed surface, for values , x 1, satisfying 
the inequalities: 0 < x1 <S  and L -  S < x1 < L  (see Figure 1), does not contain either 
flat or rectilinear parts and is a convex smooth surface, being a connected open set 
on the boundary of the convex body (second smoothing). This part of the surface is 
not solid. The solid part of the surface lies in the interval S < x1 < L -  S . To clarify, 
we note that after the second smoothing, the plane touches the smoothed surface

H H H Hat the point xO(0,-^,-^-), and the plane x1 = L -  touches the point xL(L,^ 2,^ 1) .
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Let us adopt the following notations:
x = X x2,X3), 0 < xy <L,0 < x2 <H2,0 < X3 < H3, 0 < t < T, Q = (0,L)x (0,H2)x (0 ,^ );  
edges:

Figure 1.

S 1 = [0 < X j < L , 0 < x 2 < H 2, x3 = 0 ] -  lower, S 2 = [0 < x x < L,0 < x2 < H 2, x3 = H 3] -  top,

S 3 = [0 < x , < L , x2 =  0 ,0 < x 3 < H 3] -  front, S 4 = [ 0 < x l < L , x 2 = H 2, 0 < x 3 < H 3] -  back,

S 5 = [Xl = 0,0 <X2 < H 2, 0<X3 < H 3] -  left, S 6 =  [xx = L,  0 < x 2 < H 2, 0 < x 3 < H 3] -  right (these are

6
the edges o f  the original region), S  =(<JSrfe — boundary o f  the region Q , S T = S  x [0,T],

fc=i

Qr =Qx[0,T] .

Let us designate S  -  the surface obtained from the surface S  as a result of 
the second smoothing, q -  area bounded by a surface S, 00 Q = Q U Q  = Q x [0,T], 
ST = s  x [0,T] Qt = Q x [0, t ]. The solid part of the surface (it lies in the gap S< x  < l  - S  
) let us designate S .

Let’s consider the problem (density p  = 1, on a hard surface ut\ ~ = 0, i = 1,2,3):

d—l = v Y p —r - T  —  - —  , i = 1,2,3; (x,t) eB t , (1)
A t  ^ 2 ^  k  A v  A vi - i  a  2 ^ u k ------- 1

k=1 d x k  k =1 d x k  d x i

dui  + du2 + %  = 0 , (x ,t)eQ t , (2 )
dxy dx3

Uy\t=0 = 6i(x) xÊ Ü , ¿i|~ = 0 , u^~ = «~1(s,t) (s,t) e St ■ (3)
We proceed to setting the initial conditions for the velocity components U2 

and U3. The set of actions for finding the functions u2̂  u , we denote as point 1). 
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1). Assuming for now that ^  = 0, we solve the equation ^ = 0 for
0 x3 dx dx

the velocity u 2. For any fixed value x3, 0 < x3 < H 3, we solve this equation in the
same way as it is solved in [1]. The resulting solution, which we denote by u°, as
shown in [1], satisfies both the equation being solved and the no-slip conditions
on solid sections of the boundary. Having obtained the solution , we consider
the equation (in the region S  )

d  u n d u  0 du
V > -- -2- -  u ,--2 - u2 --2 = 0
k=1 dxk dx1 d x2

This equation, according to the well-known Schauder theorem (its proof ~ , 
for example, in [2]), has a unique smooth solution (in an arbitrary section S  
of the domain by a plane x3 = x30), 0 < x30) < H3), which we denote u2. Solu
tion u2, for any fixed value x3, < x <H  (at x3 = 0 and x3 = H 3 u2 = 0), we
continue until the entrance and exit o f the entire three-dimensional region with 
vertices A, B , C , D, A1, Bl , C1, D 1 . The latter is performed in the same way as, 
for example, in [1]. For the extended function, now defined in the entire rectan
gular parallelepiped, we retain the previous notation u2. Similar to solving the 

du du.---1 + ---2
dx, dx.

equation ^ +  du2 = 0 , it was decided above relatively u2, we solve the equation

 1 + ̂ +^*'1 = 0 relatively u3 with known functions u1 and u2. Indeed,
dx1 dx2 dx3

I suppose +duL = ~, we get the equation ~ + ^ 3  = 0 of type ^  + ̂ ^2  = 0 and
d x i  d x 2  _  d x 3  d x 1 d x 2

we denote its solution as u3. Function u3 satisfies the equation
(4)

dxl dx2 8x3
2). So, in point 1) the functions (transverse velocities) u2 and u3. In this point 2), 

by swapping the roles: functions Ul and u3, variables x2 and x3, i. e. u2 o  u3, 
3“l 3 3 = o x 2 o x 3, starting with solving the equation ^ + ^ ul = 0 and
dxt & 2 ôx3 dx1 dx3
performing actions completely analogous to the actions of point 1), we find the 

functions u3 and U2, satisfying the equation
+ ^ t_  + ̂ 3 . 

dx1 dx2 dx,

Having designated u20 = -  (u2 + u2), u = _  u + u  , Let’s add (4) and (5). As 
a result, we get _  2 _

2 du1 + 2 . 1 d(u2 + «2) + 2 . 1 d(u3 + «3) = 0 or d^+du^+du^ = 0.
dx1 2 dx2 2 dx3 dxi dx2 dx3

The initial value of the longitudinal velocity was known and given by 
the equality uj,=„ = ¿1(x). Let’s put it for uniformity wjt=0 = u10, then we get
du1,0 + du2,0 + du3,0 = 0 .
dx1 dx2 dx3
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So, we have initial conditions for all equations (1), and they satisfy the conti
nuity equation (2). Let us introduce the notation

3 d2— 3 d—
4 o)= v i  d —f - t —.0 , i =^k=1 dxk k=1 dxk

du(at t = 0 we believe = 0 ) and agreement: further, for pairs of identical indi
ces, summation is implied with a change in the identical index from the number

^ d p

to, in particular, if necessary, write down the sum T  b( x) You can apply both
i=1 d x i

3 dp dp
the left and right sides of the following equation: T b,(x)d~ = b,(x)d . Let’s con-

i=1 dx, dx,sider Poisson’s equation
T  d p = T  dAi 1 , x eQ
i=1 dxi ~=f dxt

with a condition on the border s  : bi(x)— +b(x)p = p(s), where x = s e S  . Functionsdxi
bt(x), b(x) and <p(s) we define below. Introducing denoting: for the Laplace

_3 d2p d
operator _  Ap , for boundary operator b . ( x ) —  + b ( x ) p  -  B p ,  for function

34<0) i=1 i dxi-  f  (x ) , we get the task 
=‘ x‘ A = ( ^  Bp\~=<p{s). (6)

It is known that if an elliptic operator has the form ,
then for the task

L u -A u  = f ( x ) ,  Bu\~=q>(s), (7)
where X -  complex parameter, the following theorem is true.

Theorem 1. Let the boundary S surface Q be a surface o f  class C 2+a, coef
ficients a ,  ar  a o f  the operator L belong C “(Q) and the ellipticity condition is 
satisfied

aij (x )4,4j -  v£ 2 - v  = const > o .
dtiLet the coefficients bt(x) and b (x ) boundary operator Bu = b,(x) ----- \-b{x)u

there are elements C 1+a (S ) ,

T bi(x)cos(«,xi ) >v0> v0 = const > 0 (8)
_  i=1 S

and let it be f  (x) e Ca(Q), p(s) e C 1+a(S ) . When problem (7) is uniquely solvable 
in c  2+“(Q) fo r  any j  u p  from  the specified classes fo r  all X , except fo r  no more 
than a countable number o f  values X> X2, ■■■, constituting the spectrum o fprob
lem (7). The inhomogeneous problem (7) is not solvable fo r  all j  and p  (see. [4], 
chapter III, § 3).

Note 1. From the proof of Theorem 1 given in [4], in particular, it follows 
that the problem is uniquely solvable Lu = f ,  Bu\s = <p(s), i. e. tasks (7) at X = 0
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. But the point is that this occurs when the inequalities are satisfied a(x) < 0 and 
b(x ) > 0. In general, any case a (x ) from C a(Q) and b(x) from C1+“(S ) this 
is not true if  the value X = 0 belongs to the spectrum specified in Theorem 1.

Let in the problem Ap = f  (x ) , to be inequality Bp\s = <p(s) b(x) > 0 and on 
the border S  function b(x) is bounded above by some sufficiently small positive 
constant p ,  i.e. the inequality is true b(x) < p , p >  0 . Then the task is

Ap = f ( x ) ,  Bp\~ = <p(s),

where , under the conditions of Theorem 1, it is uniquely solv
able.

We will achieve the fulfillment of condition (8) by setting b1(x) = ̂ +cos(n,x1),
b,(x) = n (x) + cos(n,x,) , i = 2,3, where cos(«,*,), i = 1,2,3 -  direction cosines of
a unit vector n = n (x) external normal to s  at the point x , and n(x) is defined
as follows: n(x) = -1, at 0 < xt <1  H i ; -1  <n,(x ) < 1, at 1H, <x, <-H I; n (x) = 1, 

2 3 3 3at - H , < x, < H , ; , = 2 ,3 , at the same time x  e Q , function q  (x) fairly smooth,
changes from to monotonously and n (x) at x, = — Ht equals zero: v,(x)|x =05H = 0.

~ 1 , 2 , *' . '
Note: when the point x e S and x = 2 #, (, = 2 ,3 ), x l = 0 or x1 = L . This meai~
that bt (x) = n  (x) + cos(n, x t) ,  , = 2,3, vanishes only at points on the surface S

with coordinates (0,— ,— ) h (L, ,H ).
2 2 2 2 

Problem (6) takes the form

(9)
3 3A(0)where f  (x) = Y —— , coefficients b,(x) and b(x) indicated above, p(x) = bt(x)A,(0).

'“— dx,
We see that the boundary condition has the form bt (x) + b( x) p  = b (x) 4 0)

dx,
which is not consistent with equations (1), each of which, bt (x) * 0 can be

dpwritten as bt (x) —  = bt (x)A(0) (here the convention of writing the sum is
dx

not applied, but three equalities are written). Summing the last three
dp

equations, we obtain bt (x) —  = bt (x) A(0) (now the convention of
dx,

recording the amount is applied). The following considerations will help to
get rid of the indicated discrepancy (they are contained in [4], Chapter X, § 1).

In a limited area Q The following types of problems are considered:

L(u) = ag (x ,u,ux) d u— + a(x,u ,ux) = 0 , (10)
dxidxj

l i (S)(u) = [b( x, u, ux) + (x, u)ux + b0( x, u)] ~ = 0 , (H )
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under the assumption that equation (10) ~s uniformly elliptic and for arbitrarily 
fixed u and p  and at each point x  e  S  vector l (x, u, p ) with components 
bp (x, u, p) + bt(x, u) does not lie in tangent to S  planes. More precisely, it is 
believed that

\bp (x ,u , p )  + b,.(x,u )]co s(n ,x t) > v 1(|u|,|p|), v1 >0 . (12)

The question of the solvability of problems (10), (11) is reduced to the ques
tion of the existence of fixed points for transformations with good properties, and 
some transformation is considered u = O (v ). It is noted that the Leray-Schauder 
criterion for the existence of fixed points cannot be applied to the transformation 
under consideration, and it is immediately noted that this is possible in the case 
when b(x,u ,ux) = 0. Recalling problem (9), we see that in our case the last iden
tity holds . And yet we will dwell on the transformation , since it is necessary to 
get rid of the term in the boundary operator. The consideration leads to the proof 
of the theorem on the solvability of abstract equations in Banach spaces and the 
subsequent clarification of the requirements for O (v ).

Theorem 2. Let X  and Y  -  be two Banach spaces, I  -  be a segment o f  [0,1]
, а x ,  y  and t -  elements X  , Y and I  respectively. L e t’s suppose O -  con
tinuous mapping o f  the direct product X  x I  e Y ,  having a derivative O ( x , t )
, continuous with (x , t ) respect to in the operator topology L {X  ^  Y  }, and sat
isfying the following conditions:

1) For any solution x  o f  the equation
O ( x, t )  =  0, (13)

answering to an arbitrary t  from  I , operator O  (x , t )  has a limited inverse 
O - W ) :  Y  ^ X .  x

2) The set of all solutions of equation (13) that correspond to all t e  I , com
pact in space X  .

3) For some fixed t  from  I  there is only one solution x  equations (13).
Then fo r  each t e  I  equation (13) is uniquely solvable in X
To reduce the solution of problem (10), (11) to Theorem 2, two Banach spac

es are introduced: as X is taken c  2+a(Q ), and as a space of pairs of elements 
y = { /,P }, where f ( x ) e C“(Q), p(s)eC 1+“(,S), with the norm ||y||r =|/|Q“) +pS1+“) .

Problem (10), (11) is included in the family of problems that depend on the
parameter t e [0,1]: ~

LT(u) = rL{u) + (1 - t)L0(u) = 0,x e Q , 1 (14)
LTs)(«} = rL(S)(«} + (1 -  r)L(f) («) = 0, x e s J  

where L0 h L0S) -  differential operators of the same type as L  and L(S) accord
ingly, and with the value t  = 0 of problem (14) is uniquely solvable in c  2+“(Q ).
It is clear that taking as an operator Lf-1 operator bt (x)—  + b( x)u , we will achieve

‘ dxi

150 || International Conference



solvability of (14) for the value t = 0 and satisfy condition 3) of Theorem 2. With
out further considering the contents of § 1, Chapter X of [4], we simply note that
it implies the existence of a unique solution to problem (9) with the boundary

dp
operator bAx ) . Indicating this solution p 0, we begin to solve the system (1) -  
(3) with the values t > 0.

To find functions ut , , = 1,2,3, and pressure p  at values t > 0 we will resort 
to Rothe’s method, which essentially reduces the proofs o f existence theorems for 
solutions of initial-boundary value problems for parabolic equations to boundary 
value problems for elliptic equations (see [1], [3]). T

We will dissect the cylinder Q T planes tm m t  , m = 0, 1, . . . ,  M , t  = m , 
and we denote Q section plane t = m T , S  -  its border, Q = Q m— . Atm 1 m m  m m m
each section Q Let’s define the functions that we will denote u , u , um 1,m 7 2,m 7 3,m
, p m, m = 0 M . The solution was found above for the value t = 0, i. e. functions
u , ;  u2>0, Uз>0, p„. To find the values ulm , u2 m , u,m , ? m at m = l,2,...,M  we in
troduce the difference derivative and replace the derivatives in equations (1) -  (3) ^

1 dt
difference derivatives u _ = _ ( u -  u ). Since now the derivatives ^  * 0 .ft V m̂ i.m-̂  dt

3 d2u 3 du
then the expressions for will change accordingly 4 <0) = VY — 20 - Y  uk0——,

1=1 dxk t=1 ' dxk
, = 1,2,3. The movement along time sections occurs in the same way as in [1]. Let 
us arrive at the theorem.

Theorem 3. Let the following conditions be satisfied: S  e C 3+a, b  (x) e C3+“(Q)
I |  e C3+“(ST), f  e Ca(Q), p e C 1+a(S)■ Then problem (1) -  (3), ,n wh,ch the
derivatives duL replaced by difference derivatives, fo r  any t = tm = m T , m = 0,M , 

dt — —
and small enough has a un,que solution, and u.m e C3+“(Qm), pm e C2+“( Qm)
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