УДК 004.56: 537.531

СТРУКТУРА АППАРАТНЫХ СРЕДСТВ ДЛЯ ВОССТАНОВЛЕНИЯ ИНФОРМАЦИИ С ДИСПЛЕЕВ

И.А. Третьяков, Я.И. Рушечников, А.С. Куликова, В.В. Данилов Донецкий государственный университет, г. Донецк, Российская Федерация

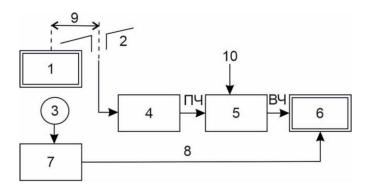
Аннотация. В настоящей работе показано, что восстановить информацию от некоторых средств вычислительной техники, в частности дисплеев, можно с помощью общедоступных радиоэлектронных средств.

Ключевые слова: электромагнитная совместимость; электромагнитное излучение; наводки электрических сигналов; восстановление информации.

THE STRUCTURE OF HARDWARE FOR RECOVERING INFORMATION FROM DISPLAYS

I.A. Tretiakov, IA.I. Rushechnikov, A.S. Kulikova, V.V. Danilov Donetsk State University, Donetsk, Russian Federation

Abstract. This paper shows that it is possible to recover information from some computer equipment, in particular displays, using publicly available electronic means.


Keywords: electromagnetic compatibility; electromagnetic radiation; electrical signal interference; information recovery.

Введение

Проблема безопасности излучений и наводок в средствах электронной вычислительной технике известна со времен ее появления [1, 2]. Известно, что информацию, обрабатываемую средствами вычислительной техники, можно восстановить путем анализа электромагнитных излучений и наводок, используя соответствующий ее прием и декодирование [3]. Применение в средствах вычислительной техники импульсных сигналов прямоугольной формы и высокочастотной коммутации приводит к тому, что в спектре из лучений будут компоненты с частотами вплоть до СВЧ.

Основная часть

Для восстановления информации с дисплеев анализ лишь уровня электромагнитного излучения недостаточен, нужно знать еще его структуру. Для дисплеев она соответствует структуре телевизионного сигнала, поэтому в качестве инструмента измерений может использоваться ТВ-приемник. Целью измерений является установление расстояния, на котором информация с экрана дисплея уже не будет воспроизводиться приемником. Для проведения измерений использовалась структура аппаратных средств с диапазоном рабочих частот, более широким в сравнении с обычным ТВ-приемником и повышенной чувствительностью (рис. 1): 1 – исследуемый дисплей; 2 – дипольная антенна; 3 – магнитная рамочная антенна (15...25 кГц); 4 – измерительный приемник; 5 – смеситель; 6 – телевизионный приемник; 7 – формирователь синхросигналов; 8 – сигналы синхронизации (по волоконно-оптической линии); 9 – измеренное расстояние, 10 – сигнал гетеродина.

Рис. 1. Структура аппаратных средств измерений **Fig. 1.** The structure of measurement hardware

Исследуемый дисплей располагается на высоте 1 м над заземленным металлическим листом, находящимся на полу измерительной площадки. Сигнал от калиброванной антенны подается на вход приемника для измерения в диапазоне 30... 1000 МГц. Сигнал ПЧ измерительного приемника перестройкой частоты преобразуется во входной сигнал ТВ-приемника. Два приемника позволяют не только восстанавливать, но и проводить измерения напряженности электрического поля и сравнивать ее значение с качеством восстановления.

Эксперимент показал, что для качественного восстановления текста на экране телевизионного приемника полоса измерительного приемника должна составлять не менее 4 МГц. При полосе 1 МГц текст становится трудночитаемым, но распознается как текст. Если полоса меньше 1 МГц, изображение на экране приемника с трудом распознается как текст.

В отличие от ситуации реального извлечения информации из излучения при измерениях имеющийся в наличии дисплей позволяет измерять синхросигналы. Строчный синхросигнал получают непосредственно от дисплея, как правило, за счет магнитного поля строчного трансформатора. С помощью магнитной антенны и последующего фильтра выделяется синусоида с частотой 15...20 кГц, которая имеет значительную фазовую нестабильность. Для устранения нестабильности требуется фазовая автоподстройка с большой постоянной времени. Схема формирования импульсов превращает синусоиду в синхроимпульсы строк, последние делением частоты повторения в раз превращаются в синхроимпульсы кадров. Синхроимпульсы поступают на приемник по волоконно-оптическому кабелю для предотвращения их влияния на поле излучения дисплея.

Заключение

Измерения показали, что несмотря на то, что все исследуемые дисплеи удовлетворяют нормам на электромагнитные помехи, с расстояния 50 м можно было получить хорошее изображение информации с экрана дисплея на экране приемника, если дисплей имел пластмассовый корпус. Если корпус металлический, то это расстояние уменьшалось до 10 м. В измерениях использовалась дипольная антенна, замена которой в следующих экспериментах на направленную антенну (трехэлементная, типа «волновой канал»), дает выигрыш порядка 10 дБ. В этом случае указанные расстояния составляют более 300 м, для дисплея в пластмассовом корпусе, 150 м для дисплея в металлическом корпусе.

Список использованных источников

- 1. Лыньков Л. М., Борботько Т. В., Казека А. А. (2008) Защита от побочного электромагнитного излучения персонального компьютера. Доклады Белорусского государственного университета информатики и радиоэлектроники. 5(35), 29-34, EDN YUIMVU.
- 2. Хорев А. А. (2020) Оценка возможности обнаружения побочных электромагнитных излучений видеосистемы компьютер. Доклады Томского государственного университета систем управления и радиоэлектроники, № 2(32), 207-213, EDN SEBGWX.
- 3. Рушечников Я. И., Яновский А. В., Жинкина А. С., Данилов В. В. (2019) Электромагнитные излучения элементов электронной вычислительной техники. Вестник Донецкого национального университета. Серия Г: Технические науки, (2), 25-35, EDN TXLBMK.

References

- 1. Lynkov L. M., Borbotko T. V., Kazeka A. A. (2008) Zashchita ot pobochnogo elektro-magnitnogo izluchenia personalnogo kompiutera. *Dokladv Belorusskogo gosudarstvennogo universiteta informatiki i radioelektroniki.* 5(35), 29-34 (in Russian).
- 2. KHorev A. A. (2020) Otsenka vozmozlnosti obnaruzleniia pobochnykh elektromagnitnykh izluchenii videosistemy kompiuter. *Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniia i radioelektroniki.* 2(32), 207-213 (in Russian).
- 3. Rushechnikov IA. I., IAnovskii A. V., ZHinkina A. S., Danilov V. V. (2019) Elektro-magnitnye izlucheniia elementov elektronnoi vychislitelnoi tekhniki. *Vestnik Donetskogo natsionalnogo universiteta. Seriia G. Tekhnicheskie nauki.* (2), 25-35 (in Russian).

Сведения об авторах

Третьяков И.А., канд. техн. наук, доц., доц. каф. радиофизики и инфокоммуникационных технологий, Донецкий государственный университет, i.tretiakov@mail.ru. Рушечников Я.И., ст. преп. каф. радиофизики и инфокоммуникационных технологий, Донецкий государственный университет, уа.rushechnikov@donnu.ru.

Куликова А.С., мл. научн. сотр. каф. радиофизики и инфокоммуникационных технологий, Донецкий государственный университет, nastya.zhinkina@mail.ru. Данилов В.В., д-р техн. наук, проц., зав. каф. радиофизики и инфокоммуникационных технологий, Донецкий государственный университет, ut5iv@mail.ru.

Information about the authors

Tretiakov I., Cand. Sci. (Tech.). Associate Professor. Associate Professor at Department of Radiophysics and Infocommunication Technologies, Donetsk State University, i.tretiakov@mail.ru.

Rushechnikov IA., Senior Lecturer at Department of Radiophysics and Infocommunication Technologies, Donetsk State University, ya.rushechnikov@donnu.ru.

Kulikova A., Junior Researcher at Department of Radiophysics and Infocommunication Technologies, Donetsk State University, nastya.zhinkina@mail.ru.

Danilov V., Dr. Sci. (Tech.), Professor, Head of the Department of Radiophysics and Infocommunication Technologies, Donetsk State University, ut5iv@mail.ru.