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Abstract. This paper presents a prototype application for detecting network traffic anomalies by integrating 
visual analytics and unsupervised machine learning. Built using a Flask-based three-tier architecture, the system 
employs the Isolation Forest algorithm for anomaly detection and provides interactive web-based visualizations 
to enhance human interpretation of complex traffic patterns. Key features include temporal traffic flow 
visualization, protocol distribution analysis, and anomaly severity classification. The prototype enables network 
administrators to identify sophisticated intrusions through real-time metrics and supports informed decision­
making for threat mitigation.
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Introduction

Network security faces increasing challenges from sophisticated cyber attacks amidst 
exponential traffic growth. Traditional signature-based detection systems struggle to identify 
novel threats, necessitating advanced approaches like anomaly detection [1]. While machine 
learning offers enhanced detection capabilities, unsupervised methods often produce high 
false positives, and purely algorithmic systems lack interpretability for security 
practitioners [2, 3]. This research introduces a hybrid framework that combines unsupervised 
machine learning with visual analytics to address scalability and interpretability challenges. 
By leveraging the isolation forest algorithm and interactive visualizations, the prototype aims 
to empower network administrators to detect and contextualize anomalies effectively.

Main Part

The theoretical foundation of this prototype rests on integrating automated anomaly 
detection with human-centered visual analytics. Unsupervised machine learning, specifically 
the isolation forest algorithm, is chosen for its ability to identify statistical outliers in high­
dimensional data without requiring labeled datasets [4]. This method constructs random 
binary trees to isolate anomalies, where outliers have shorter path lengths due to their distinct 
features. Complementing this, visual analytics facilitates human interpretation 
by transforming complex data into intuitive graphical representations, enabling analysts 
to contextualize anomalies within operational environments [5]. The theoretical design 
emphasizes a synergy between machine-driven detection and human-driven analysis 
to enhance overall system effectiveness in identifying network threats.

The prototype adopts a three-tier architecture comprising data acquisition, analysis, 
and presentation layers (Fig. 1). The data acquisition layer generates synthetic network traffic 
using a custom data generator module, producing records with attributes like timestamp, 
source/destination IPs, protocol, and byte counts for testing purposes. The analysis layer 
employs the isolation forest algorithm for anomaly detection, with data persistence handled 
by SQLite and SQLAlchemy ORM. The presentation layer uses a Flask web framework with 
a Bootstrap-based interface, rendering visualizations via Chart.js for temporal traffic, protocol 
distribution, and anomaly severity metrics.
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Fig. 1. Three-tier architecture of the network anomaly detection prototype

Components communicate through RESTful API endpoints, ensuring modularity 
and separation of concerns. Data flows sequentially: traffic records are generated, stored, 
analyzed in hourly batches, and visualized on-demand via API triggers. This design supports 
scalability and iterative development while maintaining computational efficiency.

The visual analytics framework transforms network traffic data into interactive 
visualizations using Chart.js, enhancing human interpretation for network administrators. 
Temporal traffic analysis is presented through line charts that display traffic volume over 
adjustable time periods ranging from one hour to seven days, enabling the identification 
of anomalies such as spikes associated with denial-of-service attacks (Fig. 2). Protocol 
distribution is visualized using doughnut charts that reveal protocol frequency distributions, 
facilitating the rapid detection of unusual patterns like tunneling or covert channels. Anomaly 
severity is depicted through pie charts that classify detected anomalies into critical, high, 
medium, and low severity levels-defined by thresholds of greater than 0.8, greater than 0.7, 
greater than 0.6, and 0.6 or below, respectively-using a color-coded scheme ranging from red 
for critical to blue for low severity, allowing for quick triage. Server-side processing with 
Flask ensures computational efficiency, while client-side Chart.js rendering provides 
a responsive user experience, though occasional API endpoint errors indicate a need 
for improved refresh mechanisms.

The anomaly detection module uses scikit-learn’s IsolationForest with 100 estimators 
and a contamination factor of 0.05, optimized for enterprise network environments [6]. 
Features include bytes transferred, packet counts, connection duration, and port numbers, 
normalized via StandardScaler to address scale disparities. The algorithm computes anomaly 
scores based on path lengths in binary trees, transformed to a [0, 1] range for severity 
classification.

Processing occurs in one-hour windows to balance efficiency and context, achieving 
O(n log n) time complexity with a theoretical potential to handle approximately 105 records 
per minute on standard hardware. This throughput potential is derived from the algorithmic 
efficiency of the isolation forest, though the current implementation generates smaller data 
batches. Memory usage scales linearly with data volume, ensuring resource efficiency during 
traffic spikes.
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Fig. 2. Interactive visualizations of traffic, protocol, and anomaly severity

Fig. 3. Workflow of anomaly detection and visualization processes

The Flask-based MVC architecture integrates components through five stages: data 
generation, storage (SQLite with SQLAlchemy), anomaly detection via API endpoints, 
severity classification, and visualization. Authentication is managed with Flask-Login and 
Werkzeug utilities. The design allows algorithm substitution and supports on-demand 
analysis, though it requires at least 10 records for effective detection and faces challenges 
with high-cardinality visualizations.
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This prototype effectively detects network traffic anomalies by integrating the isolation 
forest algorithm with interactive visualizations, achieving O(n log n) complexity and a four- 
tier severity system. The Flask-based architecture ensures scalability, while Chart.js addresses 
interpretability challenges. Limitations include cold-start data requirements, linear memory 
scaling, and occasional API errors. Future work will focus on automated scheduling, API 
reliability, feedback for model improvement, and WebGL acceleration for visualizations.
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