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ABSTRACT

Online social networks empower individuals with limited influence to exert significant control over specific individuals’ lives and 
exploit the anonymity or social disconnect offered by the Internet to engage in harassment. Women are commonly attacked due 
to the prevalent existence of sexism in our culture. Efforts to detect misogyny have improved, but its subtle and profound nature 
makes it challenging to diagnose, indicating that statistical methods may not be enough. This research article explores the use of 
deep learning techniques for the automatic detection of hate speech against women on Twitter. It offers further insights into the 
practical issues of automating hate speech detection in social media platforms by utilizing the model’s capacity to grasp linguistic 
nuances and context. The results highlight the model’s applicability to information science by addressing the expanding need for 
better retrieval of hazardous content, scalable content moderation, and metadata organization. This work emphasizes content 
control in the digital ecosystem. The deep learning-based methods discussed improve the retrieval of data connected to hate 
speech in the context of a digital archive or social media monitoring system, facilitating study in fields including online harassment, 
policy formation, and social justice campaigning. The findings not only advance the field of natural language processing but also 
have practical implications for social media platforms, policymakers, and advocacy groups seeking to combat online harassment 
and foster inclusive digital spaces for women.
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1. INTRODUCTION

The rise in popularity of social media platforms has 
led to a significant increase in the volume of textual in-
formation, rendering manual moderation of this content 
unfeasible (Cao et al., 2020). Social media platforms such 
as Twitter, Facebook, and Instagram enable users to freely 
express themselves, which has boosted the proliferation 
of hate speech and harsh language, thus posing new chal-
lenges for information science. Hate speech, especially 
directed at women, is a major obstacle to creating a secure 
and welcoming online space. Conventional information 
retrieval systems usually focus on offering people per-
tinent content through keyword or semantic search en-
gines. However, disseminating abusive content on digital 
platforms can pose a significant risk to people, society, 
governments, and social media platforms (Miškolci et 
al., 2020). Owing to this, researchers are using powerful 
computational techniques, such as profound learning, to 
create automated systems that can identify and reduce 
hate speech in response to the increasing worry about this 
issue (Davidson et al., 2017). This study introduces a deep 
learning (DL) method for automatically detecting hate 
speech directed against women, specifically on Twitter, 
aiming to enhance the establishment of a safer and more 
encouraging online environment. By integrating models 
that can automatically detect and flag hate speech, this 
research expands the functionality of retrieval systems. It 
enhances user safety in digital contexts while also produc-
ing higher-quality search results.

1.1. Concept of Hate Speech
Hate speech is significant because it is subjective. Ac-

cording to Fortuna and Nunes (2019), hate speech is rhet-
oric that targets or belittles groups, instigating violence or 
hatred based on physical appearance, religion, descent, na-
tional or ethnic origin, sexual orientation, gender identity, 
etc. It may surface in a variety of linguistic approaches, 
including sharp-witted humor and scathing retorts. Hate 
speech is potentially detrimental to people and society 
(Fortuna & Nunes, 2019). Hate speech is prevalent on 
social media platforms and requires creative methods to 
tackle this growing problem. Hate speech, which includes 
abusive words, discriminatory statements, and threats, 
harms individuals and goes against the values of accessible 
and respectful communication (Waseem & Hovy, 2016). 
Targeted hate speech against women is especially worri-
some since it encourages gender-based violence and rein-
forces negative preconceptions and biases.

Detecting hate speech may be challenging due to users’ 
common use of acronyms, slang, and hashtags. Accurate 
classification of data improves searchability and fosters 
moral digital curation. For instance, hate speech content 
needs to be correctly indexed and managed in a public 
archive that houses millions of tweets to prevent uninten-
tionally spreading damaging viewpoints. The methodol-
ogy to identify hate speech should enable archivists to 
identify, separate, and if required, impose access restric-
tions on particular types of offensive communication. 
This helps to ensure that sensitive content is used appro-
priately for research or educational purposes, supporting 
the ethical management of digital resources. Moreover, 
the classification methods can be applied to hate speech 
and other online misconduct, which will help to create 
complete digital content management systems. Previous 
research has investigated many methods to detect and 
address hate speech, including rule-based systems and 
machine-learning techniques. The changing and develop-
ing online language necessitates advanced technologies, 
leading to the investigation of DL methods.

1.2. Need for the Study
Several research studies have reported the automatic 

identification of hate speech in benchmark datasets by 
integrating natural language processing (NLP) with classic 
machine learning (ML) techniques (Salminen et al., 2020; 
Watanabe et al., 2018) and DL strategies (Zhang & Luo, 
2019). These approaches involve the utilization of meta-
data, user-based features, and text mining-based features. 
These features include lexical approaches, grammatical 
approaches, bag-of-words (BOW), text embedding, sen-
timent analysis, and others. There is a need to organize 
metadata surrounding hate speech by creating an effective 
framework to categorize it and distinguish it from other 
offensive or neutral language. For academics and politi-
cians alike, it would be essential to organize resources with 
relevant metadata tags such as “hate speech,” “misogyny,” 
or “gender-based harassment” in an online archive or digi-
tal library devoted to social media studies. Different mod-
els can be incorporated into these systems to automatically 
classify content, guaranteeing that users can access impor-
tant information while avoiding undesirable or hazardous 
content. Such research is expected to improve current hate 
speech identification methods and guide the creation of 
better content control tools on social media sites.

Srba et al. (2021) studied hate speech detection from 
a computer science perspective. They analyzed the con-
tribution of different forms of data, including metadata, 
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textual data, videos, and images to hate speech detection. 
Both models have researched both techniques. However, 
for DL models to function well, they need a substan-
tial amount of data that has been labeled. Agarwal and 
Chowdary (2021) have investigated the use of ensemble 
learning in the context of hate speech identification. En-
semble learning has also demonstrated robust findings. 
The possible biases of the datasets and algorithms were 
not considered in these works, even though various con-
tributions have been devoted to analyzing these topics and 
have provided good classification scores. In the light of the 
above discussion, the following research hypotheses can 
be formulated:

H1. The accuracy of hate speech detection on various 
social media platforms can be greatly enhanced by ML 
models trained on a range of annotated datasets, decreas-
ing false positives and false negatives.

H2. Utilizing advanced word embeddings in hate 
speech detection models will enhance the accuracy of 
classifying nuanced or context-dependent hate speech 
compared to traditional text representation techniques.

H3. Automated hate speech detection systems improve 
the organization and retrieval of digital data by effectively 
classifying harmful content, thus upholding the integrity 
of information in extensive information systems and data-
bases.

1.3. Objectives
This study is driven by the necessity for an automated 

and scalable approach to address hate speech directed at 
women on Twitter. Utilizing DL shows excellent poten-
tial by enabling models to acquire intricate patterns and 
representations from data. DL has been highly successful 
in NLP tasks, making it well-suited for tackling the is-
sues presented by the ever-changing and context-specific 
nature of hate speech on social media. The primary objec-
tives of this research are as follows:

• This research offers useful insights into how auto-
mated systems might improve the detection and 
categorization of hate speech on social media sites 
like Twitter, especially directed toward women, by 
employing DL models.

• By creating models that can automatically produce 
precise and context-aware metadata tags, we can 
enhance the categorization and retrieval of content 
relevant to hate speech and contribute to effectively 
curating large-scale social media datasets.

• Rather than concentrating solely on technical mea-
sures, we aim to assess the model’s performance 
in detecting hate speech in real-world scenarios, 
emphasizing the usefulness of accuracy, precision, 
recall, and F1-score in improving the functioning of 
content moderation tools.

• To contribute insights into the linguistic features 
and contextual elements that distinguish hate speech 
against women on Twitter, thereby advancing our 
understanding of online gender-based harassment.

The remainder of this paper is organized as follows: 
Section 2 reviews relevant literature, highlighting the cur-
rent research on hate speech detection and DL applica-
tions in social media. Section 3 outlines the methodology, 
detailing the dataset collection and preprocessing steps 
and the architecture and training of the DL model. Sec-
tion 4 presents the experimental results and discusses the 
implications of the findings. Finally, Section 5 concludes 
the paper, summarizing key contributions and discussing 
potential areas for future investigation.

2. RELATED WORK

The consequences for online safety, social cohesive-
ness, and freedom of expression have made hate speech 
detection on social media platforms an essential field of 
research. Hate speech detection spans multiple aspects. 
Pérez et al. (2023) have explored a novel method of data 
curation, sampling, and annotation. In their study, they 
investigated the impact of contextual information in 
enhancing hate speech detection. DL’s recent advances 
have greatly improved detection accuracy and scalability, 
unlike earlier methods that depended on manually cre-
ated features and conventional ML techniques (Waseem 
et al., 2017). Hate speech on Twitter frequently takes 
on gendered forms, according to research; specifically, 
women are more likely to be the targets of insults, threats, 
and harassment. To effectively combat sexism and mi-
sogyny on social media, it is essential to understand these 
gender-specific trends (Mocanu et al., 2015). A study by 
Tontodimamma et al. (2021) investigated the expanse of 
hate speech using information mapping on the Scopus 
database. The bibliometric metric was based on co-word 
methods analysis and relied on different ML algorithms. 
DL approaches have entirely changed the hate speech de-
tection game. With advancements such as transformer-
based models, recurrent neural networks (RNNs), and 
convolutional neural networks (CNNs), models can learn 
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intricate representations and patterns from text input. 
These methods work particularly well for detecting hate 
speech against women on Twitter because of their greater 
effectiveness in collecting contextual subtleties and se-
mantic information (Nobata et al., 2016).

Some have voiced worries about biases in hate speech 
detection algorithms, even if DL-based systems are effec-
tive. Unintentionally reinforcing prejudices and worsening 
existing inequities are the potential outcomes of models 
trained on biased datasets. Rahman et al. (2021) proposed 
an information retrieval-based hate speech detection ap-
proach involving pooling and active learning methods. 
The study emphasized task decomposition and annotator 
rationale techniques. Hate speech detection systems, espe-
cially those that target hate speech based on gender, need 
to be fair and overcome biases, according to experts (Sap 
et al., 2019). More recent research has looked into novel 
ways to make hate speech detection algorithms better and 
easier to understand. The problems presented by the ever-
changing types of hate speech on Twitter can be partially 
addressed by employing domain adaptation approaches, 
multimodal learning, and adversarial training. Addition-
ally, there is a rising movement to improve the openness 
and responsibility of hate speech detection systems using 
explainable AI approaches (Kheddar et al., 2023). Zhang 
and Luo (2019) explored the long-tail effect in the Twit-
ter dataset and the consequent impact on classifying hate 
speech. Their study critiques the common practice of 
micro-averaging, which can bias evaluations towards non-
hate classes, and demonstrates improved classification of 
hate speech in the long tail of datasets.

Identifying abusive language was the primary empha-
sis of Wiegand et al. (2018)’s research. The authors con-
structed an abusive lexicon through the use of a variety of 
traits and lexical resources. Following that, a built lexicon 
implemented in an support vector machine (SVM) classi-
fication was utilized. This study used datasets accessible to 
the general public (Waseem & Hovy, 2016). It is important 
to draw attention to the fact that all of the research stated 
above was conducted using English.

On the other hand, it is worth noting that there have 
been a few additional studies undertaken in other lan-
guages in recent times, including Italian (Del Vigna et al., 
2017), German (Köffer et al., 2018), Russian (Andrusyak 
et al., 2018), and Indonesian (Alfina et al., 2017). Abozi-
nadah et al. (2015) analyzed several machine-learning 
algorithms to identify offensive tweets written in Arabic. 
In addition to using three different categorization tech-
niques, they manually identified and labeled five hundred 

accounts related to the abusive tweets extracted. The naive 
Bayes (NB) classifier obtained an F1-score of up to 90%, 
which was the most efficacious. Haidar et al. (2017) prof-
fered a system for detecting and preventing cyberbullying 
on social media platforms. The authors manually an-
notated a large dataset of 35,273 tweets from the Middle 
East region. Through the use of SVM and NB, the authors 
were able to get the best results in terms of classification, 
with SVM reaching an F1-score of up to 0.93. Recently, 
Alakrot et al. (2018) have described creating an inflam-
matory dataset of Arabic comments on YouTube. After 
analyzing 150 videos on YouTube, the writers retrieved 
167,549 comments from the platform. Sixteen thousand 
comments were randomly selected for annotation, and 
three people were responsible for the annotation process.

Waseem and Hovy (2016) employed the logistic regres-
sion (LR) classification method to detect racist and sexist 
content on social media. After manually annotating a da-
taset of 16,914 tweets, the authors reported that 3,383 had 
sexist material, 1,972 contained racist content, and 11,559 
contained neither sexist nor racist information. The au-
thors used the Twitter application programming interface 
to extract tweets with a few terms associated with women 
to generate the dataset. They were able to attain an F1-
score of 0.73. Many researchers (Al-Hassan & Al-Dossari, 
2019) use this study as a standard of excellence. Pitsilis et 
al. (2018) propose that to identify instances of racism and 
sexism in social media, it would be beneficial to use a neu-
ral network solution comprising numerous long-short-
term-memory (LSTM) based classifiers. In a large number 
of tests, the authors were able to get the highest possible 
F1-score of 0.93.

Another group of researchers, Kshirsagar et al. (2018), 
focused on identifying racism and sexism, and their meth-
odology is likewise based on neural networks. Neverthe-
less, the authors of this study also utilized word embed-
ding to collect features and merge them with a classifier 
based on multi-layer perception. A maximum F1-score of 
0.71 was reached. Saha et al. (2018) created a methodol-
ogy to identify instances of hate speech directed towards 
women. In order to extract features, the authors utilized 
several methods, including BOW, term frequency-inverse 
document frequency, and sentence embeddings, along 
with various classification algorithms, including LR, Ex-
treme Gradient Boosting (XGBoost), and CatBoost. Using 
the LR classifier, the best F1-score produced was 0.70. A 
hybrid model that combines CNN and LSTM was sug-
gested by Zhang and Luo (2019) to identify hate speech. 
Seven datasets were used to apply the authors’ method, of 



Krishna Kumar Mohbey, et al., Hate Speech Identification and Categorization

55

which five are available to the general public.
In previous years, much progress has been made in uti-

lizing DL to automatically detect hate comments against 
women on Twitter. The fight against prejudice, for equal-
ity, and against new kinds of hate speech is far from over. 
Research into the fight against cyberbullying and other 
forms of gender-based violence can progress toward more 
effective and moral solutions if it builds on the work that 
has already been done in this area.

3. PROPOSED MODEL

In this section, we discuss the process of hate-speech 
detection along with each phase. Fig. 1 depicts the entire 
process schematically. Data in its original form is gath-
ered from different social media sites. The information is 
preprocessed, labeled, and divided into training and test 
sets. Before feature extraction, tokenization and padding 
are used to standardize the text sequences. Word vectors, 
particularly GloVe, represent words in a dense format. 
Next, the information goes through classifiers, such as 
traditional ML models and DL models. In the end, the 
system categorizes the text into either “Hate,” “Offensive,” 
or “Neither.”

3.1. Data Preparation
We evaluated hate speech detection using data from 

Twitter. After applying data preprocessing, it was split into 
training and testing sets of 80% and 20%, respectively, 
with a validation split of 20%. The text is categorized as 

hate speech, offensive language, or neither. It is crucial to 
remember that this dataset contains content that may be 
interpreted as racist, sexist, homophobic, or simply offen-
sive.

We undertook a four-stage process to prepare the tex-
tual data for the sentiment analysis. Firstly, we extracted 
the sentiment labels from the data and reorganized the 
data frame. Numeric labels were then mapped to more de-
scriptive categories, such as “hate speech” or “offensive lan-
guage,” for better comprehension. Second, to address the 
issue of variable-length text data and to ensure the model’s 
efficacy, we employed text tokenization. This process seg-
ments each text into words or subwords. The maximum 
number of vocabulary words to be considered was set at 
20,000. However, tokenization still leaves the issue of vari-
able length unattended. This inconsistency can pose prob-
lems for ML models that expect inputs of uniform size. 
Thus, we pad the shorter sequences with zeros to make the 
sequences have the same dimensionality. Next, we aug-
ment the text representations using GloVe, a pre-trained 
word embedding model. It helps capture the inherent 
structure and content within the otherwise latent words 
and forms the embedding matrix. Words with similar se-
mantic meanings have similar embedding vectors. Finally, 
as stated earlier, the textual content has been classified into 
categorical labels. These labels classify the content into 
distinct classes without stating the natural order. Thus, we 
use one-hot encoding to better represent the categorical 
labels. The final one-hot encoded vector represents the re-
lationship between the input and the text classes.

http://www.jistap.org
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Fig. 1. Schematic framework of hate speech detection using deep learning and machine learning classifiers. LR, logistic regression; NB, 
naive bayes; SVM, support vector machine; KNN, K-nearest neighbor; GBDT, gradient boosted decision trees; RF, random forest; 
CNN, convolution neural network; LSTM, long-short-term memory; Bi-LSTM, bidirectional long-short-term memory; GRU, gated recur-
rent units.
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3.2. Classifiers
After applying the data preprocessing, we train differ-

ent ML and DL classifiers. Here, we discuss each one of 
them in detail.

3.2.1. Machine Learning Classifiers
Logistic Regression (LR): A fundamental classifica-

tion algorithm estimates the likelihood that an instance 
belongs to a specific class. Its high interpretability boosts 
its extensive use. It is a common choice for binary clas-
sification tasks, especially when the relationship between 
features and the target variable is linear (Sperandei, 2014).

Random Forest (RF): This ensemble learning tech-
nique combines several decision trees (DT) to produce 
correct predictions. It decreases overfitting by averaging 
predictions from individual trees. It can perform classifi-
cation and regression tasks and is resistant to outliers and 
noisy data (Rigatti, 2017).

Support Vector Machine (SVM): SVM is an effective 
approach for classification and regression. It identifies a 
hyperplane that best separates various classes while im-
proving their distance. It is suited for high-dimensional 
spaces and can handle nonlinear interactions with kernel 
functions (Patle & Chouhan, 2013).

K-Nearest Neighbours (KNN): This classifies occur-
rences based on the class of their closest neighbors. It is 
easy to use and requires no training, making it suitable 
for small datasets. The distance metric selection and the 
number of neighbors heavily influence its performance 
(Zhang et al., 2018).

Naive Bayes (NB): A probabilistic algorithm founded 
on Bayes’ theorem. It is especially beneficial for text cat-
egorization and other high-dimensional data. Despite its 
“naive” feature independence assumption, NB is computa-
tionally efficient (Berrar, 2019).

Extreme Gradient Boosting (XG Boost): This is a high-
ly efficient version of Gradient Boosting and is well-known 
for its accelerated performance. Its unique characteristics 
include a regularization mechanism to check for overfit-
ting and a depth-first strategy for tree pruning to improve 
generalization capability (Chen & Guestrin, 2016).

3.2.2. Deep Learning Models
Convolution Neural Network (CNN): CNN is a deep 

neural network that automatically adapts itself to learn the 
spatial hierarchies of features inherent within the input. 
CNN consists of convolution layers that use kernels to 
compute element-wise multiplication on input, aggregate 
the result to provide a single value, and thus learn the lo-

cal patterns (Liu et al., 2019).
Bidirectional Long-Short-Term Memory (Bi-LSTM): 

This is an extension of LSTM that processes input in 
forward and backward directions using past and future 
tokens. It has been widely used in sentiment analysis. It 
uses two separate LSTM layers for processing in differ-
ent directions. The outputs are concatenated before being 
used for final predictions (Li et al., 2018).

Long-Short-Term Memory (LSTM): Designed to solve 
the vanishing gradient issue, LSTM is an extension of 
RNNs. The input, output, and forget gates are its three 
gates. They are apt for sequential data processing tasks 
(Staudemeyer & Morris, 2019).

The reason for selecting a mix of classic ML models 
and DL models lies in their different strong points, which 
help tackle different issues in hate speech detection. ML 
models allow for easier interpretation of results, providing 
insights into how features contribute to hate speech clas-
sification. DL models are suitable for identifying subtle 
forms of offensive language and hate speech in text by 
capturing long-term dependencies, sequential patterns, 
and contextual information that traditional models may 
struggle to detect. This variety permits a thorough assess-
ment of various approaches, helping the research pinpoint 
the most effective model or blend of models for tackling 
issues of hate speech identification.

3.3. Model Architecture
In this section, we discuss detecting Bi-LSTM-based 

hate speech in detail. Algorithm 1 represents the entire 
process of hate speech detection.

Algorithm 1: Hate speech detection using Bi-LSTM neural network

Input: Text data (T), Preprocessed labels (L), Maximum sequence 
length (MAX_LEN), d, Word embedding matrix (W)
Output: Sentence class C={“hate Speech,” “Offensive,” “Neither”}

1 Apply preprocessing

(a) sentence tokenization

(b) remove punctuations such as ‘‘ ‘!()-[]
{};:’“\,<>./?@#$%^&*_~‘‘ ‘

(c) remove stop words

2. for each sentence in T

while sequence length <MAX_LEN do

(a) Pad the sequence with zeros

(b) Return padded sequence Sp

end while

end for

https://doi.org/10.18653/v1/N18-1095
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3.3.1. Forming Word Embeddings
We represent each word in the vocabulary as a dense 

vector of size d (embedding dimension), which consists 
of semantic information about the word. Using GLoVE, a 
pre-trained word embedding matrix w is formed with size 
vocabulary size×d. This matrix associates each word in 
the vocabulary with a dense vector (embedding). Words 
with similar meanings tend to have similar embeddings 
in this vector space. The model learns these pre-trained 
embeddings during training and may fine-tune them for 
the specific sentiment analysis task. Each token in the 
preprocesses sequence is looked up in the embedding ma-
trix. This retrieves its corresponding embedding vector, 
transforming the text sequence into a sequence of embed-
ding vectors. Fig. 2 provides a visualization of the embed-
ding formed from 100 samples randomly selected. The 
principal component analysis (PCA) analysis in Fig. 2A 
depicts that similar words will be close together, but dif-
ferent words will be further apart in meaning or context. 
In detecting hate speech, this is crucial as words linked to 
hate speech could gather together, possibly showing offen-
sive language patterns. PCA preserves the overall layout 
by representing the relationships between distant points 
and the dispersion of points in the plot, which mirrors 
the variability in the original multi-dimensional space. 
The closeness of these words can aid in teaching models 
to identify offensive language, as they frequently indicate 
negative feelings or hostility.

Fig. 2B represents a t-distributed stochastic neighbor 
embedding (t-SNE) plot that offers important insights into 
how words related to hate speech are distributed relative 
to neutral words. Words that are closer together on this t-
SNE plot probably have similar meanings or are used in 
the same way. In the context of hate speech, words such as 
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Fig. 2. Visualising embedding: (A) 
principal component analy-
sis (PCA); (B) t-distributed 
stochastic neighbor em-
bedding (t-SNE).

3. Lookup_Embeddings(Sp, W)

Initialize an empty list embedding to store word embeddings

for each word in the Sp

(a)  Lookup the word’s embedding vector from the W 
matrix

(b)  Append the embedding vector to the embedding 
list

(c)  Return embeddings list

end for

4. Initialize hyperparameter for model construction

learning rate=0.001,
optimizer=‘adam’,
epochs=100,
batch_size=64,
train_set (Tr)=80%,
Validation set (Tv)=20%
test_size (Ts)=20%

5. while each sentence S ∈ Tr do

(a) G enerate all word embedding vectors in S=[s1, s2, s3, 
. . .., sn]

(b) Construct a Bi-LSTM network

(c) Train the Bi-LSTM model on Tr along with L

(d) U se a SoftMax classifier to categorize the  
Bi-LSTM’s output as in C

(e) Validate the model predictions on Tv

end while

6. for each statement in Ts

Test the Bi-LSTM model and predict the labels in C

end for

http://www.jistap.org



58

Vol.13 No.1

https://doi.org/10.1633/JISTaP.2025.13.1.4

racial slurs, offensive terms, and expressions of hate may 
cluster together. t-SNE emphasizes the preservation of lo-
cal connections, resulting in compact groupings of related 
words and facilitating the identification of words with 
similar meanings or usage contexts.

3.3.2. Bi-LSTM for Hate Speech Detection
In this paper, we propose a Bi-LSTM-based hate speech 

detection model responsible for capturing the sentiment 
within the text. Table 1 represents the model summary. It 
consists of two LSTM layers stacked specially. In forward 
LSTM, the layer processes the sequence of embedding 
vectors in a forward direction, capturing the sequential 
relationships between words from the beginning to the 
end of the sentence (Equation (1)-(3)). At each time step 
t in the sequence, the forward LSTM takes the previous 
hidden state ht-1, the current input embedding xt from the 
embedding layer, and a cell state ct-1 as input. The forget 
gate ft, input gate it, and output gate ot are calculated using 
sigmoid activation functions.
 

𝑓𝑓� =  𝜎𝜎𝜎𝜎𝜎� × [ℎ���, 𝑥𝑥�� + 𝑏𝑏�  

  

 (1)

𝑖𝑖� =  𝜎𝜎𝜎𝜎𝜎� × [ℎ𝜎���), 𝑥𝑥�] + 𝑏𝑏�)  

  

 (2)

𝑜𝑜� = 𝜎𝜎𝜎𝜎𝜎� � ��𝜎���), 𝑥𝑥�� � ��)  

 

  

 (3)

Where σ is the sigmoid function, Wf, Wi, and Wo are 
the weight matrices, and bf, bi, and bo are the bias vectors. 

ct is the candidate cell state computed using tanh activa-
tion function as Equation (4) and updated as Equation (5). 
Hidden states are updated as Equation (6). 

𝑐𝑐� = tanh (𝑊𝑊� × [ℎ���, 𝑥𝑥�� + 𝑏𝑏�) 

  

 (4)

𝑐𝑐� = 𝑓𝑓� × 𝑐𝑐��� + 𝑖𝑖� × 𝑐𝑐�   

  

 (5)

ℎ� = 𝑜𝑜� × tanh(𝑐𝑐�)    

  

  

 (6)

In backward LSTM, the layer processes the same se-
quence of embeddings in a backward direction, under-
standing the relationships from the end toward the begin-
ning. By combining the outputs of both LSTMs, the model 
can learn long-term dependencies within the text. This is 
crucial for sentiment analysis, as the context of surround-
ing words can influence sentiment. The equations have a 
similar structure with different weight and bias matrices 
specific to the backward direction W’f, W’i, etc.

3.3.3. Dense Layer
The combined output from the Bi-LSTM is fed into 

a dense layer with a weight matrix Wd, a bias vector bd, 
and a softmax activation function. The softmax function 
converts the output into a probability distribution over 
all possible sentiment labels (e.g., “hate speech,” “offensive 
language,” “neutral,” and “positive”). Each element in the 
output vector represents the probability of the correspond-
ing sentiment label for the input text sample. The output y 
is calculated as y=softmax(Wd×[hf,hb]+bd), where h_f and 
hb represent the final hidden states from the forward and 
backward LSTMs, respectively.

3.3.4. Categorical Crossentropy 
Categorical cross-entropy (Ho & Wookey, 2020) is a 

loss function often employed in multi-class classification 
situations that combines the projected probability distri-
bution from the Bi-LSTM model with the true probability 
distribution representing the sentiment labels. Loss is de-
fined as

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙 𝑙𝑙∑(𝑦𝑦���� � ����� 𝑙 𝑦𝑦������  

 where ytrue represents the true label and ypred defines the 
probability of the same label from the Bi-LSTM model. 
During training, the Bi-LSTM model seeks to reduce the 
total category cross-entropy loss across all training sam-
ples by modifying the model’s weights and biases using an 
optimization technique.

Table 1. Bidirectional long-short-term memory model summary

Layer (type) Output shape Param#

embedding (Embedding) (None, None, 100) 2,000,000

dropout (Dropout) (None, None, 100) 0

bidirectional (Bidirectional) (None, None, 64) 34,048

dropout_1 (Dropout) (None, None, 64) 0

bidirectional_1 (Bidirectional) (None, 32) 10,368

dropout_2 (Dropout) (None, 32) 0

dense (Dense) (None, 16) 528

dropout_3 (Dropout) (None, 16) 0

dense_1 (Dense) (None, 16) 272

dropout_4 (Dropout) (None, 16) 0

dense_2 (Dense) (None, 3) 51

Total params: 2,045,267 (7.80 MB)
Trainable params: 45,267 (176.82 KB)
Non-trainable params: 2,000,000 (7.63 MB)
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4. EXPERIMENTATION AND RESULTS

4.1. Dataset Gathering and Collection Process
The dataset used in this study is provided by David-

son et al. (2017). The data compiled by Hatebase.org was 
searched for tweets with hate speech lexicon. These tweets 
were randomly sampled to form a 25k tweet dataset that 
CrowdFlower workers manually coded. The tweets were 
in three categories: hate speech, offensive but not hate 
speech, or neither offensive nor hate speech. The categori-
zation did not solely rely on the words but also considered 
their context. Three or more people labeled each tweet, 
and the final decision was made based on a majority deci-
sion. Some tweets were not labeled because of absentia of 
a majority decision. The process resulted in 24,802 tweets, 
of which 5% were labeled as hate speech, with 76% at 2/3 
measure and 53% meeting a 3/3 measure of offensive lan-
guage. The remainder were non-offensive. Fig. 3 depicts 
the statistics of the dataset.

4.2. Experimental Setup
With a 64-bit Windows operating system installed, the 

experiment was conducted on an Intel(R) Core (TM) i7-
6700 CPU @ 3.40GHz 3.41 GHz processor. It has a 16 GB 
memory capacity. In Python 3.7, the Jupyter Notebook en-
vironment was used to program the code. Different librar-
ies were used, such as sci-kit-learn for model analysis and 
computing performance, pandas for data manipulation 
and visualization, and numpy for computing operations. 
We have implemented TensorFlow 2.10, a DL framework. 
The Natural Language Toolkit Python package with punkt 
tokenizer was utilized to remove stop words.

4.3. Hyperparameter Tuning
For experimentation purposes, we used batch size 64 

and categorical cross-entropy for loss, and each model 
was optimized by Adam optimizer. We have used early 
stopping with patience 5 on validation accuracy to prevent 
overfitting. The embedding dimensions were set to 100. 
We selected a maximum of 20,000 features and 512 as text 
length to be considered on each tweet.

4.4. Evaluation Technique
The model’s performance was evaluated based on pre-

cision, recall, and F1-score, as discussed in Equation (7)-
(9). Besides these attributes, ML models have also been 
evaluated on micro and macro averages for precision, 
recall, and F1-score. The micro-average metrics are calcu-
lated by adding true-positive Truepos, FalseNeg, and Falsepos 
occurrences of hate speech tweets in the predictions, inde-
pendent of the instances of the classes. The macro average 
is the precision, recall, and F1-score average for different 
classes. As already stated, the dataset is imbalanced, and 
there are more non-hate speech tweets than hate speech 
tweets; thus, micro-averaging cannot depict the results of 
the minority class. We have also constructed a confusion 
matrix that records the number of True Positives (Truepos), 
True Negatives (TrueNeg), False Positives (Falsepos), and 
False Negatives (FalseNeg) and in turn, represents the actual 
and predicted positives and negatives. Besides this, the 
qualitative analysis of performance has also been evalu-
ated on accuracy measures as depicted in Equation (10).

a. Precision (P): The ratio of tweets classified as hate 
speech among the total retrieved tweets as represented by 
Equation (7). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃 �������
����������������

  

 

  

 (7)

Fig. 3.  Dataset statistics: (A) Ori-
ginal dataset; (B) dataset 
after split.
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b. Recall (R): This is the ratio of tweets defined truly as 
hate speech to the total number of hate speech tweets in 
ground truth (Equation (8)). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅 �������
����������������

  

  

 (8)

c. F1-Score (F1-score): F1-score is the harmonic mean 
of P and R depicted by Equation (9). 

𝐹𝐹𝐹 𝐹 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹 𝐹 𝐹 ���������𝐹������
����������������  

 

  

 (9)

d. The confusion matrix comprises the following: 
1. True Positives (Truepos): For a data point to be con-

sidered positive, its actual class and the prediction must be 
true.

2. True Negatives (TrueNeg): For data points, a true 
negative occurs when the actual class and the forecast are 
incorrect.

3. False Positives (Falsepos): A false positive is called a 
false positive when a data point’s genuine prediction is 
based on an incorrect class.

4. False Negatives (FalseNeg): An example of a false neg-
ative would be a data point whose real class contradicts 
the prediction.

Table 2 represents the various cells in the confusion 
matrix. The predicted positives and negatives are the 
predicted values by the models against actual values. A 
high Truepos indicates the high performance of the model, 
while a high FalseNeg suggests that the model missed many 
instances of hate speech. Similarly, a high Falsepos means 
incorrect flagging of non-hate speech content, and high 
TrueNeg values indicate that the model is correctly identify-
ing non-hate speech.

e. Accuracy: This is the ratio of the total number of 
true predictions (positives and negatives) to total predic-
tions (true and false positives and negatives), as represent-
ed in Equation (10).

f. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 ���������������
���������������������������������

   (10)

4.5. Result Analysis
XG Boost emerged as the best performer among the 

ML variants. It scored an outstanding precision (class 0) of 
99.19%, suggesting a high level of accuracy in accurately 
detecting non-hate speech occurrences, and a recall (class 
0) of 97.22%, effectively catching the majority of genuine 
non-hate speech instances. For hate speech (class 1), the 
model attained a precision of 18.64%, indicating that it 
correctly predicts hate speech 18.64% of the time. The re-
call (class 1) for hate speech was 28.18%, implying that it 
correctly detected 28.18% of actual hate speech cases. DT 
demonstrated great accuracy but needs improvement in 
class 1 recall (30.69%). It struggled to catch every incident 
of hate speech. LR fared well for non-hate speech (class 
0), with 98.63% precision and 96.92% recall. However, its 
performance in hate speech (class 1) was unsatisfactory, 
with low precision (17.92%) and recall (25.45%). RF, like 
LR, excelled at class 0 precision and recall. For hate speech 
(class 1), RF had a 23.66% precision and a 30.21% recall. 
SVM had the maximum precision for non-hate speech 
(class 0) at 99.38%. However, its recall for hate speech 
(class 1) was extremely low at 18.29%, implying that it 
missed many actual hate speech incidents. XG Boost ex-
hibited a balanced approach with high accuracy (99.19%) 
for non-hate speech (class 0). Hate speech had a moderate 
recall rate (28.18%) in class 1. The F1-score reflects this 
balance, making XG Boost an attractive option. Table 3 
represents the comparative results of different ML models.

The DL models were evaluated across training, vali-
dation, and test data sets, and their effectiveness was de-
termined. Table 4 shows how well three models—CNN, 
LSTM, and Bi-LSTM—performed on various data parti-
tions (train, validation, and test) using four metrics: accu-
racy, precision, recall, and F1-score. During training, the 
CNN model attained a notable accuracy of 96.48%. How-
ever, its performance declined on the validation set with 
an accuracy of about 85.35% on test sets, with precision, 
recall, and F1-score also indicating a similar decrease. The 
LSTM model showed good performance on the training 
set, achieving 94.92% accuracy, and continued to exhibit 
strong performance on the validation (89.18%) and test 
(89.15%) sets. LSTM achieved high precision, recall, and 
F1-score, with a slight decrease between training and 
testing. Consistently, the Bi-LSTM model surpassed both 
CNN and LSTM models, achieving the highest training 

Table 2. Confusion matrix model

Predicted positive Predicted negative

Actually positive True Positive (Truepos) False Negative (FalseNeg)

Actually negative False Positive (Falsepos) True Negative (TrueNeg)
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Table 3. Performance comparison of different ML models

Model Class Accuracy Precision Recall F1-score

NB 0.0 0.956289461 0.42090637 0.584533175

1.0 0.065217391 0.677419355 0.11898017

Overall 0.435343958

Macro average 0.510753426 0.549162863 0.351756672

Weighted avgerage 0.906136322 0.435343958 0.55832997

DT 0.0 0.959508938 0.952330056 0.955906019

1.0 0.289808917 0.326164875 0.306913997

Overall 0.917086948

Macro average 0.624658928 0.639247465 0.631410008

Weighted avgerage 0.921815514 0.917086948 0.919378124

KNN 0.0 0.958018472 0.975630611 0.966744334

1.0 0.409326425 0.283154122 0.334745763

Overall 0.936655235

Macro average 0.683672448 0.629392367 0.650745048

Weighted avgerage 0.927135865 0.936655235 0.931172899

LR 0.0 0.952715259 0.98631894 0.969225922

1.0 0.438596491 0.17921147 0.254452926

Overall 0.940891668

Macro average 0.695655875 0.582765205 0.611839424

Weighted avgerage 0.923778576 0.940891668 0.928995608

RF 0.0 0.955615753 0.980333476 0.96781682

1.0 0.417721519 0.23655914 0.302059497

Overall 0.938470849

Macro average 0.686668636 0.608446308 0.634938158

Weighted avgerage 0.925340891 0.938470849 0.930345306

SVM 0.0 0.949356749 0.99380077 0.971070496

1.0 0.516666667 0.111111111 0.182890855

Overall 0.944119427

Macro average 0.733011708 0.55245594 0.576980676

Weighted avgerage 0.925003202 0.944119427 0.926708559

XG Boost 0.0 0.953359359 0.99187687 0.972236773

1.0 0.577777778 0.186379928 0.281842818

Overall 0.946540246

Macro average 0.765568568 0.589128399 0.627039796

Weighted avgerage 0.932220109 0.946540246 0.93337861

NB, naive Bayes; DT, decision tree; KNN, K-nearest neighbours; LR, logistic regression; RF, random forest; SVM, support vector machine; XG 
Boost, Extreme Gradient Boosting.
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accuracy of 96.51%, impressive validation accuracy of 
89.01%, and test accuracy of 89.45%. The Bi-LSTM model 
had the highest precision, recall, and F1-score values, 
showing balanced performance and an increase in recall 
(89.61%) on the test set, indicating its superior ability to 
detect more true positives than other models.

From the results, we can deduce that CNN achieved 
competing results. Its high accuracy means that it cor-
rectly distinguishes a large proportion of hate speech and 
non-hate speech incidents. However, we find a trade-off 
between precision and recall. While the precision for non-
hate speech is high, the recall for hate speech is lower. This 
shows that while CNN is good at identifying non-hate 
speech, it may overlook some cases of hate speech. LSTM 
regularly outperforms across all criteria. Its balanced 
precision and recall for both classes show that it balances 
erroneous positives and false negatives. However, LSTM’s 
accuracy is slightly lower than that of CNN. Table 4 repre-
sents the performance of different DL models.

The performance of different ML-based classifiers can 
be visualized using the confusion matrix. From Fig. 4, we 
can deduce that the DT model correctly predicted TP in-
stances (true positives) and TN instances (true negatives). 
It made some FP errors (false positives) and a few FN er-
rors (false negatives). Overall, the DT model shows a bal-
anced performance. The KNN model achieved high TP 
and TN counts and had minimal FP and FN errors. Thus, 
it exhibits robust classification. The LR model performed 
well regarding TP and TN but had a moderate number of 
FP and FN errors. The LR model is reliable but not per-
fect. The NB model had a high TN count but relatively 
low TP, and it made several FP errors. Thus, it struggles 
with sensitivity. The RF model excelled in both TP and 

TN and had minimal FP and FN errors. Thus, it turns out 
to be a potential second-best performer. The SVM model 
achieved high TN but relatively low TP and can be tuned 
for better sensitivity. The XG Boost model had the highest 
TP count and made few FP and FN errors. Thus, the XG 
Boost model is the most accurate among the models.

Fig. 5 depicts the confusion matrices for DL models. 
The LSTM accurately predicted 95 instances of label 0 
but misclassified 112 instances of label 1 as label 0, and 
16 cases of label 2 as label 0. It correctly identified label 1 
173 times while incorrectly predicting label 0 101 times. 
It exhibited a higher accuracy for label 2, with 698 correct 
predictions. Bi-LSTM accurately recognized label 0 in 163 
instances but misidentified it as label 1 108 times and label 
2 2 times. Label 1 had 115 valid identifications, while label 
2 had 693 appropriate classifications. CNN outperformed 
LSTM and Bi-LSTM, with 216 correct predictions. How-
ever, its accuracy for label 0 (53 correct identifications) 
was lower than LSTM (95) and Bi-LSTM (163). For label 2, 
CNN made 541 right predictions. Thus, LSTM excelled at 
predicting label 2, whereas Bi-LSTM performed very well 
for both label 2 and label 1. CNN outperformed the other 
algorithms in identifying label 1 but struggled with label 
0. Differences in performance could be related to architec-
tural variances and training information.

Fig. 6 shows the variation in training and loss across 
epochs for CNN, LSTM, and Bi-LSTM models. CNN’s 
training loss lowers steadily as the number of epochs 
grows. This shows that the model is effectively learning 
from the training data. CNN’s training accuracy gradu-
ally improves, indicating that it accurately predicts more 
instances as training advances. The training loss of LSTMs 
diminishes with epochs; however, it is more pronounced 

Table 4. Performance comparison of deep learning models on train, validation, and test set, respectively

Model Split Accuracy Precision Recall F1-score

CNN Train 0.9648 0.9672 0.9639 0.9655

Validation 0.8535 0.8549 0.8513 0.8513

Test 0.85031 0.84908 0.85164 0.85034

LSTM Train 0.9492 0.9522 0.9457 0.9489

Validation 0.8918 0.8946 0.8903 0.8924

Test 0.89146 0.888243 0.894047 0.891078

Bi-LSTM Train 0.9651 0.9674 0.9632 0.9653

Validation 0.8901 0.8927 0.8886 0.8906

Test 0.89449 0.892456 0.896078 0.894235

CNN, convolutional neural network; LSTM, long-short-term memory; Bi-LSTM, bidirectional long-short-term memory.
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than that of CNNs. This indicates that the LSTM is learn-
ing efficiently. LSTM training accuracy improves similarly 
to CNN, albeit with a slightly steeper gradient. Bi-LSTM’s 
training loss is rapidly decreasing, indicating good learn-

ing. It converges faster than either CNN or LSTM. Bi-
LSTM’s training accuracy rapidly increases, outperform-
ing the other models. It reaches high accuracy. During 
training, the Bi-LSTM model outperforms other models 
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in terms of accuracy and loss reduction. LSTM follows 
closely, with CNN trailing significantly.

4.6. Discussion
This experiment examined the efficacy of various DL 

architectures for detecting hate speech in text data. We 
evaluated the performance of a CNN, LSTM, and Bi-
LSTM model. To isolate the impact of the architecture, 
all models were trained using the same hyperparameters. 
The Bi-LSTM model outperformed the CNN and LSTM 
algorithms when assessing hate speech. This shows that 
Bi-LSTM’s capacity to identify long-term dependencies in 
both directions of text sequences may be critical for accu-
rately detecting hate speech.

CNN underperformed compared to Bi-LSTM in hate 
speech detection. CNNs handle text data with convolu-
tional filters that have a fixed window size. This window 
captures local word associations but may struggle with 
hate speech that relies on context dispersed throughout 
the text. Sarcasm or implied hate speech, for example, 
may necessitate understanding the overall sentiment of 
the sentence rather than just a few adjacent words. Stan-
dard CNNs analyze text in a single direction (often left to 
right). Hate speech frequently uses subtle wordings and 
word placement to communicate its vile meaning. Bi-
LSTMs, which can evaluate text in both directions, can 
better capture these sentence-level order-dependent cor-
relations.

This research enhances metadata tagging systems and 
information retrieval frameworks by ensuring that the 
Bi-LSTM model can detect subtle linguistic patterns, in-
cluding slang and implicit bias. This work shows how ML 

models can be included in more comprehensive content 
organization systems, especially in the information sci-
ence domain, going beyond recall and precision metrics. 
The model’s capacity to differentiate between neutral con-
tent, hate speech, and inflammatory language has imme-
diate applications for social media platforms and digital 
archives looking to improve their metadata systems. These 
findings highlight the difficulties in detecting hate speech 
in the real world, including language diversity, irony, and 
the dynamic nature of online debate. This model provides 
a scalable approach to these problems by detecting hate 
speech and classifying it to facilitate content retrieval, 
analysis, and moral moderation.

Fig. 7 compares the accuracy of hate speech detec-
tion on ML and DL models. This distribution highlights 
the trade-offs between simplicity and performance in 
ML models. While ML approaches are interpretable and 
computationally efficient, they struggle with noisy social 
media data because of their simple feature representations 
and inability to handle context. DL models use neural 
networks to learn relevant features from raw text data, 
making them capable of capturing complicated patterns 
and contexts. They excel at comprehending context, pro-
cessing loud text, and detecting subtle linguistic signs. 
Looking at it from the viewpoint of information science, 
this automation does not just make content moderation 
more efficient, but boosts information retrieval systems. 
Organizing content by how harmful it is, these models 
help improve search results and suggestions, lowering the 
likelihood of users coming across dangerous material. 
Furthermore, the capability to identify and categorize hate 
speech guarantees that data stays compliant with ethical 
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and legal norms, contributing to upholding the integrity 
and reliability of the data in these systems. Therefore, hate 
speech detection based on ML is in line with the objec-
tives of information science, promoting the creation of 
secure and structured digital spaces while ensuring data 
integrity and fairness.

5. FUTURE STUDIES

Several challenges in hate speech detection plague in-
formation systems, as listed below:

5.1. Cultural Variability
Each culture’s definition of hate speech is influenced 

by its distinctive linguistic nuances, social norms, and 
historical contexts. This diversity requires the creation of 
flexible detection systems that can identify and under-
stand culturally unique phrases and insults. For example, 
a term considered offensive in one culture could be 
deemed appropriate in another, resulting in potential mis-
identifications. Moreover, with the development of online 
communication, different slang and references constantly 
appear, often differing greatly depending on the com-
munity. Information science needs to focus on context-
aware algorithms that consider cultural factors to improve 
accuracy and relevance in hate speech detection. In the 
end, focusing on cultural differences will enhance the ef-
ficiency of information retrieval systems and help create 
fairer digital spaces.

5.2. Evolving Nature of Online Language
The changing online language greatly affects the de-

tection of hate speech, especially in information retrieval 
systems. Detecting offensive language is made difficult 
by the emergence of new slang, acronyms, and rapidly 
evolving terminologies on social media platforms such 
as Twitter and Facebook. Models must constantly adjust 
to new expressions and cultural contexts to keep up with 
this dynamic evolution, as once harmless language may 
now be linked to hate speech. Moreover, the complex-
ity is increased by multilingualism and code-switching, 
which involve mixing languages, making it challenging 
for conventional keyword-based systems. To tackle this is-
sue, information retrieval systems must include real-time 
updates and models aware of context. Utilizing methods 
like transfer learning and cross-linguistic training aids in 
maintaining the effectiveness of these systems. Adjusting 
to the constantly changing nature of online language helps 
categorize harmful content more accurately and enhance 

user experiences.

5.3. Transfer Learning Across Languages
In information science, transfer learning is crucial for 

surpassing language obstacles and improving model gen-
eralization. Transfer learning enables efficient identifica-
tion of hate speech in various linguistic environments by 
utilizing pre-trained models from well-resourced languag-
es like English and adjusting them with data from limited 
resources. This is especially beneficial because hate speech 
can manifest uniquely depending on cultural and regional 
influences in different languages. It helps adjust detec-
tion systems for poorly represented languages, ensuring 
models are more inclusive and can be used worldwide. 
Furthermore, exposing hate speech classifiers to different 
linguistic structures and expressions can enhance their ro-
bustness through cross-linguistic transfer. This aligns with 
information science objectives, aimed at creating more 
accessible, equitable, and effective systems for retrieving 
information and moderating content. Future research can 
concentrate on creating multilingual datasets and use of 
transfer learning methods to improve the scalability and 
efficiency of hate speech detection in various languages.

5.4. Lack of Annotated Data
It is often difficult to find high-quality, annotated hate 

speech datasets in many languages, particularly for lan-
guages that are not well-represented. Insufficient train-
ing data may limit the model’s generalization capacity 
across different languages. A model trained on English 
data might not work effectively in languages with fewer 
resources, where the labeling of offensive material may be 
scarce or unreliable. Hence, it is a potential future direc-
tion to work on expanding the annotated data.

5.5. Ethical Concerns
Furthermore, addressing the ethical implications of 

automated hate speech identification, such as privacy 
problems and the possibility of censorship, is critical. In-
corporating user feedback loops can increase the system’s 
accuracy over time, transforming it into a dynamic tool 
for developing methods against hate speech.

6. CONCLUSION

In social media, the proliferation of hate speech has 
become a pressing issue, necessitating the development of 
sophisticated algorithms capable of accurately detecting 
and mitigating such content. The comparative analysis of 
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ML models for tweet hate speech detection revealed that 
DL models, particularly the Bi-LSTM network, offer su-
perior performance over traditional ML approaches. The 
Bi-LSTM model’s proficiency stems from its unique archi-
tecture, which processes data sequences in both forward 
and backward directions, thereby capturing contextual in-
formation from all temporal dependencies within the text. 
This bidirectional processing is particularly advantageous 
for understanding the nuanced semantics and complex 
structures of natural language, which are characteristic of 
social media communication.

Several metrics have been considered when assess-
ing the performance of various models. The accuracy of 
the Bi-LSTM model in classifying tweets as hate speech 
or non-hate speech has consistently outperformed other 
models. This high accuracy rate indicates the model’s 
ability to discern subtle linguistic cues and patterns that 
distinguish hate speech from benign expressions. By en-
abling digital libraries, social media platforms, and other 
information systems to better categorize hate speech, the 
Bi-LSTM model created in this study contributes to the 
ethical management and general accessibility of digital 
content. This research emphasizes the valuable effects of 
these technologies on content management and retrieval. 
As the landscape of online discourse continues to change, 
it provides a flexible and scalable strategy that is in keep-
ing with the larger objectives of information science.

Moreover, the training and validation loss graphs for 
the Bi-LSTM model demonstrate a rapid convergence to 
a lower loss value, suggesting that the model is learning 
effectively and generalizing well to unseen data. This is 
further corroborated by the stability of the learning curve, 
which exhibits minimal fluctuations in accuracy and loss 
across epochs, indicating a robust model less prone to 
overfitting. The efficiency of the Bi-LSTM model is also 
noteworthy. Despite the inherent complexity of process-
ing natural language data, the model’s architecture enables 
it to handle large volumes of text while maintaining high 
computational efficiency. This is crucial for real-time 
applications where timely detection of hate speech is es-
sential. By leveraging the Bi-LSTM model, social media 
platforms can filter out hate speech more effectively, creat-
ing a safer and more inclusive online environment. This 
enhances the user experience and aligns with the ethical 
and legal standards governing digital communication. As 
the digital landscape continues to evolve, the Bi-LSTM 
model’s adaptability and scalability will be instrumental in 
addressing the challenges of moderating content on social 
media platforms.

Future research in hate speech detection with DL 
could greatly benefit from advances in transformer-based 
models such as bidirectional encoder representations 
from transformers, which have demonstrated exceptional 
success in detecting context and nuances in text. These 
models might be fine-tuned to detect hate speech, im-
prove accuracy, and lower false positives. Another area of 
focus could be creating multimodal models that consider 
not only textual content but also images, videos, and user 
metadata. This holistic approach may provide a more 
complete comprehension of the content and its intent. 
Furthermore, creating larger and more diverse datas-
ets encompassing numerous modes of communication, 
platforms, and languages would aid in developing more 
robust models. Collaboration with social media networks 
to access real-time data could improve the models’ useful-
ness.
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