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Abstract—The paper reviews modern approaches to the
integration of neural network and symbolic artificial in-
telligence, including architectures using generative models
in combination with knowledge bases and agents. Special
attention is paid to the limitations of large language models
(LLMs) in solving problems related to long-term context,
as well as RAG-type mechanisms and modern agent-based
systems are analyzed. An architecture of intelligent systems
based on OSTIS Technology is proposed, in which LLMs
are integrated into the problem solver. The necessity of
formal description of generative AI methods as part of the
problem solver is substantiated.

The authors emphasize the advantages of moving the
knowledge base from the position of a source of context
for LLMs to the position of a shared semantic memory
that combines different types of knowledge, from problem
descriptions and solution models to the history of agent
interaction. This approach provides automatic verification
of knowledge, accumulation of experience and transparency
of decisions.

Keywords—neurosymbolic AI, logical-semantic models,
artificial neural networks, large language models, knowl-
edge base, ontologies, intelligent systems architecture, OS-
TIS Technology

I. Introduction
Symbolic and neural network approaches to build-

ing artificial intelligence (AI) have historically been
developed based on different principles: the former on
logical-semantic structures, rules and knowledge bases,
the latter on learning from examples and generalization.
For decades, attempts have been made to combine the
strengths of both approaches to create more versatile and
explainable intelligent systems. However, it is only in
recent years, with the growing capabilities of large lan-
guage models and the development of the corresponding
infrastructure, that the integration of these approaches
has received a new breath and is reaching the application
level.

The urgency of finding effective hybrid solutions has
become particularly important with the rapid prolifera-
tion of generative models capable of producing text, code,
and other types of data at a near-human level. Despite
their impressive capabilities, they face limitations in
solving problems that require knowledge management,
logical reasoning, long-term memory, and decision trans-
parency. These limitations are driving the rethinking of
intelligent systems architectures and the implementation
of solutions that combine the flexibility of artificial
neural networks (ANNs) with the formal rigor of logical-
semantic models.

In this paper, current approaches to the integration
of neural networks and logical-semantic models are re-
viewed, and we propose our own approach to integrating
artificial neural networks (including large language mod-
els) with a knowledge base and a problem solver.

II. Modern approaches to the integration of artificial
neural networks and logical-semantic models

Studies of integrations of neural network and symbolic
approaches to AI have developed into a separate direc-
tion – neurosymbolic AI [1]. In the works [2]–[5] an
analysis of various approaches to the integration of these
approaches, including their advantages and limitations, is
presented.

In recent years, systems that combine various AI
methods within a single architecture have been actively
developed. Special attention is paid to the integration of
ANNs with knowledge bases, which in foreign studies
are increasingly referred to as knowledge graphs [6], [7].

Let us consider the key directions and approaches to
the implementation of such integration.
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A. ANNs as a sensor of an intelligent system
This approach is that ANNs serve as sensors that

extract information from various inputs (text, images,
sounds) and translate them into formats suitable for
use in a knowledge base. For example, ANNs extract
entities and relationships from textual data or images.
The information obtained by ANNs is further used to
solve various problems within an intelligent system [8]–
[11].

The main advantage of this approach is the ability to
integrate ANNs with a knowledge base to extract knowl-
edge from various sources without human involvement.
However, the quality of the extracted knowledge depends
on the quality of the input data and the accuracy of the
ANNs.

B. Knowledge base for processing and verification of
training datasets and ANN output data

In modern problems solved with ANNs, the require-
ments to the degree of semantic consideration in the
solution are constantly growing. Taking into account the
peculiarities of ANNs, the degree of semantic consider-
ation is increased by searching for logical and semantic
contradictions in the ANNs training and output data. In
case of detection of such contradictions in the output
data it becomes possible to adjust the ANNs weights in
the process of training. In addition, based on knowledge
bases, synthetic data can be generated, which is then
used to train ANNs, which is especially useful in cases
where the amount of real data is limited or difficult to
obtain [12]–[14].

This approach improves the accuracy and validity of
results through logical reasoning. However, it requires a
complex system of logical rules and knowledge, and is
problematic to scale for large amounts of data.

C. ANNs process and generate fragments of the knowl-
edge base

The approach has received a major boost due to the
introduction of graph neural networks capable of taking
graph structures as input. Such networks are used to
predict relationships in the knowledge base [15], classify
and cluster fragments of the knowledge base [16].

The main advantage of this approach is the ability to
work with complex graph data structures and identify
new relationships between entities. However, it requires
the development of specialized graph neural networks for
specific classes of problems.

D. Knowledge base for explaining how ANNs work
In this approach, the knowledge base stores logical

rules that correspond to specific neural elements or layers
of ANNs. This approach is part of the Explainable AI
trend [17] and is designed to solve the classic problem
of ANNs – the “black box” problem [18]. ANNs are
trained on historical data, they are not able to explain

why exactly such results were obtained. The essence of
this approach to solving this problem is to try to generate
plausible logical rules that are put in correspondence
with the stages of computation within the ANNs. When
the ANNs operate, the stages of computation that had
the greatest impact on the result are evaluated, and then
a chain of logical rules is constructed to explain it [19]–
[21].

The main advantage of this approach is the ability
to ensure that ANNs solutions are explainable at some
level, but it requires a complex system of logical rules
and knowledge, which is not always applicable for ANNs
with a large number (billions) of parameters.

E. Neurosymbolic architectures for sustainable continual
learning

Research in continual learning has identified one of
the key problems of ANNs – catastrophic forgetting,
in which training a model on new data leads to complete
or partial loss of previously learned knowledge [22].

In the paper [23] the NeSyBiCL (Neuro-Symbolic
Brain-Inspired Continual Learning) framework is pre-
sented, which consists of three main modules: a convolu-
tional neural network (CNN) for feature extraction, ANN
for fast inference (System 1), and a symbolic mechanism
based on knowledge graphs (System 2). In the symbolic
mechanism, information from problems is formalized in
the form of entities (graph nodes) and relations (graph
edges). Problems are solved by logical inference based
on these knowledge graphs.

The basic idea is that while ANNs are prone to
catastrophic forgetting, the symbolic mechanism, due to
its representation of knowledge as graphs and logical
inference, may be more resistant to this problem. The
interaction between the two systems ensures knowledge
transfer, with the symbolic mechanism being resistant to
catastrophic forgetting but less accurate than ANNs. The
authors show an average 41% reduction in forgetting on
two composite benchmarks.

F. Summary
All the problems solved by the above approaches

are undoubtedly relevant, but their solutions are often
narrowly focused on a specific problem from some
subject domain. Neural network and logical-semantic
models of problem solving are used in a clearly defined
sequence, are manually integrated with each other and
are not aimed at solving complex problems of arbitrary
formulation. The figure 1 shows the scheme of interaction
of AI modules integrated into an intelligent system in a
“manual” way.

III. Race of generative models: opportunities,
limitations, benchmarks

The development of neurosymbolic approaches opens
new opportunities for integrating ANNs with knowledge
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Figure 1. Scheme of interaction between the problem solver and AI
modules integrated in a “manual” way

bases, which allows solving complex problems in various
domains. However, in parallel, generative models such
as large language models are being actively developed,
showing impressive results in text processing and gener-
ation. Understanding the current state of these technolo-
gies is essential in order to assess their potential and
capabilities in future integrations with other components
of intelligent systems. This chapter reviews the current
state of generative AI and large language models.

The current rapid development of neural network mod-
els for natural-language information processing began
with the publication of a revolutionary paper “Attention
is All You Need” in 2017, which marked the emergence
of a new architecture for neural network models – the
attention-based transformer [24]. Transformer models do
not use recurrent feature layers to implement them.

The key advantages that transformer networks have
are:
1) Self-attention – a mechanism that allows the model

to take context into account at any distance (unlike
recurrent neural networks, which suffer from loss
of context as the test fragment being analyzed
increases);

2) Parallelization – ability to learn faster;
3) Scalability – the ability to build deep and broad

models.
With the ability to represent any data (video, audio

sequences, single images, etc.) in the format of a se-
quence of numerical representations (embedding vectors)
that can then be processed by the model, Transformers
have become the cornerstone of all major SOTA models
for processing natural language, visual (computer vision)
and multimodal information.

The next milestone in the development of Transform-
ers can be considered the emergence of the BERT
architecture in 2018, which has significantly improved
the quality of NLP problem solving [25].

In 2019, there is a research shift towards Causal
Language Models (CLMs). Unlike Masked Language
Models (e.g., BERT), whose application focuses on text

comprehension problems, CLMs are used for text gen-
eration. The research findings have led to the ability to
apply a single model to multiple problems without the
need for fine-tuning.

The year 2020 marked the launch of OpenAI’s GPT-3,
which kicked off the race for large language models as
the basis for realizing commercial products [26]. The key
milestones in this race were:

• PaLM [27], Chinchilla [28] (2022): the development
of these models showed that it is not only the size
of the models that matters in implementation, but
also the effectiveness of their training;

• OPT [29], BLOOM [30] (2022) were attempts to
create open analogs of GPT-3;

• LLaMA [31] (2023) – a compact model achieving
excellent quality, which started a wave of fine-tuning
applications by a wide range of professionals, not
only scientists and practitioners;

• LoRA [32] (2021) / QLoRA [33] (2023) – the
introduction of easy ways to fine-tune and run LLMs
on consumer GPUs.

The time period of 2022–2024 was the development
of instructional fine-tuning (GPT-3.5, InstructGPT [34]
– mass training of models to follow human instructions).
This made the way of interacting with AI systems more
understandable and efficient. In addition, models began
to be trained in step-by-step reasoning and tool invocation
(Chain-of-Thought [35], Toolformer, ReAct [36]).

The time period of 2024-2025 can be characterized as
the emergence of reasoning models (Claude 3, DeepSeek
R1, GPT-4, o3, o4-mini, etc.) and the blossoming of
multimodal models (GPT-4V, Gemini, Claude 3 – text
and image processing models). These models are widely
used in the fields of medicine, industrial design, law, etc.

The future development of LLMs is determined by
industry leaders who have the resource capabilities to
implement training of such models and their deployment.
These are such companies as OpenAI, Google DeepMind,
Meta, xAI, various Chinese and Russian organizations.
Among the main trends can be identified:
1) Development of AGI models (Artificial General In-

telligence) – models capable of performing any intel-
lectual problem at the human level or higher, demon-
strating versatility, flexibility, and self-learning abil-
ity in various domains.

2) Focus on “rational agents” by designing language
models with an emphasis on making their behavior
as consistent as possible with the principles of
rational decision-making.

3) Emphasis on openness and accessibility of models.
4) Intensive development in closed and open formats.
Currently, various benchmarks are used to compare

large language models. The main ones are: AIME 2024,
GPQA Diamond, HLE (Humanity’s Last Exam),
MMLU (Massive Multitask Language Understand-
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ing), ARC (AI2 Reasoning Challenge), GSM8K, HEL-
LOWORLD, HumanEval, MT-Bench, Arena Elo.

For example, AIME 2024 – a benchmark with
“Olympiad math problems” taken from the actual 2024
round. AIME is the second in a series of two rounds used
as a qualifying round for the U.S. Math Olympiad. It is
attended by those in the top percent of the first round,
approximately 3,000 people from across the country.

GPQA Diamond – a benchmark that contains ques-
tions in biology, physics, and chemistry, but such that
even PhDs from these fields and with internet access get
only 65% correct (spending no more than half an hour
on each problem) [37].

Humanity’s Last Exam (HLE) – a benchmark cov-
ering 3,000 unambiguous and easily verifiable academic
questions in math, humanities, and science provided by
nearly 1,000 subject matter experts from more than 500
institutions in 50 countries, providing expert-level human
performance on closed-ended academic questions. It was
developed in partnership with the Center for AI Safety
and Scale AI [38].

Other benchmarks aim to test models in different
aspects, e.g. GSM8K tests models for correct arithmetic
and reasoning, ARC tests models for logic and common
sense, MT-Bench tests models for general dialog com-
petence, Arena Elo crowdsources ratings from people
(e.g. Chatbot Arena). Large language model rankings
are regularly updated for new models and common
benchmark types [39].

IV. Large language models and long-term memory

Large language models have shown impressive results
in text processing and generation, but they also have their
drawbacks, such as limited context and lack of built-
in ability to deal with external sources of information.
To overcome these limitations, researchers are actively
developing new approaches such as RAG (Retrieval-
Augmented Generation) [40] that allow models to re-
trieve and utilize external data, which is an attempt to
provide such models with long-term memory. In addition,
approaches to integrating these models with agents are
explored to enable intelligent systems to autonomously
interact with the environment. This chapter considers
how RAG and similar approaches are used to improve
the capabilities of large language models, and explores
the role of agents in this context.

RAG is an architectural approach in which a large
language model accesses external data through search
before generating a response. Unlike classical LLMs,
systems built using RAG:

• keep up-to-date as there is the possibility of updat-
ing knowledge;

• are controlled (only sources that have been explicitly
selected are used);

• is explainable in the sense that it is possible to
determine where the information for an answer
came from.

A common RAG application architecture (fig. 2) in-
cludes the following components:

• User Interface. The entry point for interacting with
the system. Receives natural language (NL) user
requests and passes them to the context manager.
Provides visualization of responses and input error
handling.

• Context Manager. Generates query context by
accessing repositories, ranks results, passes them
to LLMs, and provides source citations to justify
responses.

• Vector Database. Provides vector-based context
search by comparing the embedding vectors of doc-
ument fragments stored there with the embedding
vector of the user’s question. Other search options
are also available, such as keyword search.

• Knowledge Graph/Knowledge Base. Stores struc-
tured knowledge in the form of semantic relation-
ships. Allows you to search related entities extracted
from documents [41].

• Large Language Model (LLMs). Generates natural
language responses using promts and context from
repositories. Can be a cloud service or an on-
premises model.

• Storage Manager. Responsible for document pre-
processing and indexing. Includes structure parsing,
text extraction, and repository interaction.

Figure 2. Common architecture of modern RAG applications
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In addition to the ability to actualize knowledge and
explain decisions, the development and deployment of
various AI agents that extend the functionality of LLMs
is becoming increasingly important.

The LLMs AI agent is a software module that allows
the LLMs not only to generate a response to a user
request based on context from various repositories, but
also to perform actions using external tools. In addition,
AI agents can interact with each other. Tools are exter-
nal components or implementations of problem-solving
models that an agent can use when executing a query.

Examples of tools are: search, calculator, calendar, var-
ious forms, parsers, API requests. Modern large language
models can interact with tools by means of agents, call
them with the required parameters, and use the responses
received from tools.

For example, if a user needs to find a cheap airfare
and book a hotel near a train station, he formulates
a query. The AI agent, receiving the query, searches
for airline tickets for the specified destination, compares
prices, goes to the hotel website, and books the room. In
this example, the LLMs AI agent contains a number of
components that allow it to perform the above actions:

• planning (what needs to be done);
• implementation (which tools to use);
• memory (how to store intermediate data);
• observation (how to process the results of tool calls).
Popular libraries and frameworks that implement work

with agents include: LangChain, LangGraph, CrewAI,
AutoGen, BabyAGI, OpenAI Functions / Tools API.

Figure 3 shows a common architecture of systems that
utilize AI agents.

Despite significant progress in RAG applications and
the use of LLMs AI agents providing a new wave of
automation in various domains, existing approaches still
face a number of fundamental challenges:

• Knowledge quality and consistency issues. Con-
text stores can contain conflicting information, lead-
ing to incorrect agent inferences.

• Limited self-learning and experience accumula-
tion issues. Agent actions are typically not captured
in context stores, which prevents error analysis
and system improvement. Communication between
agents, agents and repositories, agents and tools
takes place either in natural language or through spe-
cialized protocols. Examples of such protocols are
Model Context Protocol (MCP) and Agent2Agent
(A2A). There are also no effective mechanisms for
accumulating and transferring experience between
different systems.

• Explicability and transparency issues. Some agent
decisions remain non-transparent, especially if their
justification does not fall within the context of
LLMs, which makes it difficult to trace causal
relationships between agent’s actions and the final

result. It is worth noting that ensuring transparency
in modern AI systems is key in many applications,
and in some domains, mandatory [42].

The evolution of intelligent systems requires a shift
from simple problem-solving to hybrid systems with
advanced mechanisms for self-analysis, continuous im-
provement, and synergy of different problem-solving
models.

V. Proposed Approach
Current approaches to building intelligent systems

show a clear tendency to centralize the architecture
around LLMs, where external repositories, including
knowledge bases, play a supporting role. However, as
described in the previous chapter, this approach has
significant limitations.

Hybrid intelligent systems ( [43], [44]) are designed to
overcome such limitations through unified memory and
synergy of different problem-solving models.

A. General Architecture
In this paper, we propose to use the OSTIS Technology

[44] to build multi-agent systems, which is used to
design and implement ostis-systems – intelligent systems
that solve complex problems based on the unification
of knowledge and problem-solving models. A unified
semantic network with a set-theoretic interpretation is
used as a formal basis for representing knowledge and
problem-solving models within the framework of OSTIS
Technology. Such a representation model is called SC-
code (Semantic computer code) [44]. The elements of the
semantic network are called sc-nodes and sc-connectors
(sc-arcs, sc-edges).

The basis of ostis-systems is an architectural paradigm
that goes back to the classical principles of building
intelligent systems. It is based on three interrelated com-
ponents: interface, knowledge base and problem solver.

Interface realizes interaction with the user, including
natural language. The interface communicates with the
problem solver through a knowledge base.

A knowledge base provides a structured representa-
tion of information using semantic networks and ontolo-
gies. The basis of the knowledge base is a hierarchical
system of subject domains (SDs) and their correspond-
ing ontologies [45]. Ontologies contain descriptions of
concepts necessary to formalize knowledge from the
corresponding SDs ontology. Any knowledge describing
some problem, its context and specification of solution
methods can be represented in the form of SC-code
constructions. By representing knowledge in machine-
readable code instead of NL-texts, it becomes possible
to automatically verify and improve the quality of the
knowledge base.

The knowledge base may contain NL-texts. Due to the
possibility to regulate the degree (depth) of formalization
it becomes possible to regulate the labor intensity of
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Figure 3. Common architecture of systems utilizing AI agents

knowledge base development. Thus, a gradual transition
from NL-texts to partially formalized texts in SC-code is
provided.

Problem solver deals with processing of knowledge
base fragments using various problem solving mod-
els, including logical inference models, neural network
models, graph-based problem solving models, etc. At
the operational level, such processing is reduced to
adding, searching, editing and deleting sc-nodes and sc-
connectors of the knowledge base. At the semantic level,
such an operation is a action performed in the memory of
the subject of the action, where, in general, the subject is
the ostis-system, and the knowledge base is its memory.

An action is defined as the process of one entity (or
some set of entities) influencing another entity (or some
set of other entities) according to some goal [46]. Actions
are performed according to given problems. A problem is
a formal specification of some action sufficient for some
entity to perform it. Depending on the specific class of
problems, both the internal state of the intelligent system
itself and the required state of the external environment
can be described [44].

The ostis-systems problem solver is based on a decen-
tralized multi-agent architecture. Each agent is engaged
in interpreting actions and, consequently, sc-agents are
engaged in solving problems. Communication between
agents takes place only through the knowledge base via
the event mechanism as follows: an agent or interface
generates a problem in the knowledge base and informs
in its description that it needs to be solved. Other agents
react to this event and, if they can solve it, solve it and
leave the solution in the knowledge base. The event of

the solution occurrence is reacted to by the agent that
put the problem in the knowledge base.

Figure 4 shows the multi-agent architecture of the ostis-
systems problem solver.

In such an architecture, the knowledge base moves
from the position of a source of context for large
language models to the position of a shared semantic
memory, in which various types of knowledge describ-
ing problems, their context, models of problem solving
(including tools), actions of agents, history of problem
solving, etc. are represented in a unified form. This
provides the following advantages:

• Knowledge coherence. Knowledge bases of ostis-
systems use a hierarchy of subject domains with
well-defined semantic links. SC-code provides
unified representation, eliminating inconsistencies
through an automatic verification mechanism.

• Self-learning through reflexive mechanism of
experience accumulation. A decentralized multi-
agent architecture captures all agent actions directly
in the knowledge base. Each action is formalized
with an explicit goal, creating a complete history
of actions. Unlike MCP-type protocols, where there
is no communication through shared memory, sc-
agents operate with formalized knowledge that al-
lows the reproduction and analysis of decision
chains.

• Explainability through semantic transparency.
Agent actions are always linked to specific pieces
of the knowledge base, providing an explicit link
between inputs, problem-solving models, and out-
puts. Unlike “black-box’ LLMs, where reasoning is
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Figure 4. Multi-agent architecture of ostis-systems problem solver.

generated post facto, sc-agents generate solutions
through deterministic transformations of SC-code
constructions, preserving the complete chain of in-
ference.

• Decentralized coordination of agents. The absence
of a centralized orchestrator reduces failure risks.
Agents interact exclusively through the knowledge
base event mechanism, which ensures horizontal
scalability and fault tolerance of the system as a
whole.

As will be shown later, the proposed architecture does
not deny the use of large language models, but assigns
them a strictly defined role within the overall system.

B. Role of language models in the system
In the architecture of ostis-systems, LLMs are inte-

grated as specialized agents with well-defined functions.
Examples of problems that can be solved by LLMs in
ostis-systems are:
1) Bidirectional Knowledge Translation. LLMs pro-

vide the transformation between NL-texts and for-
mal knowledge representations in SC-code. In the
input phase, models structure textual data according
to the system ontologies, automatically generating
nodes and relations in the knowledge base. In the
output phase, they create natural-language explana-
tions strictly tied to specific knowledge fragments

in the SC-code. Solving the classic problem of
knowledge-based systems – the need for manual for-
malization – is greatly facilitated (but not completely
solved) by using LLMs.

2) Context-dependent generation. The generation of
LLMs responses is based on the context extracted
from the knowledge base. LLMs retrieve seman-
tically verified context from the knowledge base,
which eliminates the possibility of “hallucinations”
and increases the accuracy of responses.

3) Decomposition a problem into subproblems.
LLMs can be used to analyze complex problems,
decomposing them into atomic subproblems based
on the problem classification described in the knowl-
edge base.

4) Forming a solution plan. Since all problem solv-
ing models available to the system are specified
in the knowledge base, LLMs can retrieve these
specifications along with the problem formulation
and build a solution plan for the problem, including
specifying the sequence of agent invocation, input
and output specifications, quality metrics, etc. If
LLMs are used to solve subproblems, the solution
plan includes additional promts that may be selected
or generated from a knowledge base based on past
problem solving experience.

The integration of LLMs into ostis-systems archi-
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tecture provides a balance between automating natural
language processing and preserving the semantic rigor
characteristic of formal methods of knowledge represen-
tation. It opens up a wide range of classes of problems
that can be solved using LLMs within ostis-systems.

C. Prospects for the development of the approach

The development of the described approach opens
new horizons due to the synergy of formal methods of
knowledge representation and processing and generative
models. Examples of directions for further research are:
1) Ecosystem. The concept of Ecosystem is one of the

key concepts in OSTIS Technology [44]. Ecosystem
of ostis-systems implements a fundamentally new
approach to the organization of intelligent systems,
where problem solving is carried out through the in-
tegration of specialized solvers from different intelli-
gent systems in an integrated distributed knowledge
base consisting of knowledge bases of intelligent
systems included in the Ecosystem.
Users interact not with individual systems, but with
a personal assistant, which acts as an interface to the
Ecosystem. The history of problem solving, general
SDs updates is available to all systems within the
Ecosystem, which ensures reflection and knowledge
accumulation at the level of the entire Ecosystem,
rather than individual systems.
This shifts the focus from training LLMs and
increasing their context window, to training the
shared long-term memory, which is the integrated
knowledge base of the Ecosystem. The experience
of intelligent systems from different subject domains
(medicine, education, manufacturing) will be accu-
mulated in a single ecosystem. Figure 5 shows the
architecture of the OSTIS Ecosystem, indicating the
role of large language models.

2) Training large language models on knowledge
base fragments. The development of the OSTIS
ecosystem and the expansion of knowledge bases on
SC-code are shaping a fundamentally new type of
dataset for LLMs training: instead of unstructured
NL-texts, models have access to verified semantic
constructs with explicit connections between con-
cepts. This opens up hypothesized benefits, includ-
ing reduced “hallucinations” and increased inference
accuracy.
The key hypothesis is that training LLMs on SC-
code fragments shifts the focus from text genera-
tion to knowledge transformation: models learn to
operate with formal constructs rather than mimic
language patterns.

3) Explainability and comprehension testing. De-
spite advances in generative models, the fundamen-
tal question of whether AI systems truly “under-
stand” the problems being solved remains open [47].

Modern LLMs show impressive abilities to sim-
ulate meaningful responses, but their conclusions
are often based on statistical patterns rather than
on conscious work with semantics. The increased
influence of semantics on problem solving described
in the proposed approach has a good chance of
advancing researchers in solving the comprehension
problem.

VI. Conclusion

In conclusion, it is necessary to emphasize the prospect
of integrating neural network and symbolic approaches to
create hybrid intelligent systems. The proposed approach
moves the knowledge base from the position of a source
of context for large language models to the position of
shared semantic memory. This architecture allows com-
bining knowledge about problems, their context, solution
models, agent actions and solution history into a single
form.

Key advantages are knowledge consistency through the
use of a hierarchy of subject domains and SC-code, self-
learning through a reflexive experience mechanism in a
decentralized multi-agent architecture, and explainability
through semantic transparency where agent actions are
mapped to specific pieces of the knowledge base.

Further research and development in this area will
contribute to the development of next-generation intelli-
gent systems that can effectively integrate neural network
and logical-semantic models to solve a wide range of
problems.
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ПОДХОДЫ К
НЕЙРО-СИМВОЛИЧЕСКОЙ
ИНТЕГРАЦИИ: БОЛЬШИЕ

ЯЗЫКОВЫЕМОДЕЛИ И БАЗЫ
ЗНАНИЙ

Головко В.А., Голенков В.В.,
Ковалев М.В., Крощенко А.А.,
Шункевич Д.В., Ивашенко В.П.

В статье рассматриваются современные подходы к
интеграции нейросетевого и символьного искусствен-
ного интеллекта, включая архитектуры, использующие
генеративные модели в сочетании с базами знаний и
агентами. Особое внимание уделяется ограничениям
больших языковых моделей (LLMs) при решении за-
дач, связанных с долгосрочным контекстом, а также
анализируются механизмы типа RAG и современные
агентные системы. Предлагается архитектура интел-
лектуальных систем на базе Технологии OSTIS, в кото-
рой LLMs интегрированы в решатель задач. Обосновы-
вается необходимость формального описания методов
генеративного ИИ в составе решателя задач.

Авторы подчёркивают преимущества перехода базы
знаний с позиции источника контекста для LLM в по-
зицию общей семантической памяти, объединяющей
различные виды знаний – от описания задач и моделей
их решения до истории взаимодействия агентов. Такой
подход обеспечивает автоматическую верификацию
знаний, накопление опыта и прозрачность принимае-
мых решений.
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