
Principles of Automation of Development of
Open Projects Based on the Ecosystem of
Intelligent Computer Systems of the Next

Generation
Natalia Grakova, Nikita Zotov, Maksim Orlov, Kseniya Petrochuk, Kseniya Bantsevich

department Intelligent Information Technologies
Belarusian State University of Informatics and Radioelectronics

Minsk, Belarus
grakova.nv@gmail.com, n.zotov@bsuir.by, orlovmaksimkonst@gmail.com, xenija.petrotschuk@gmail.com,

ksusha.bantsevich@gmail.com

Abstract—The article is intended for researchers, devel-
opers, and practitioners in the fields of artificial intelligence,
knowledge engineering, and intelligent system design who
seek to build, extend, or integrate semantically compatible
intelligent systems.

It is particularly relevant for those interested in:
• developing modular, reusable, and interoperable intel-
ligent systems using open-source technologies;

• applying formal ontological methods and SC-code for
knowledge representation and reasoning;

• implementing multi-agent problem solvers and inte-
grating them with semantic knowledge bases;

• leveraging OSTIS Technology for educational, re-
search, or industrial applications requiring adaptabil-
ity, scalability, and semantic compatibility;

• research practical workflows, including installation,
configuration, and testing, through real-world exam-
ples such as the ostis-example-app.

Presented the guide assumes a basic familiarity with con-
cepts in artificial intelligence, ontologies, and software de-
velopment, but provides detailed, step-by-step instructions
suitable for both newcomers and experienced professionals
in the domain.

Keywords—OSTIS, open source project, ecosystem, basic
specification, OSTIS, OSTIS Project, OSTIS Technology,
OSTIS Guide, ostis-system, SC-code, knowledge base, prob-
lem solver, agent, ostis-example-app, ostis-web-platform,
ostis-metasystem

I. Introduction

Currently, a significant number of diverse projects
aimed at automating the development of various software
products are being developed. In particular, the creation
of open-source projects is especially relevant.

Open-source projects [1] are a powerful tool that
enables the development of high-quality software by
combining the efforts of developers and users worldwide.
However, open-source projects come with a range of
advantages and disadvantages.

Advantages of open-source projects:

• large user and developer community;
• rapid identification and fixing of bugs;
• opportunity for collaborative use and code enhance-
ment.

Disadvantages of open-source projects:

• potential vulnerabilities if the project is not properly
maintained;

• unpredictability in terms of support and updates.

The development of open-source projects offers many
advantages but is also associated with a number of
challenges. Here are some of them [1]:

1) Coordination and management. Open-source
projects often involve numerous contributors,
which can lead to difficulties in coordinating work
and managing the project. Without a clear strategy
and role distribution, confusion may arise.

2) Diverse expertise levels. Participants may have vary-
ing levels of knowledge and experience, which can
impact work quality. Training and support for new-
comers are essential.

3) Lack of motivation. Volunteers may lose interest or
motivation if they do not see progress or receive
proper recognition for their work. This can result in
delays and reduced project quality.

4) Conflicts and disputes. Differing opinions on devel-
opment directions, architecture, or technology can
lead to conflicts. Mechanisms for resolving disputes
must be established.

5) Code quality. Maintaining uniform code standards
is challenging, as contributors may follow their own
practices. This complicates integration and testing.

6) Licensing and legal issues. Misunderstanding or
misapplying licenses can cause legal problems.
Proper documentation and adherence to licensing
terms are critical.

147

7) Documentation challenges. Documentation may be
insufficient or outdated, hindering new contributors’
understanding and limiting project growth.

8) Funding. While many open-source projects rely on
volunteers, funding may be necessary for infrastruc-
ture, hosting, or other resource-intensive needs.

9) Dependence on external factors. Projects may de-
pend on changes in ecosystems (e. g., dependencies
or external libraries), affecting their development
and maintenance.

10) Diverse opinions. A flood of ideas and proposals
can overwhelm the team and complicate decision-
making. Clear processes for discussion and imple-
mentation are vital.

These challenges can be successfully addressed
through effective organization, active communication,
and a flexible approach to project management.

An open-source project is not merely one whose
source code is made publicly available, but rather a
project developed and improved by entire communities
of specialists working collaboratively to evolve and refine
it.

Naturally, managing, developing, and maintaining such
a project—preserving its integrity and functionality—is
far more complex compared to projects with centralized
management.

II. Project classification
A project is a temporary endeavor aimed at creating a

unique product, service, or result [2].
Let us consider the main types of projects:
1) By dominant activity:

• research,
• creative,
• applied,
• informational,
• adventure, gaming, role-playing;

2) By subject domain:
• single-subject – a project within the scope of one
academic discipline,

• interdisciplinary – integrating knowledge from
two or more fields,

• transdisciplinary – projects at the intersection of
disciplines or beyond traditional subject bound-
aries;

3) By coordination nature:
• open,
• closed;

4) By number of participants:
• individual,
• paired,
• group;

5) By duration:
• short-term,

• medium-term,
• long-term;

6) By geographical scope:
• district, region, territory,
• interregional, international.

This is not an exhaustive classification. Thus, devel-
oping tools capable of adapting to diverse project types
remains a relevant challenge today. Knowing the project
type or at least its goal allows for determining the model.

In this work, we focus on projects classified by coor-
dination nature.

Coordination in open projects refers to a set of mea-
sures and processes aimed at ensuring effective collabo-
ration among all project participants. It is often character-
ized by open access to information and the involvement
of a wide range of stakeholders. Open projects may
relate to scientific research, software development, social
initiatives, and other fields.

Let us examine key aspects of coordination in open
projects:
1) Communication. Establishing clear communication

channels among participants. Examples include mes-
saging apps, email lists, forums, or collaboration
platforms (e.g., GitHub, Slack).

2) Work organization. Creating an efficient team struc-
ture and role distribution. This may involve appoint-
ing coordinators responsible for specific project
aspects and forming working groups.

3) Documentation. Maintaining detailed records of
project progress, outcomes, and decisions. Docu-
mentation helps onboard new participants and en-
sures transparency.

4) Task management. Using project management tools
(e.g., Trello, Asana, Jira) to track tasks and dead-
lines, enabling efficient task allocation and progress
monitoring.

5) Feedback. Regularly gathering input from partici-
pants on workflows and results.

6) Community engagement. Open projects often rely
on community input. Creating opportunities for
stakeholder involvement and idea collection drives
project development.

7) Monitoring and evaluation. Conducting regular as-
sessments to identify progress and domains for
improvement.

Effective coordination requires active management and
attention to detail to achieve set goals.

Open-source development refers to the process of
creating software with publicly accessible source code,
which anyone can use, modify, and distribute. This
model offers numerous advantages and unique character-
istics [3].

Key aspects of open-source project development:
• Open source code. The program’s source code is ac-
cessible to everyone, enabling users to study, modify,

148

and improve the software.
• Community. Development is often collaborative, in-
volving contributors from around the world. The
community actively participates in idea discussions,
bug fixes, and providing support.

• Licenses. Open-source projects are governed by
licenses that define how the code may be used.
Popular licenses include GPL, MIT, Apache, and
others, each with specific terms regulating use and
distribution.

• Flexibility and adaptability. Users can tailor the
project to their needs by adding new features or
modifying existing ones.

• Security. Open code allows users to audit it for
vulnerabilities and fix issues. However, this also
means malicious actors can analyze the code to
exploit weaknesses.

• Documentation. Successful open-source projects
typically include comprehensive documentation,
simplifying adoption and use. Documentation covers
installation, configuration, and usage guidelines.

• Examples of successful projects. Many well-known
projects are open-source, including the Linux oper-
ating system, Apache web server, Git version control
system, Python programming language, and more.

General stages of software development:
• Idea. Everything begins with an idea, a problem to
solve, or a feature to implement.

• Planning. Defining the project structure, timelines,
and resource allocation.

• Coding. Writing code, including tests and documen-
tation.

• Testing. Identifying and correcting flaws. Open-
source projects often rely on external feedback to
enhance quality.

• Release. Publishing the first version for users to
adopt.

• Feedback and evolution. Post-release, the project
evolves based on input from users and the commu-
nity driving its development.

Automation of open project development is a crucial
aspect that enhances code quality, accelerates devel-
opment processes, and simplifies collaboration among
project contributors. Below are key principles to guide
automation in open projects:

• Version control systems. Enable efficient manage-
ment of code changes and streamline collaborative
work.

• Test automation. Rapidly identify errors, thereby
improving code reliability.

• Continuous integration and deployment (CI/CD).
Automate building, testing, and deployment to ex-
pedite releasing changes to production.

• Code documentation and comments. Simplify on-
boarding for new contributors and ensure documen-

tation stays current.
• Static code analysis and formatting tools. Enforce
uniform code style and prevent common errors.

• Dependency management and automated updates.
Mitigate risks from outdated libraries and enhance
project security.

• Containerization. Simplify environment setup for
developers and avoid dependency conflicts across
projects.

• Task management and feedback systems. Foster com-
munity engagement and streamline collaboration for
existing and new contributors.

• Training and knowledge sharing. Document best
practices, create tutorials, and provide guides to
accelerate contributor onboarding.

By adhering to these principles, development teams
can significantly improve efficiency and the overall qual-
ity of open projects.

III. Unification of specifications for documentation in
next-generation intelligent computer systems

To ensure both the system and developers uniformly
understand the semantics of concepts used, it is neces-
sary to specify not only the concepts themselves but
also the associated fragments of knowledge bases and,
consequently, entire sections of relevant subject domains
[4]. Let us examine the subject domain of basic specifi-
cations.

A. Subject domain of basic specifications
The unification of concept specifications in knowledge

bases is described within the subject domain of basic
specifications. This domain must contain descriptions
of all possible classes of entities with unified basic
specifications and the basic specifications of various
entities.

Subject domain of basic specifications
∈ subject domain
⇐ specific subject domain*:

• Subject domain of semantic
neighborhoods

∋ maximum class of research objects ′:
• basic specification

∋ class of research objects ′:
• class of entities with unified basic

specifications
• basic specification
• basic specification of the basic

specification concept
∋ research relation ′:

• basic specification
• generalized basic specification

Importantly, in this subject domain, basic specifica-
tion* is a binary directed non-role relation linking an

149

entity of the class of entities with unified basic specifi-
cations to its basic specification, indicating which part
of the specification serves as the entity’s foundational
definition.

Meanwhile, generalized basic specification* is a binary
directed non-role relation connecting a specific class of
entities with basic specifications to its basic specifica-
tion, signifying that the class has a defined set of core
properties for specifying its entities.

B. Class of entities with unified basic specifications
Within the subject domain of basic specifications,

the concept of a class of entities with unified basic
specifications is defined.

class of entities with unified basic specifications
:= [a class where all entities share a common set of

properties essential for their basic description]
⇒ note*:

[Some classes may include subclasses with addi-
tional basic specifications unique to those sub-
classes]

C. Basic specification
basic specification
⊂ specification
:= [a set of core properties shared by entities within

a class]
:= [the minimal property set required to describe

each entity in a class]
⇒ note*:

[Every entity in a class must have its basic
properties defined according to the class char-
acteristics]

⇒ note*:
[Basic specifications describe recommended min-
imum properties for class entities but are not
strictly mandatory. They streamline knowledge
base development and prevent redundant con-
cepts.]

Notably, the basic specification class itself is also a
class of entities with unified basic specifications. This
allows formalizing the basic specification of the basic
specification concept.

basic specification of basic specification concept
⇒ note*:

[This reflects properties required in every basic
specification]

⇐ generalized basic specification*:
• basic specification

⇒ generalized decomposition*:
⟨⟨⟨• specification of generalized basic

specification
• specification of generalized

decomposition

• specification example
⟩⟩⟩

∋ example ′:
basic specification of a person
⇐ basic specification*:

• basic specification of a person

Each basic specification is decomposed into specifi-
cations of individual properties, which must themselves
adhere to strict rules. Below is an example formalizing
the specification of a generalized basic specification.

specification of generalized basic specification
⇒ generalized decomposition*:

{{{• sign of the specified object
• class of entities with unified basic

specifications
• arc linking the class to the specified

object
• arc belonging to the generalized basic

specification relation
• generalized basic specification
⇒ template*:

template for describing generalized basic
specifications
⇒ illustration*:

SCg-text. Template for describing
generalized basic specifications

}}}

The template for generalized basic specifications is
shown in Figure 1.

Figure 1. SCg-text. Template for describing a generalized basic
specification

IV. Guide to developing and using semantically
compatible intelligent systems based on OSTIS

Technology
Let’s look at it further a comprehensive guide to the

development and application of semantically compatible
intelligent systems using OSTIS Technology based on
basic specifications. OSTIS Project is an open-source
project designed to address the challenges of interoper-
ability, modularity, and scalability in intelligent system

150

design. Step-by-step methodologies are provided for con-
structing ontologically structured knowledge bases and
implementing agents for problem solving. The practi-
cal workflow is illustrated through the ostis-example-
app, demonstrating installation, extension, and testing
procedures. The guide emphasizes the advantages of
OSTIS Project, including plug-and-play integration, plat-
form independence, reflexivity, and support for parallel
information processing, making it a robust foundation for
next-generation intelligent systems.

V. OSTIS Project
A. About OSTIS Project

OSTIS Project [5], [6] is an open-source initiative
focused on developing and promoting Open Semantic
Technology for Intelligent Systems (OSTIS) [7]. The
infrastructure of the OSTIS Project is hosted within
the OSTIS-AI organization on GitHub [8]. It comprises
multiple repositories, with the following being key com-
ponents:
1) The ostis-web-platform repository [9] provides tools

for installing and developing ostis-systems. It in-
cludes a knowledge base with top-level ontologies,
semantic network interpreters, component manager,
and web-oriented interface [10].

2) The ostis-metasystem repository [11], [12] contains
comprehensive intelligent system designed to auto-
mate and manage all stages of the life cycle of ostis-
systems [13].

3) The ostis-example-app repository [14] demonstrates
the basic capabilities of ostis-systems, including
knowledge base, problem solver, and web interface.

B. About OSTIS Technology
The OSTIS Technology enables the creation of se-

mantically compatible intelligent systems that can seam-
lessly integrate various types of knowledge and problem-
solving models [15], allowing them to adapt and solve
new problems efficiently.

The OSTIS Technology has been applied in various
domains, including fuzzy systems, data analysis, and
knowledge management, demonstrating its versatility.

C. Why OSTIS
The OSTIS Technology is not just another AI

project; it’s an open-source technology designed
to revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systemsto revolutionize how we build intelligent systems. The
primary goal of the OSTIS Technology is to address
the limitations of current intelligent systems, which are
often monolithic, difficult to modify, and expensive to
develop [16].

By providing a universal framework for representing
information using SC-code (Semantic Computer code)
[17], the OSTIS Technology enables the creation of mod-
ular, reusable components that can be easily combined
across different systems [18].

D. Key advantages of OSTIS

The main advantages of the OSTIS Technology in-
clude:
1) Plug-and-Play Integration. Seamlessly add new

problem-solving models or knowledge without com-
plex overhead [18], [19].

2) Universal Components. Reusable components re-
duce development time and effort across different
ostis-systems [19], [20].

3) Reflexivity. ostis-systems can analyze themselves,
identify errors, and optimize performance – a hall-
mark of true intelligence [4], [21].

4) Platform Independence. ostis-systems can be imple-
mented on various platforms, paving the way for
semantic computers [10], [22].

5) Parallel Processing. Designed for efficient parallel
information processing, especially beneficial for se-
mantic computers [23].

E. Key features of SC-code

SC-code serves as the backbone of the OSTIS Tech-
nology. It is a universal language designed to represent
knowledge, models, and interfaces uniformly [21]. The
code is based on a minimal alphabet consisting of five
elements that enable non-linear representation suitable
for semantic associative computers [23].

The main features of SC-code include [21]:
1) Universality. Represents any information uniformly.
2) Non-linearity. Suitable for semantic associative com-

puters.
3) Basic Alphabet. Comprises just five elements.
4) Flexibility. Can represent knowledge, models, and

interfaces.

F. How to use OSTIS

To effectively use OSTIS, developers can start with the
ostis-example-app [14]. Refer to the Getting started with
OSTIS section for detailed instructions on installing and
launching this example of an ostis-system.

VI. Getting started with OSTIS

A. About ostis-example-app

The OSTIS Project provides an example of a system
that can be supplemented with new components to create
a new system of any orientation. It’s called ostis-example-
app. Its sources can be found here [14].
The ostis-example-app serves as a practical entry point

for understanding and utilizing OSTIS Technology. This
application exemplifies the core components of an ostis-
system, including its knowledge base, problem solver,
and user interface.

151

https://github.com/ostis-apps/ostis-example-app

B. Key features of ostis-example-app

The main features of ostis-example-app include:
1) Knowledge base. The knowledge base is structured

using SC-code, enabling semantic representation
that supports modularity and extensibility [24], [25].
It allows the integration of diverse knowledge do-
mains without requiring significant modifications to
the system architecture.

2) Problem solver. Utilizing a multi-agent approach,
the problem solver integrates various models for
addressing complex tasks [26]. This architecture
ensures adaptability and scalability in solving new
classes of problems.

3) User interface. The user interface is also described
using SC-code, providing semantic compatibility
with other system components [27]. This ensures
seamless interaction between users and the intelli-
gent system.

C. Step-by-step guide to using ostis-example-app

To utilize the capabilities of ostis-example-app, follow
these steps:
1) Enshure prerequisites:

• Install Git: https://git-scm.com/book/en/v2/
Getting-Started-Installing-Git [28].

• Install Docker & Docker Compose: https://www.
docker.com/get-started [29].

Before proceeding with installation, ensure that sys-
tem meets all prerequisites. Docker is recommended
for its ability to provide a consistent environment
across platforms.

2) Clone repository of ostis-example-app:

1 git clone https://github.com/ostis-
apps/ostis-example-app.git

2 cd ostis-example-app
3 git checkout 0.10.0
4 git submodule update --init --

recursive

Cloning the repository gives you access to the
source code and all necessary submodules required.

3) Build docker images of ostis-example-app:

1 docker compose build

Building Docker images ensures that all dependen-
cies are correctly configured within isolated contain-
ers.

4) Build knowledge base of ostis-example-app:

1 docker compose run --rm machine
build

5) Start ostis-example-app:

1 docker compose up
2 # Access interface at http://

localhost:8000/
3 # To stop system use ‘docker

compose stop‘
4 # Rebuild KB after changes in ‘.scs

‘ or ‘.gwf‘ files

Starting the system launches all services defined in
the Docker Compose configuration file. Accessing
the interface allows users to interact with the intel-
ligent system.

6) To rebuild after changes in ‘.scs‘ or ‘.gwf‘, repeat
step 4.

VII. Step-by-step guide to developing and using
intelligent system within the OSTIS Technology

This section presents a step-by-step algorithm for
developing an ostis-system, both by extending the ostis-
example-app and by building a system from scratch.

A. Developing an ostis-system using ostis-example-app
Before proceeding to develop an ostis-system from

scratch, it is often convenient to use the ready-made ostis-
example-app as a starting point. This approach allows
you to quickly become familiar with the structure of ostis-
systems, experiment with knowledge base extensions,
and implement new problem-solving agents without the
need to design all components from the ground up. The
following steps outline how to adapt and extend an ostis-
system using ostis-example-app.
1) Clone template repository:

• download the ostis-example-app repository,
which provides a ready-to-use project structure
with a knowledge base, problem solver, and web
interface (see Getting started with OSTIS).

2) Modify knowledge base:
• edit or extend SC-code sources in the
knowledge-base/ directory to add or
adapt domain-specific concepts, relations, and
others (see Step-by-step guides to developing
and using knowledge base within the OSTIS
Technology).

3) Extend problem solver:
• add new agents or modify existing ones in the
problem-solver/ directory to implement the
required logic (see Step-by-step guides to devel-
oping and using problem solver within the OSTIS
Technology);

• register and configure agents as needed.
4) Rebuild and launch the system:

• rebuild the system (e.g., using Docker or CMake,
as described in the ostis-example-app documenta-
tion Getting started with OSTIS);

152

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.docker.com/get-started
https://www.docker.com/get-started

• start the system and access the web interface to
test and use extended ostis-system.

5) Test and iterate:
• after any changes to the knowledge base or prob-
lem solver, rebuild the system to apply updates.

B. Developing an ostis-system from scratch
In cases where the requirements for the intelligent

system are highly specific or when full control over
the system architecture is needed, it may be preferable
to develop an ostis-system from scratch. This approach
involves designing the project structure, configuring de-
pendencies, and developing all core components indepen-
dently. The steps below describe the general workflow for
building an ostis-system from the ground up.
1) Configure project:

• organize directories for the knowledge base, prob-
lem solver, interface, and configuration files;

• set up required dependencies (e.g., sc-machine
[30]) using a package manager such as Conan;

• configure the build system (e.g., CMake) for com-
piling agents and linking with necessary libraries
(see Configuring project for new ostis-system).

2) Develop knowledge base:
• design and formalize ontologies, concepts, and
relations in SC-code, following OSTIS Technol-
ogy methodological guidelines (see Step-by-step
guides to developing and using knowledge base
within the OSTIS Technology);

• organize the knowledge base into sections and
subject domains.

3) Implement problem solver:
• develop agents that implement the logic for solv-
ing tasks relevant to required domain (see Step-
by-step guides to developing and using problem
solver within the OSTIS Technology);

• ensure agents interact correctly with the knowl-
edge base.

4) Develop user interface:
• if needed, implement or configure the web inter-
face for user interaction with the system.

5) Build and launch the system:
• build the knowledge base and problem solver;
• launch the system and verify its functionality.

6) Test and iterate:
• test the system, add new features, and refine
knowledge and agent logic as needed;

In both approaches, after every change to the knowl-
edge base or agents, rebuild the system to apply updates
[14].

C. Configuring project for new ostis-system
Step 1. Define project structure

Create a basic directory structure for an ostis-system
project (listing 1).

1 ostis-system-example/
2 |-- knowledge-base # SC-code

sources (.scs, .gwf) defining
ontologies, rules, and facts

3 |-- problem-solver # C++
agents implementing problem-
solving logic

4 |-- CMakeLists.txt # Build
configuration for agents and
dependencies

5 |-- conanfile.txt # Conan
package manager specification
for agent dependencies

Listing 1. Project directory structure

Step 2. Configure dependencies with Conan
Specify Conan package manager configuration [31] for

required components (listing 2).

1 [requires]
2 sc-machine/0.10.0 # Specifies

that the project requires the
sc-machine library version

0.10.0
3 gtest/1.14.0 # Specifies

that the project requires the
gtest library version 1.14.0

4

5 [generators]
6 CMakeDeps # Generator

for creating dependency
information files for CMake

7 CMakeToolchain # Generator
for creating a toolchain file
for CMake

8

9 [layout]
10 cmake_layout # Uses the

standard project layout

Listing 2. Conan dependencies

Step 3. Define CMake build system
Define main CMake configuration file [32] for build

setup (listing 3).

1 # Minimum required CMake version
2 cmake_minimum_required(VERSION
3 3.24
4)
5 # Set C++17 standard
6 set(CMAKE_CXX_STANDARD 17)
7 # Project definition
8 project(my-ostis-system VERSION

0.10.0 LANGUAGES C CXX)

153

9 # Version policy configuration
10 cmake_policy(SET CMP0048 NEW)
11

12 # Output directories
configuration

13 set(CMAKE_RUNTIME_OUTPUT
_DIRECTORY

14 ${CMAKE_BINARY_DIR}/bin
15)
16 set(CMAKE_LIBRARY_OUTPUT

_DIRECTORY
17 ${CMAKE_BINARY_DIR}/lib
18)
19 set(SC_EXTENSIONS_DIRECTORY
20 ${CMAKE_LIBRARY_OUTPUT

_DIRECTORY}/extensions
21)
22

23 # Looking for sc-machine package
for implementing agents

24 find_package(sc-machine
25 REQUIRED
26)
27

28 # Looking for GTest package for
testing agents

29 include(GoogleTest)
30 find_package(GTest
31 REQUIRED
32)
33

34 # Include problem solver
subsystem

35 add_subdirectory(
36 ${CMAKE_CURRENT_SOURCE_DIR}/

problem-solver
37)

Listing 3. CMake configuration

Step 5. Install basic tools for development environment
•
1 # Ubuntu/Debian (GCC)
2 sudo apt update
3

4 sudo apt install --yes --no-
install-recommends \

5 curl \
6 ccache \
7 python3 \
8 python3-pip \
9 build-essential \
10 ninja-build

1 # macOS
2 brew update && brew upgrade
3 brew install \

4 curl \
5 ccache \
6 cmake \
7 ninja

For Linux distributions that doe support apt, ensure
following packages are installed:
– curl: A tool for transferring data with URLs;
– ccache: A compiler cache to speed up compilation

processes;
– python3 and python3-pip: Python 3 interpreter
and package installer;

– build-essential: Includes a C++ compiler, neces-
sary for building C++ components;

– ninja-build: An alternative build system designed
to be faster than traditional ones.

Step 6. Install Conan package manager
• Install pipx following the instructions based on oper-
ating system: https://pipx.pypa.io/stable/installation/
[33].

• Check CMake version and if it less than 3.24 update
it:

1 pipx install cmake
2 pipx ensurepath

• Install Conan and restart the terminal:

1 pipx install conan
2 pipx ensurepath
3 exec $SHELL

Step 7. Install sc-machine libraries
sc-machine [30] is the core software platform of

the OSTIS Technology, designed to emulate semantic
computer behavior by storing and processing knowledge
in the form of semantic networks. At its foundation,
sc-machine functions as a graph database management
system that enables efficient storage, retrieval, and ma-
nipulation of knowledge graphs within a shared memory
structure called sc-memory.

• Add the ostis-ai repository [34] for Conan packages:

1 conan remote add ostis-ai
https://conan.ostis.net/
artifactory/api/conan/
ostis-ai-library

2 conan profile detect

• Install sc-machine libraries from ostis-ai repository
using Conan:

1 # Fetch sc-machine libraries
and builds missing
dependencies

2 conan install . --build=
missing

154

https://pipx.pypa.io/stable/installation/

sc-machine libraries – the core components of the
OSTIS Platform, used to develop C++ agents.

Step 8. Install sc-machine binaries and scp-machine
[35] extensions

• Install sc-machine binaries and extensions. The in-
stallation process differs slightly between Linux and
macOS:

1 # Fetch release archive with
sc-machine binaries and
extensions for Linux

2 curl -LO https://github.com/
ostis-ai/sc-machine/
releases/download/0.10.0/
sc-machine-0.10.0-Linux.
tar.gz

3 # Unpack fetched release
archive

4 mkdir sc-machine && tar -xvzf
sc-machine-0.10.0-Linux.

tar.gz -C sc-machine --
strip-components 1

5 # Remove unneccessary sources
6 rm -rf sc-machine-0.10.0-

Linux.tar.gz && rm -rf sc
-machine/include

1 # Fetch release archive with
sc-machine binaries and
extensions for macOS

2 curl -LO https://github.com/
ostis-ai/sc-machine/
releases/download/0.10.0/
sc-machine-0.10.0-Darwin.
tar.gz

3 # Unpack fetched release
archive

4 mkdir sc-machine && tar -xvzf
sc-machine-0.10.0-Darwin

.tar.gz -C sc-machine --
strip-components 1

5 # Remove unneccessary sources
6 rm -rf sc-machine-0.10.0-

Darwin.tar.gz && rm -rf
sc-machine/include

sc-machine binaries are pre-compiled executables
that provide the runtime environment for the ostis-
system: build knowledge base source and launch the
ostis-system.

• Install scp-machine extensions. The installation pro-
cess differs slightly between Linux and macOS:

1 # Fetch release archive with
scp-machine extensions
for Linux

2 curl -LO https://github.com/
ostis-ai/scp-machine/
releases/download/0.1.0/
scp-machine-0.1.0-Linux.
tar.gz

3 # Unpack fetched release
archive

4 mkdir scp-machine && tar -
xvzf scp-machine-0.1.0-
Linux.tar.gz -C scp-
machine --strip-
components 1

5 # Remove unneccessary sources
6 rm -rf scp-machine-0.1.0-

Linux.tar.gz && rm -rf
scp-machine/include

1 # Fetch release archive with
scp-machine extensions
for macOS

2 curl -LO https://github.com/
ostis-ai/scp-machine/
releases/download/0.1.0/
scp-machine-0.1.0-Darwin.
tar.gz

3 # Unpack fetched release
archive

4 mkdir scp-machine && tar -
xvzf scp-machine-0.1.0-
Darwin.tar.gz -C scp-
machine --strip-
components 1

5 # Remove unneccessary sources
6 rm -rf scp-machine-0.1.0-

Darwin.tar.gz && rm -rf
scp-machine/include

The following sections (Step-by-step guides to devel-
oping and using knowledge base within the OSTIS Tech-
nology and Step-by-step guides to developing and using
problem solver within the OSTIS Technology) provide
methodologies outlined for developing knowledge bases
and problem solvers within OSTIS Technology.

VIII. Step-by-step guides to developing and using
knowledge base within the OSTIS Technology

A. About knowledge base of ostis-systems
Developing and utilizing knowledge bases within the

OSTIS Technology requires a structured, ontology-driven
approach [15] to ensure semantic compatibility, modular-
ity, and interoperability across ostis-systems. This section
provides methodological guidelines for constructing and
applying knowledge bases that adhere to the OSTIS
Standard [4].

Key principles underpinning this process include:

155

• Semantic formalization. Knowledge is represented
using SC-code, enabling machine-readable and
human-understandable structures [18].

• Hierarchical organization. Knowledge bases are di-
vided into modular sections, each corresponding to
a specific subject domain, with inheritance mecha-
nisms ensuring consistency across layers [21].

• Ontological integrity. Each section must compre-
hensively define its concepts, relations, and rules,
avoiding redundancy and ensuring logical coherence
[36].

By following the next steps, developers can ensure
their systems align with the OSTIS Standard’s require-
ments for scalability, maintainability, and interoperability
[4].

B. Guide to formalizing section of knowledge base using
SCs-code

Step 1. Specify didactic structure of section
A section of a knowledge base is a modular, ontolog-

ically complete, and semantically formalized component
that represents all knowledge relevant to a particular
subject domain, supporting hierarchical organization and
integration within the overall knowledge base [25].

Create a directory for the section within
the knowledge-base/ hierarchy (listing 4).
Inside this directory, create .scs source (e.g.,
section_subject_domain_of_sets.scs)
and specify didactic structure of the section: identifiers,
definitions, explanations, notes, and quotes related to
the section (listing 5).

1 knowledge-base/
2 +|-- section_subject_domain_of

_sets/
3 +| |--

section_subject_domain_of
_sets.scs

Listing 4. Section directory

section_subject_domain_of_sets.scs

1 section_subject_domain_of_sets
2 => nrel_main_idtf:
3 [Section. Subject domain of

sets]
4 (* <- lang_en;; *);
5 => nrel_idtf:
6 [Section of knowledge

base, describing sets
]

7 (* <- lang_en;; *);
8 => nrel_idtf:
9 [Formalized description of

set-theoretic concepts]
10 (* <- lang_en;; *);

11 => nrel_idtf:
12 [Mathematical foundation for

collections and their
operations]

13 (* <- lang_en;; *);
14 <- sc_node_structure;
15 <- section;
16 => nrel_definition: [
17 Set theory serves as the

cornerstone of modern
mathematics, providing a
rigorous framework for
defining collections of
distinct objects.
Fundamental operations
such as union,
intersection, and
complement enable
systematic manipulation
of these collections.
This formalism underpins
advanced mathematical
disciplines and finds
practical utility in
computer science (data
structures), logic, and
data analysis.

18];
19 => nrel_explanation: [
20 Set theory is fundamental in

mathematics as it
provides a way to
describe collections of
objects. It includes
operations like union,
intersection, and
complement, which allow
us to combine and
manipulate sets.
Understanding sets is
crucial for advanced
mathematical concepts and
has practical
applications in fields
like computer science and
data analysis.

21];
22 => nrel_note: [
23 An important aspect of sets

is that they do not
consider the order of
elements or duplicates.
This means {a, b} is the
same as {b, a} or {a, b,
b}. Additionally, sets

156

have been a subject of
historical development,
notably through Georg
Cantor’s work in the late
19th century.

24];
25 => nrel_quote: [
26 The essence of mathematics

lies in its freedom (
Georg Cantor, 1883)

27];

Listing 5. Section. Subject domain of sets

Step 2. Specify decomposition of section
Identify the sub-sections into which the described sec-

tion can be decomposed: add a decomposition statement
in section_subject_domain_of_sets.scs
(listing 6), and create directories, .scs sources for each
sub-section (listing 7), and specify basic information for
sub-sections (listings 8 and 9).

section_subject_domain_of_sets.scs

1]
2 section_subject_domain_of_sets
3 // information, specified above

...
4 + => nrel_section_decomposition:

<
5 + section_subject_domain_of

_basic_concepts_of_sets,
6 + section_subject_domain_of

_set_operations
7 + >;;

Listing 6. Decomposition of section of subject domain of sets

1 knowledge-base/
2 |-- section_subject_domain_of

_sets/
3 +| |--

section_subject_domain_of
_basic_concepts_of_sets/

4 +| | |--
section_subject_domain_of
_basic_concepts_of_sets.scs

5 +| |--
section_subject_domain_of
_set_operations/

6 +| | |--
section_subject_domain_of
_set_operations.scs

7 | |--
section_subject_domain_of
_sets.scs

Listing 7. Subsection directories

section_subject_domain_of_basic
_concepts_of_sets.scs

1 section_subject_domain_of_basic
_concepts_of_sets

2 => nrel_main_idtf:
3 [Section. Subject domain of

basic concepts of sets]
4 (* <- lang_en;; *);
5 => nrel_idtf:
6 [Basic concepts of set

theory]
7 (* <- lang_en;; *);
8 <- sc_node_structure;
9 <- section;;

Listing 8. Section. Subject domain of basic concepts of sets

section_subject_domain_of_set
_operations.scs

1 section_subject_domain_of_set
_operations

2 => nrel_main_idtf:
3 [Section. Subject domain of

set operation]
4 (* <- lang_en;; *);
5 => nrel_idtf:
6 [Set operations]
7 (* <- lang_en;; *);
8 <- sc_node_structure;
9 <- section;;

Listing 9. Section. Subject domain of set operations

Step 3. Specify subject domain for given section
A subject domain is a comprehensive structure that

organizes all relevant objects, their classifications, the
relations between them, and any additional components
necessary to fully describe the domain of investigation
[]. Subject domain is a structure that includes:

• the main research (described) objects;
• classes of research objects;
• links, the components of which are the research
objects;

• classes of the above-mentioned links (i.e. relations);
• classes of objects that are neither the research
objects nor the above-mentioned links, but are com-
ponents of these links.

Define the subject domain describing all investi-
gated entities within the section: create a file named
subject_domain_of_sets.scs in the section di-
rectory (listing 10) and specify didactic structure of
subject domain (listing 11).

1 knowledge-base/
2 |-- section_subject_domain_of

_sets/

157

3 | |--
section_subject_domain_of
_basic_concepts_of_sets/

4 | | |--
section_subject_domain_of
_basic_concepts_of_sets.scs

5 | |--
section_subject_domain_of
_set_operations/

6 | | |--
section_subject_domain_of
_set_operations.scs

7 | |--
section_subject_domain_of
_sets.scs

8 +| |-- subject_domain_of_sets.
scs

Listing 10. Location of subject domain

subject_domain_of_sets.scs

1 section_subject_domain_of_sets =
2 [*
3 subject_domain_of_sets
4 => nrel_main_idtf:
5 [Subject domain of sets]
6 (* <- lang_en;; *);
7 => nrel_idtf:
8 [Subject domain of set

theory]
9 (* <- lang_en;; *);
10 [Subject domain, in which

research objects are sets
]

11 (* <- lang_en;; *);
12 <- sc_node_structure;
13 <- subject_domain;
14 *];;

Listing 11. Subject domain of sets

Step 4. Specify child subject domains for given subject
domain

List child subject domains that are hierarchically subor-
dinate to the current domain. Add child subject domains
in subject_domain_of_sets.scs (listing 12).
subject_domain_of_sets.scs

1 section_subject_domain_of_sets =
2 [*
3 subject_domain_of_sets
4 // information, specified above

...
5 <= nrel_child_subject_domain:
6 subject_domain_of_discrete

_mathematics;
7 => nrel_child_subject_domain:

8 subject_domain_of_basic
_concepts_of_sets;

9 subject_domain_of_set
_operations;

10 *];;

Listing 12. Child subject domains

Step 5. Identify classes of objects for given subject
domain

List the classes of objects researched within the corre-
sponding subject domain (listing 13).

Distinguish between maximal and non-maximal
classes of objects:

• maximal class is a class for which there is no other
class in the subject domain that is a superset.

• non-maximal class is a class for which there exists
another class in the subject domain that is a superset.

subject_domain_of_sets.scs

1 section_subject_domain_of_sets =
2 [*
3 subject_domain_of_sets
4 // information, specified above

...
5 + -> rrel_maximal_research

_object_class:
6 + concept_set;
7 + -> rrel_not_maximal_research

_object_class:
8 + concept_finite_set;
9 + concept_infinite_set;
10 + concept_countable_set;
11 + concept_uncountable_set;
12 + concept_cantor_set;
13 + concept_multiset;
14 + concept_fuzzy_set;
15 + concept_crisp_set;
16 + concept_set_of_sets;
17 + concept_non_reflexive_set;
18 + concept_reflexive_set;
19 + concept_formed_set;
20 + concept_unformed_set;
21 + concept_empty_set;
22 + concept_singletone;
23 + concept_pair_set;
24 + concept_cantor_pair;
25 + concept_triple_set;
26 + concept_oriented_set;
27 + concept_cartesian_product;
28 + concept_boolean;
29 *];;

Listing 13. Classes of objects in subject domain of sets

Step 6. Identify research relations for given subject
domain

158

Determine the relations being explored in the section
(listing 14).
subject_domain_of_sets.scs

1 section_subject_domain_of_sets =
2 [*
3 subject_domain_of_sets
4 // information, specified above

...
5 -> rrel_not_maximal_research

_object_class:
6 // other research classes of

objects
7 concept_boolean;;
8 + -> rrel_research_relation:
9 + nrel_membership;
10 + rrel_example;
11 + nrel_inclusion;
12 + nrel_strict_inclusion;
13 + nrel_set_power;
14 + nrel_equinumerous;;
15 *];;

Listing 14. Research relations in subject domain of sets

Step 6. Integrate into ostis-system
Knowledge base of ostis-system needs to be built

before launching the system or after making changes. To
load the formalization result into the ostis-system, run
the command shown in listing 15 in terminal.

1 ./sc-machine/bin/sc-builder -i
knowledge-base -o kb.bin --
clear

Listing 15. Build knowledge base

This command builds the knowledge base from the .scs
and .gwf sources in the knowledge-base directory,
creating the kb.bin file. The -clear flag clears the
knowledge base before building.

C. Guide to formalizing concepts using SCs-code
In the context of the OSTIS Standard, an object is

usually defined as either a concept, i.e. an abstract entity
that combines other abstract or concrete entities, or an
instance of a concept, i.e. a concrete entity.

Concepts can be absolute or relative. Absolute con-
cepts denote the same attributes of some group of con-
cepts or entities, relative concepts — connections and
relations between other concepts or entities.

Formalizing absolute concepts (classes)
To formalize absolute concepts, which are classes or

sets of objects with common properties.
Step 1. Specify didactic structure of class
Create .scs source (e.g., concept_set.scs) (list-

ing 16) and specify sc-identifiers for class in various
external languages to ensure cross-referencing and inte-
gration with other systems (listing 17).

1 knowledge-base/
2 |-- section_subject_domain_of

_sets/
3 | |--

section_subject_domain_of
_basic_concepts_of_sets/

4 | | |--
section_subject_domain_of
_basic_concepts_of_sets.scs

5 | |--
section_subject_domain_of
_set_operations/

6 | | |--
section_subject_domain_of
_set_operations.scs

7 | |-- concepts/
8 +| | |-- concept_set.scs
9 | |--

section_subject_domain_of
_sets.scs

10 | |-- subject_domain_of_sets.
scs

Listing 16. Location of concept_set source

concept_set.scs

1 concept_set
2 => nrel_main_idtf:
3 [set]
4 (* <- lang_en;; *);
5 => nrel_idtf:
6 [set of signs]
7 (* <- lang_en;; *);
8 => nrel_definition:
9 [A collection of distinct

objects where:
10 ∀x, y ∈ S : x ̸= y ⇒ count(x) = 1
11 and order is irrelevant]
12 (* <- lang_en;; *);
13 [A = {x | P (x)} where P is a

membership property]
14 (* <- lang_en;; *);
15 => nrel_example:
16 [N = {1, 2, 3, . . .} - set of

natural numbers]
17 (* <- lang_en;; *);
18 => nrel_key_properties:
19 [Unordered: {a, b} = {b, a}]
20 (* <- lang_en;; *);
21 [Unique elements:

{a, a, b} ≡ {a, b}]
22 (* <- lang_en;; *);
23 [Extensionality:

A = B ⇐⇒ ∀x(x ∈ A ↔ x ∈ B)]
24 (* <- lang_en;; *);

159

25 <- sc_node_class;
26 <- concept;

Listing 17. Didactic structure of concept_set

Step 2. Specify theoretical set relations
Describe connections with other sc-elements to estab-

lish relationships between concepts (listing 18).
concept_set.scs

1 concept_set
2 // information, specified above

...
3 + => nrel_subdivision: {
4 + concept_finite_set;
5 + concept_infinite_set
6 + };
7 + => nrel_subdivision: {
8 + concept_cantor_set;
9 + concept_multiset
10 + };
11 + => nrel_subdivision: {
12 + concept_crisp_set;
13 + concept_fuzzy_set
14 + };
15 + => nrel_subdivision: {
16 + concept_reflexive_set;
17 + concept_non_reflexive_set
18 + };
19 + <= nrel_subdividing: {
20 + concept_oriented_set;
21 + concept_non_oriented_set
22 + };
23 + => nrel_strict_inclusion:
24 + concept_empty_set;
25 + concept_singletone;
26 + concept_pair_set;
27 + concept_triple_set;

Listing 18. Theoretical set relations of concept_set

Step 3. Specify instances
List instances of the described concept to provide

concrete examples (listing 19).
concept_set.scs

1 concept_set
2 // information, specified above

...
3 + -> rrel_example:
4 + set_of_natural_numbers;
5 + set_of_atoms_in_the_universe

;
6 + set_of_all_continuous

_functions;

Listing 19. Examples of instances of concept_set

Formalizing relative concepts (relations)

To formalize relative concepts, which are relations
between objects.

Step 1. Specify didactic structure of relation
Create .scs source (e.g., nrel_inclusion.scs)

(listing 20) and specify sc-identifiers in various external
languages to ensure cross-referencing and integration
with other systems (listing 21).

1 knowledge-base/
2 |-- section_subject_domain_of

_sets/
3 | |--

section_subject_domain_of
_basic_concepts_of_sets/

4 | | |--
section_subject_domain_of
_basic_concepts_of_sets.scs

5 | |--
section_subject_domain_of
_set_operations/

6 | | |--
section_subject_domain_of
_set_operations.scs

7 | |-- concepts/
8 | | |-- concept_set.scs
9 | |-- relations/
10 +| | |-- nrel_inclusion.scs
11 | |--

section_subject_domain_of
_sets.scs

12 | |-- subject_domain_of_sets.
scs

Listing 20. Location of nrel_inclusion source

nrel_inclusion.scs

1 nrel_inclusion
2 => nrel_main_idtf:
3 [subset]
4 (* <- lang_en;; *);
5 => nrel_idtf:
6 [subset relation]
7 (* <- lang_en;; *);
8 => nrel_definition:
9 [Binary relation where

A ⊆ B ⇐⇒ ∀x(x ∈ A → x ∈ B)]
10 (* <- lang_en;; *);
11 => nrel_example:
12 [{1, 2} ⊆ {1, 2, 3}]
13 (* <- lang_en;; *);
14 <- concept_binary_relation;
15 <- concept_non_role_relation;

Listing 21. Didactic structure of nrel_inclusion

Step 2. Specify theoretical set relations
Describe connections with other sc-elements to estab-

lish relationships between relations (listing 22).

160

nrel_inclusion.scs

1 nrel_inclusion
2 // information, specified above

...
3 + => nrel_inclusion:
4 + nrel_strict_inclusion (*
5 + => nrel_comment:
6 + [Hierarchy: A ⊂ B ⇒ A ⊆ B
7 + but A ⊆ B ⇏ A ⊂ B];
8 + [Strict inclusion

requires: ∃x ∈ B : x /∈ A];;
9 + *);

Listing 22. Theoretical set relations of nrel_inclusion

Step 3. Specify relation domains
Specify the domains of the relation to define the sets

of objects involved (listing 23).
nrel_inclusion.scs

1 nrel_inclusion
2 // information, specified above

...
3 + => nrel_first_domain:

concept_set (*
4 + => nrel_comment:
5 + [Left operand must be a

set: ∀A ∈ Set];;
6 + *);
7 + => nrel_second_domain:

concept_set (*
8 + => nrel_comment:
9 + [Right operand must be a

set: ∀B ∈ Set];;
10 + *);

Listing 23. Domains of nrel_inclusion

Step 4. Specify domain of definition
Define the domain of definition of the relation to

specify where it applies (listing 24).
nrel_inclusion.scs

1 nrel_inclusion
2 // information, specified above

...
3 + => nrel_definitional_domain:

concept_set (*
4 + => nrel_comment:
5 + [It is a union of the

first and second domains.];;
6 + *);

Listing 24. Definitional domain of nrel_inclusion

Step 5. Specify properties of relation
Describe the properties of the relation to clarify its

nature (listing 25).
nrel_inclusion.scs

1 nrel_inclusion
2 // information, specified above

...
3 + <- concept_reflexive_relation

(*
4 + => nrel_comment:
5 + [Inherits reflexivity:

∀S(S ⊆ S)];;
6 + *);
7 + <- concept_antisymmetric

_relation (*
8 + => nrel_comment:
9 + [Inherits antisymmetry:

(A ⊆ B ∧B ⊆ A) ⇒ A = B];;
10 + *);
11 + <- concept_transitive_relation

(*
12 + => nrel_comment:
13 + [Inherits transitivity:

(A ⊆ B ∧B ⊆ C) ⇒ A ⊆ C
enabling hierarchy chains];;

14 + *);

Listing 25. Properties of nrel_inclusion

Step 6. Specify examples of connectivity of relation
Describe a examples of a connectivity of the specified

relation to illustrate its use (listing 26).
nrel_inclusion.scs

1 nrel_inclusion
2 // information, specified above

...
3 + -> (concept_countable_set =>

concept_finite_set) (*
4 + => nrel_comment:
5 + [Hierarchy:

FinSet ⊆ CountableSet ⊆ Set];;
6 + *);
7 + -> (concept_set => concept_set

);
8 + -> (concept_finite_set =>

concept_empty_set) (*
9 + => nrel_comment:
10 + [∅ ⊆ S ∀S ∈ Set];;
11 + *);;

Listing 26. Examples of connectivities of nrel_inclusion

IX. Step-by-step guides to developing and using
problem solver within the OSTIS Technology

A. About problem solver of ostis-system
While the knowledge base provides the semantic foun-

dation through SC-code ontologies, the problem solver
implements actionable logic via sc-agents that interact
dynamically with this knowledge.

161

B. Guide to developing and using platform-dependent
agent of problem solver in C++ within the OSTIS Tech-
nology

General algorithm
All agents in C++ represent some classes in C++. To

implement an agent in C++, the following common steps
are performed:
1) Write input (initial) construction and output (result)

construction of the future agent in SC-code.
2) Create folder with source and header files for sc-

agent implementation.
3) Write CMakeLists.txt file. CMake is used to

build projects in C++.
4) In the header file, define a class in C++ for the agent

and specify at least the class of actions that the agent
performs and its program. In such class, primary
initiation condition, initiation condition, and result
condition can also be specified.

5) In the source file, implement all declared methods
of the agent’s class. Additional methods can also be
implemented and used in an agent program. All C++
and OOP tools can be used as much as possible.

6) Create file and implement class for keynodes used
by the implemented agent.

7) Implement class for module for subscribing the
implemented agent.

8) Write tests for the implemented agent.
When research set theory applications, one common

task involves computing the power or cardinality of a
set. Consider an example of implementing an agent to
count power of a given set. This agent would be designed
to determine the number of elements within the set,
providing insights into its size and structure.

Step 1. Specify inputs and outputs of agent
The initial construction of the agent might look like

this (listing 27 and figure 2):

1 ..action
2 <- action_calculate_set_power;
3 <- action_initiated;
4 -> rrel_1: ..some_set;;
5

6 ..some_set
7 -> ..element_1;
8 -> ..element_2;
9 -> ..element_3;;

Listing 27. Initial sc-construction for agent in SCs-code

The result sc-construction of the agent might look like
this (listing 28 and figure 3):

1 ..some_action
2 => nrel_result: [*
3 ..some_set => nrel_set_power:

[3];;
4 *];;

Figure 2. Initial sc-construction for agent in SCg-code

Listing 28. Result sc-construction for agent in SCs-code

Figure 3. Result sc-construction for agent in SCg-code

In addition to agents that initiate actions themselves
and then perform these actions, there is a need to imple-
ment agents that perform actions initiated by other agents.
For this class of agents, it is much easier to generate an
initial initiation construction in the knowledge base.

Step 2. Create folder with source and header files for
agent

Create folder for agent implementation (listings 29, 30
and 31).

1 problem-solver/
2 |-- set-agents-module/
3 |-- CMakeLists.txt

Listing 29. Problem solver directory structure

1 set-agents-module/
2 |-- agent/
3 | |-- sc_agent_calculate_set

_power.hpp
4 | |-- sc_agent_calculate_set

_power.cpp
5 |-- CMakeLists.txt

Listing 30. Agent module directory structure

162

CMakeLists.txt

1 add_subdirectory(${
CMAKE_CURRENT_SOURCE_DIR}/set
-agents-module)

Listing 31. CMake build configuration for problem solver

Step 3. Write CMakeLists.txt file
The CMakeLists.txt file should describe a pro-

cess of building the agent code (listing 32). It should
contain various instructions and parameters needed to
compile and link agent source code to sc-machine li-
braries.

CMakeLists.txt

1 # Find all files with the
extensions .cpp and .hpp in
the current directory and the
agent subdirectory.

2 file(GLOB SOURCES
CONFIGURE_DEPENDS

3 "*.cpp" "*.hpp"
4 "agent/*.cpp" "agent/*.hpp"
5)
6

7 # Create a dynamic library
called set-agents.

8 add_library(set-agents SHARED ${
SOURCES})

9 # Add a public dependency on the
sc-memory library from the

sc-machine package.
10 target_link_libraries(set-agents

LINK_PUBLIC sc-machine::sc-
memory)

11 # Add the current source
directory to the list of
paths for header file lookup.

12 target_include_directories(set-
agents PRIVATE ${
CMAKE_CURRENT_SOURCE_DIR})

13 # Set properties for the set-
agents target.

14 set_target_properties(set-agents
15 # Specify the output

directory for the
compiled library.

16 PROPERTIES
17 LIBRARY_OUTPUT_DIRECTORY
18 ${SC_EXTENSIONS_DIRECTORY}
19)

Listing 32. CMake build configuration for agent module

LIBRARY_OUTPUT_DIRECTORY property should
be set only for libraries that represent modules with
agents.

CMAKE_OUTPUT_LIBRARY_DIRECTORY can be
set instead of setting LIBRARY_OUTPUT_DIRECTORY
property for each extension.
SC_EXTENSIONS_DIRECTORY variable should

have path to the directory with extensions for the sc-
machine. After building the module with the agent, this
directory path should be specified via -extensions
when starting the sc-machine to load the implemented
module with the agent.

Step 4. Define an agent class in C++
Define a class in C++ for the agent and specifies the

class of actions that the agent performs and its program
(listing 33).

sc_agent_calculate_set_power.hpp
1 #pragma once
2

3 #include <sc-memory/sc_agent.hpp
>

4

5 class ScAgentCalculateSetPower :
public

ScActionInitiatedAgent
6 {
7 public:
8 ScAddr GetActionClass() const

override;
9

10 ScResult DoProgram(ScAction &
action) override;

11 };

Listing 33. Agent class header definition

An agent’s class to be implemented must comply with
the following requirements:

• It must inherit one of the common classes for
implementing agents:
– template <class TScEvent> class
ScAgent,

– or class ScActionInitiatedAgent.
The base class ScAgent contains API to imple-
ment agents that react to any sc-events. The base
class ScActionInitiatedAgent inherits base
class ScAgent and provides API to implement
agents that react to sc-events of initiating sc-action.

• It must override at least methods ScAddr
GetAction() const and ScResult
DoProgram(ScActionInitiatedEvent
const & event, ScAction & action).

• Override methods must be public. Otherwise, the
code cannot be built because the sc-machine won’t
be able to call methods on the agent class.

• Other methods can be implemented in the agent’s
class.

To learn more about opportunities and restrictions for
implementing agents, see [37].

163

Step 5. Implement all declared methods
Implement all declared methods of the agent’s class

(listing 34).
sc_agent_calculate_set_power.cpp

1 #include "
sc_agent_calculate_set_power.
hpp"

2

3 #include <sc-memory/
sc_memory_headers.hpp>

4

5 ScAddr ScAgentCalculateSetPower::
GetActionClass() const

6 {
7 return m_context.

SearchElementBySystem
Identifier("
action_calculate_set_power")
;

8 // Must make sure that this
class is in the knowledge
base.

9 }
10 // Must specify valid action

class. In other case, the
agent cannot be

11 // subscribed to sc-event.
12

13 ScResult ScAgentCalculateSetPower
::DoProgram(ScAction & action)

14 {
15 // ‘ScAction‘ class

encapsulates information
about sc-action.

16 // The provided action is
action that the given agent
performs right now.

17 // It belongs to class
action_calculate_set_power‘.

18 // Actions are copyable and
movable. ScAction is
inherited from ScAddr.

19

20 auto const & [setAddr] = action
.GetArguments<1>();

21 // This method finds
construction ‘action ->
rrel_1: setAddr‘.

22 // Here the 1 is number of
arguments which action must
have. In step 1, an action
should have a set as its the
first and only one argument
was specified. But the one

who calls this agent may not

specify argument for the
action. So need to check
that the action has argument
.

23 if (!m_context.IsElement(
setAddr))

24 {
25 m_logger.Error("Action does

not have argument.");
26 // output: "

ScAgentCalculateSetPower:
Action does not have
argument."

27 return action.FinishWithError
();

28 }
29 // There may be a situation

where someone is trying to
specify a number of
arguments more than needed.
This can also be checked by
specifying, for example,
number 2 instead of number
1. But it’s not always
necessary to do this.

30

31 // To calculate power of the
set, all accessory constant
positive permanents arcs
from the set can be
traversed and count number
of these arcs. But, in any
problem, the presence of NON
-factors must be considered,
but this is omitted here.

32 uint32_t setPower = 0;
33 ScIterator3Ptr const it3 =

m_context.CreateIterator3(
34 setAddr,
35 ScType::ConstPermPosArc,
36 ScType::ConstNode
37);
38 while (it3->Next())
39 ++setPower;
40

41 ScAddr const & setPowerAddr =
m_context.GenerateLink(
ScType::ConstNodeLink);

42 m_context.SetLinkContent(
setPowerAddr, setPower);

43 ScAddr const & arcCommonAddr
44 = m_context.GenerateConnector

(ScType::ConstCommonArc,
setAddr, setPowerAddr);

45 ScAddr const & nrelSetPowerAddr

164

46 = m_context.
SearchElementBySystem
Identifier("nrel_set_power
");

47 // Must make sure that this non
-role relation is in the
knowledge base.

48 ScAddr const &
membershipArcAddr =
m_context.GenerateConnector(

49 ScType::ConstPermPosArc,
nrelSetPowerAddr,
arcCommonAddr);

50

51 action.FormResult(
52 setAddr, arcCommonAddr,

setPowerAddr,
membershipArcAddr,
nrelSetPowerAddr);

53 m_logger.Debug("Set power was
counted: ", setPower, ".");

54 // At the end of the agent’s
program, one of three
methods (‘FinishSuccessfully
‘, ‘FinishUnsuccessfully‘, ‘
FinishWithError‘) must be
called to indicate that the
agent’s performing of action
is complete:

55 // - Method ‘FinishSuccessfully
‘ indicates that action was
performed by agent
successfully (sets class ‘
action_finished_successfully
‘). It means that the agent
solved specified problem.

56 // - Method ‘
FinishUnsuccessfully‘
indicates that action was
performed by agent
unsuccessfully (sets class ‘
action_finished
_unsuccessfully‘). It means
that the agent didn’t solve
specified problem.

57 // - Method ‘FinishWithError‘
indicates that action was
performed by agent with
error (sets class ‘
action_finished_with_error‘)
. It means that some
incorrect situation was
occurred in knowledge base.

58 // All these methods return
objects of ‘ScResult‘ class.

An object of ScResult
cannot be generated via
constructor, because it is
private.

59 return action.
FinishSuccessfully();

60 }

Listing 34. Agent class implementation

Step 6. Define keynodes
For each agent, key sc-elements that the agent uses

during the execution of its program can be specified.
These key sc-elements are sc-elements that the agent
does not generate, but uses in the process of search-
ing for or generating connections between entities in
knowledge base. Key sc-elements are named keynodes.
These keynodes can be found by its system identifiers
(method SearchElementBySystemIdentifier)
if they have such identifiers.
ScKeynode class can be used to define keynodes as

static objects and use them in agents. ScKeynodes
class is base class for all classes with keynodes. It
contains core keynodes, that can be used in each agent.
See [38] to learn more about keynodes.

Define keynodes class for implemented agent (listings
35, 36 and 37).

1 set-agents-module/
2 |-- agent/
3 | |-- sc_agent_calculate_set

_power.hpp
4 | |-- sc_agent_calculate_set

_power.cpp
5 +|-- keynodes/
6 +| |-- sc_set_keynodes.hpp
7 |-- CMakeLists.txt

Listing 35. Keynodes source location

CMakeLists.txt

1 file(GLOB SOURCES
CONFIGURE_DEPENDS

2 "*.cpp" "*.hpp"
3 "agent/*.cpp" "agent/*.hpp"
4 + "keynodes/*.hpp"
5)
6)

Listing 36. CMake build configuration update

sc_set_keynodes.hpp

1 #include <sc-memory/sc_keynodes.
hpp>

2

3 // This class unites keynodes
that used by agents of one
module (with one sense).

165

4 class ScSetKeynodes : public
ScKeynodes

5 {
6 public:
7 static inline ScKeynode const

action_calculate_set_power{
8 "action_calculate_set_power"

, ScType::ConstNodeClass
};

9 static inline ScKeynode const
nrel_set_power{

10 "nrel_set_power", ScType::
ConstNodeNonRole};

11 // Here the first argument in
constructor is system
identifier of sc-keynode
and the second argument is
sc-type of this sc-keynode.
If there is no sc-keynode

with such system identifier
in knowledge base, then

the one with specified sc-
type will be generated.

12 // Type of sc-keynode may not
be specified here, be
default it is ‘ScType::
ConstNode‘. But ensure that
the code will use this

keynode with type ‘ScType::
ConstNode‘ correctly.

13 };

Listing 37. Keynodes class definition

sc-keynode with empty system identifier cannot be
specified. It can be invalid.

All keynodes must be static objects. Keynodes can be
defined as static objects everywhere (not only in classes).

Inject using keynodes in agent implementation (listing
38).

sc_agent_calculate_set_power.cpp

1 #include "
sc_agent_calculate_set_power.
hpp"

2

3 #include <sc-memory/
sc_memory_headers.hpp>

4

5 + #include "keynodes/
sc_set_keynodes.hpp"

6

7 ScAddr ScAgentCalculateSetPower
::GetActionClass() const

8 {
9 - return m_context.

SearchElementBySystem

Identifier("
action_calculate_set_power");

10 + return ScKeynodes::
action_calculate_set_power;

11 }
12

13 ScResult
ScAgentCalculateSetPower::
DoProgram(ScAction & action)

14 {
15 - ScAddr const &

nrelSetPowerAddr
16 - = m_context.

SearchElementBySystem
Identifier("nrel_set_power");

17 - ScAddr const &
membershipArcAddr = m_context
.GenerateConnector(

18 ScType::ConstPermPosArc,
nrelSetPowerAddr,
arcCommonAddr);

19 + ScAddr const &
membershipArcAddr = m_context
.GenerateConnector(

20 ScType::ConstPermPosArc,
ScKeynodes::
nrel_set_power,
arcCommonAddr);

21

22 - action.FormResult(
23 - setAddr, arcCommonAddr,

setPowerAddr,
membershipArcAddr,
nrelSetPowerAddr);

24 + action.FormResult(
25 + setAddr, arcCommonAddr,

setPowerAddr,
membershipArcAddr, ScKeynodes
::nrel_set_power);

26 m_logger.Debug("Set power was
counted: ", setPower, ".");

27 return action.
FinishSuccessfully();

28 }

Listing 38. Agent class implementation

Step 7. Implement module class for agent
Someone should subscribe the agent to event. It can

be other agent, or any code at all. A class that allows sub-
scribing agents can be implemented. This class is named
sc-module. Each sc-module should subscribe agents with
common sense.

Implement module and subscribe implemented agent
to event (listings 39, 40 and 41).

1 set-agents-module/

166

2 |-- agent/
3 | |-- sc_agent_calculate_set

_power.hpp
4 | |-- sc_agent_calculate_set

_power.cpp
5 |-- keynodes/
6 | |-- sc_set_keynodes.hpp
7 +|-- sc_set_module.hpp
8 +|-- sc_set_module.cpp
9 |-- CMakeLists.txt

Listing 39. Module sources location

sc_set_module.hpp

1 #pragma once
2

3 #include <sc-memory/sc_module.
hpp>

4

5 class ScSetModule : public
ScModule

6 {
7 // Here class is empty. No

need to implement any
methods.

8 // ‘ScModule‘ class contains
all necessary API to
subscribe agents as
separate sc-module.

9 };

Listing 40. Module class definition

sc_set_module.cpp

1 #include "sc_set_module.hpp"
2

3 #include "agent/
sc_agent_calculate_set_power.
hpp"

4

5 SC_MODULE_REGISTER(ScSetModule)
6 ->Agent<

ScAgentCalculateSetPower>()
;

7 // This method pointers to
module that agent class ‘
ScAgentCalculateSetPower‘
should be subscribed to sc-
event of adding outgoing sc
-arc from sc-element ‘
action_initiated‘. It is
default parameter in this
method if an agent class
inherited from ‘
ScActionInitiatedAgent‘ is
subscribed.

8

9 // This way of subscribing
agents makes it easier to
write code.

10 // There is no need to think
about unsubscribing agents
after the system shutdown -
the module will do it all by
itself.

Listing 41. Module class implementation

If something else in the module besides
agents needs to be initialized, methods
Initialize(ScMemoryContext * context)
override; and Shutdown(ScMemoryContext *
context) override; can be overriden.

All modules functionality can be found in the [39].
Step 8. Write tests
To make sure how the agent works, it is best to

generate tests and cover in them all possible cases that
the agent has to handle. For this, create a separate file
with test cases and implement them. A good code is a
code covered by tests.

Write tests for implemented agent (listing 42, 43 and
44).

1 set-agents-module/
2 |-- agent/
3 | |-- sc_agent_calculate_set

_power.hpp
4 | |-- sc_agent_calculate_set

_power.cpp
5 |-- keynodes/
6 | |-- sc_set_keynodes.hpp
7 +|-- tests/
8 +| |-- test_sc_agent_calculate

_set_power.cpp
9 |-- sc_set_module.hpp
10 |-- sc_set_module.cpp
11 |-- CMakeLists.txt

Listing 42. Agent tests location

CMakeLists.txt

1 # code, specified above...
2

3 # Collect all files with the .
cpp extension from the tests
directory.

4 file(GLOB TEST_SOURCES
CONFIGURE_DEPENDS

5 "tests/*.cpp"
6)
7

8 # Create an executable file for
tests.

167

9 add_executable(set-agents-tests
${TEST_SOURCES})

10 # Link the tests with the agent
module library.

11 target_link_libraries(set-agents
-tests

12 LINK_PRIVATE GTest::
gtest_main

13 LINK_PRIVATE set-agents
14)
15 # Add the source directory to

the list of paths for header
file lookup.

16 target_include_directories(set-
agents-tests

17 PRIVATE ${
CMAKE_CURRENT_SOURCE_DIR}

18)
19

20 # Add tests to the project.
21 # WORKING_DIRECTORY sets the

working directory for running
tests.

22 gtest_discover_tests(set-agents-
tests

23 WORKING_DIRECTORY ${
CMAKE_CURRENT_SOURCE_DIR
}/tests

24)

Listing 43. Tests build configuration

test_sc_agent_calculate_set_power.cpp

1 // Include the header file for
testing agents

2 #include <sc-memory/test/sc_test
.hpp>

3

4 #include <sc-memory/
sc_memory_headers.hpp>

5

6 #include "agent/
sc_agent_calculate_set_power.
hpp"

7 #include "keynodes/
sc_set_keynodes.hpp"

8

9 using AgentTest = ScMemoryTest;
10

11 TEST_F(AgentTest,
AgentCalculateSetPower
FinishedSuccessfully)

12 {
13 // Register the agent in sc-

memory.

14 m_ctx->SubscribeAgent<
ScAgentCalculateSetPower>()
;

15

16 // Create an action with a
class for the agent to
execute.

17 ScAction action
18 = m_ctx->GenerateAction(

ScSetKeynodes::
action_calculate_set_power
);

19

20 // Create a set with two sc-
elements.

21 ScSet set = m_ctx->GenerateSet
();

22 ScAddr nodeAddr1 = m_ctx->
GenerateNode(ScType::
ConstNode);

23 ScAddr nodeAddr2 = m_ctx->
GenerateNode(ScType::
ConstNode);

24 set << nodeAddr1 << nodeAddr2;
25

26 // Set the created set as an
argument for the action.

27 action.SetArgument(1, set);
28

29 // Initiate and wait for the
action to complete.

30 action.InitiateAndWait();
31

32 // Verify that the action was
completed successfully.

33 EXPECT_TRUE(action.
IsFinishedSuccessfully());

34

35 // Get the result structure of
the action.

36 ScStructure structure = action
.GetResult();

37 // Verify that it contains sc-
elements.

38 EXPECT_FALSE(structure.IsEmpty
());

39

40 // Check sc-constructions in
the result structure.

41 // Verify the first three-
element construction.

42 ScIterator3Ptr it3 = m_ctx->
CreateIterator3(

43 structure, ScType::
ConstPermPosArc, ScType::

168

ConstCommonArc);
44 EXPECT_TRUE(it3->Next());
45 ScAddr arcAddr = it3->Get(2);
46

47 auto [beginAddr, linkAddr] =
m_ctx->
GetConnectorIncidentElements
(arcAddr);

48 EXPECT_EQ(beginAddr, set);
49 EXPECT_TRUE(m_ctx->

GetElementType(linkAddr).
IsLink());

50

51 // Verify that the content of
the link equals 2.

52 uint32_t setPower;
53 EXPECT_TRUE(m_ctx->

GetLinkContent(linkAddr,
setPower));

54 EXPECT_EQ(setPower, 2u);
55

56 // Verify the second three-
element construction.

57 it3 = m_ctx->CreateIterator3(
58 structure, ScType::

ConstPermPosArc, ScType::
ConstPermPosArc);

59 EXPECT_TRUE(it3->Next());
60 ScAddr arcAddr2 = it3->Get(2);
61

62 auto [relationAddr,
targetArcAddr] = m_ctx->
GetConnectorIncidentElements
(arcAddr2);

63 EXPECT_EQ(relationAddr,
ScSetKeynodes::
nrel_set_power);

64 EXPECT_EQ(targetArcAddr,
arcAddr);

65

66 // Unregister the agent from
sc-memory.

67 m_ctx->UnsubscribeAgent<
ScAgentCalculateSetPower>()
;

68 }
69

70 // Provide tests for
unsuccessful and error
situations.

71 // ...

Listing 44. Agent tests implementation

ScMemoryTest class includes m_ctx that is object
of ScAgentContext class. You can use it to work

with sc-memory. See [40] and [41] to learn more about
available methods for working with sc-memory.

Step 9. Build problem solver
Build it using CMake (listing 45).

1 cmake --preset release-conan
2 cmake --build --preset release

Listing 45. Build problem solver

These commands use CMake to build the C++ prob-
lem solver in Release mode. The -preset option
specifies a pre-configured build setup.

Step 10. Run sc-machine

1 ./sc-machine/bin/sc-machine -s
kb.bin -e "sc-machine/lib/
extensions;scp-machine/lib/
extensions;build/Release/lib/
extensions"

Listing 46. Run sc-machine

It starts the sc-machine, loading the knowledge base
(kb.bin) and specifying the paths to the extensions.

To stop the running server, press Ctrl+C in the
terminal where sc-machine is running.

X. Step-by-step guide to using web user interface
within the OSTIS Technology

A. About sc-web

sc-web [42] is an intelligent user interface that serves
as the primary web component of the OSTIS Technol-
ogy. It provides a universal rendering mechanism for
semantic interfaces defined within knowledge bases and
is included as part of the OSTIS Platform.

B. Quick start with Docker

To quickly deploy sc-web, use the official Docker
image (listing 47). It allows to connect the user interface
to a running sc-machine server either locally or remotely.

1 # Connect to a remote sc-machine
server

2 docker run --rm -it -p 8000:8000
ostis/sc-web:latest --

server_host=<server-ip>
3

4 # Connect to a local sc-machine
instance

5 docker run --rm -it --network=
host ostis/sc-web:latest

Listing 47. Run sc-web with Docker

After starting, the web interface will be available at
http://localhost:8000.

169

C. Manual installation
Step 1. Clone repository
Clone sc-web repository (listing 48).

1 git clone https://github.com/
ostis-ai/sc-web --recursive

2 cd sc-web

Listing 48. Clone sc-web repository

Step 2. Install dependencies
For Ubuntu/macOS, install Node.js dependencies (list-

ing 49) and Python dependencies (listing 50).

1 ./scripts/install_dependencies.
sh

2 nvm use 16
3 npm install

Listing 49. Install Node.js dependencies

1 python3 -m venv .venv
2 source .venv/bin/activate
3 pip3 install -r requirements.txt

Listing 50. Install Python dependencies

Otherwise, ensure the following are installed:
• python3,
• pip,
• nodejs,
• npm,
• grunt-cli, and Python modules (tornado,
sqlalchemy, numpy, configparser,
py-sc-client).

Step 3. Build frontend
Build frontend of sc-web (listing 51).

1 npm run build

Listing 51. Build frontend

Step 4. Run backend server
Ensure sc-machine is running. Then start the backend

(listing 52).

1 source .venv/bin/activate
2 python3 server/app.py

Listing 52. Run backend server

The user interface will be accessible at
http://localhost:8000.
To stop the running server, press Ctrl+C in the

terminal where sc-web is running.

XI. Contributing and engaging with OSTIS Community
Active participation in the OSTIS Community acceler-

ates knowledge sharing, troubleshooting, and collabora-
tive advancement of the technology. Developers are en-
couraged to contribute, seek support, and stay informed
about ongoing updates and events.

Join OSTIS Community by research these opportuni-
ties:
1) Join Element Chat – OSTIS Tech Support [43]. En-

gage in real-time discussions, seek technical support,
and collaborate with peers through the dedicated
OSTIS Tech Support room.

2) Explore GitHub Repositories [8]. Contribute to the
ongoing development of OSTIS Technology by ac-
cessing source code, submitting issues, and propos-
ing enhancements via the official GitHub reposito-
ries. Use GitHub’s issue tracker if you encounter
issues or have suggestions.

3) Attend OSTIS Conference [44]. Participate in the
annual OSTIS Conference, which brings together
academics, industry professionals, and students to
present research, share experiences, and initiate col-
laborative projects. The conference is open to all
interested parties.

The OSTIS Community actively promotes community-
engaged research practices, emphasizing the importance
of trust-building, transparent role definition, and shared
vision among stakeholders. The annual OSTIS Confer-
ence exemplifies this approach by providing a venue
for presenting peer-reviewed research, networking, and
forming new partnerships across academia and industry

XII. Development directions of the OSTIS Project
The OSTIS Project is evolving along several strategic

directions aimed at advancing the theory, technology,
and practical application of intelligent systems. The main
development domains are as follows:

• formalization and continuous refinement of the OS-
TIS Standard;

• development of the OSTIS Metasystem for intelligent
project management and knowledge support;

• development of applied intelligent systems for au-
tomation and decision support;

• development of platform and tools for scalable in-
telligent system implementation;

• formation of a global OSTIS Ecosystem for knowl-
edge exchange and collaboration;

• development of educational programs and training
materials;

• maintenance of up-to-date documentation and a
centralized knowledge portal.

These directions collectively aim to ensure the sustain-
able evolution of OSTIS Technology as a comprehensive,
open, and interoperable technology for intelligent sys-
tems, supporting both foundational research and practical
applications in diverse fields.

XIII. Conclusion
The OSTIS Technology provides a practical and modu-

lar framework for building semantically compatible intel-
ligent systems. The approach centers on clear ontological

170

https://app.element.io/#/room/
https://github.com/ostis-ai
http://conf.ostis.net/en/ostis-conference/

structuring, use of SC-code for knowledge representation,
and a multi-agent architecture for problem solving.

The step-by-step methodology – defining project struc-
ture, configuring dependencies, formalizing knowledge
bases, and implementing agents – enables fast prototyp-
ing and easy extension of intelligent systems. OSTIS’s
plug-and-play integration, platform independence, and
reflexivity make it suitable for scalable and maintainable
solutions in research and industry.

The provided workflows ensure that developers can
quickly assemble, verify, and expand their systems, focus-
ing on real tasks rather than boilerplate or infrastructure
issues.

Acknowledgment
The authors would like to thank the scientific team

of the Department of Intelligent Information Technolo-
gies at the Belarusian State University of Informatics
and Radioelectronics for their assistance and valuable
comments.

This work was carried out with financial support from
the Belarusian Republican Foundation for Fundamental
Research (contract with BRFFR № F24MV-011 from
15.04.2024).

References
[1] S. A. Titov and N. V. Titova, “Otkrytyj proekt kak osobyj tip

proektov [open source project as a special type of project],”
Fundamental’nye issledovanija [Fundamental research], no.
9-2, pp. 384–388, 2015, in Russian. [Online]. Available:
https://fundamental-research.ru/ru/article/view?id=39112

[2] A Guide to the Project Management Body of Knowledge (PMBOK
Guide) – Seventh Edition and The Standard for Project Manage-
ment. Project Management Institute, 2021.

[3] Putevoditel’ po osnovnym ponjatijam i shemam metodologii
Organizacii, Rukovodstva i Upravlenija: Hrestomatija po rabotam
G.P. Shhedrovickogo [Guide to the Basic Concepts and Schemes
of the Methodology of Organization, Management and Control:
Anthology of the Works of G.P. Shchedrovitsky]. Moskow:
Delo, 2004, in Russian. [Online]. Available: https://pqm-
online.com/assets/files/lib/books/zinchenko.pdf

[4] V. V. Golenkov, N. A. Gulyakina, and D. V. Shunkevich, Open
Technology of Ontological Design, Production and Operation of
Semantically Compatible Hybrid Intelligent Computer Systems.
Minsk: Bestprint, 2021.

[5] V. V. Golenkov and N. A. Gulyakina, “Open project aimed at
creating a technology for component-based design of intelligent
systems,” in Open Semantic Technologies for Intelligent Systems
(OSTIS-2013): Proceedings of the 3rd International Scientific
and Technical Conference, Minsk, February 21-23, 2013, V. V.
Golenkov, Ed. Minsk: BSUIR, 2013, pp. 55–78. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/4150/1/
Golenkov_Otkrytiy.PDF

[6] OSTIS-AI, “OSTIS-AI: Open Semantic Technology for Intelligent
Systems,” 2025, accessed: 15.03.2025. [Online]. Available:
https://ostis-ai.github.io

[7] V. V. Golenkov, N. A. Gulyakina, V. P. Ivashenko, and
D. V. Shunkevich, “Intelligent computer systems of new
generation and complex technology of their development,
application and modernization,” Doklady BSUIR, vol. 22,
no. 2, pp. 70–79, 2024, in Russian. [Online]. Available:
https://doklady.bsuir.by/jour/article/view/3906/1994

[8] OSTIS-AI, “OSTIS Project: Open Semantic Technology for
Intelligent Systems,” 2025, accessed: 15.03.2025. [Online].
Available: https://github.com/ostis-ai

[9] ——, “OSTIS Platform for Intelligent Systems,” 2025, accessed:
15.03.2025. [Online]. Available: https://github.com/ostis-ai/ostis-
web-platform

[10] N. Zotov, “Design principles, structure, and development
prospects of the software platform of ostis-systems,” in Open
Semantic Technologies for Intelligent Systems: Research Papers
Collection, vol. 7. Minsk: BSUIR, 2023, pp. 67–76. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/51247/1/
Zotov_Design.pdf

[11] OSTIS-AI, “OSTIS Metasystem,” 2025, accessed: 15.03.2025.
[Online]. Available: https://github.com/ostis-ai/ostis-metasystem

[12] ——, “OSTIS Metasystem Documentation,” 2025, accessed:
15.03.2025. [Online]. Available: https://ostis-ai.github.io/ostis-
metasystem/

[13] K. Bantsevich, “Metasystem of the ostis technology and
the standard of the ostis technology,” in Open Semantic
Technologies for Intelligent Systems: Research Papers Collection,
vol. 6. Minsk: BSUIR, 2022, pp. 357–368. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/49330/1/
Bantsevich_Metasystem.pdf

[14] OSTIS-APPS, “Example Application for OSTIS Technology,”
2025, accessed: 15.03.2025. [Online]. Available: https://github.
com/ostis-apps/ostis-example-app

[15] V. V. Golenkov, N. A. Gulyakina, I. T. Davydenko, D. V.
Shunkevich, and A. P. Eremeev, “Ontological design of
hybrid semantically compatible intelligent systems based
on semantic representation of knowledge,” Ontology of
Designing, vol. 9, no. 1(31), pp. 132–151, 2019. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/37841/1/
Golenkov_Ontologicheskoye.pdf

[16] V. V. Golenkov, N. A. Guliakina, and D. V. Shunkevich,
“Methodological problems and strategic goals of the work
on creation of the theory and technology of new generation
intelligent computer systems,” Digital Transformation, vol. 30,
no. 1, pp. 40–51, 2024. [Online]. Available: https://dt.bsuir.by/
jour/article/view/819/308

[17] V. Ivashenko, “Towards the theory of semantic space,” in Open
Semantic Technologies for Intelligent Systems: Research Papers
Collection, vol. 8. Minsk: BSUIR, 2024, pp. 29–42. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/55571/1/
Towards_the_Theory.pdf

[18] V. V. Golenkov, N. A. Gulyakina, I. T. Davydenko, and
A. P. Eremeev, “Methods and tools for ensuring compatibility of
computer systems,” in Open Semantic Technologies for Intelligent
Systems (OSTIS-2019): Proceedings of the International Scientific
and Technical Conference, Minsk, February 21-23, 2019. BSUIR,
2019, pp. 25–52. [Online]. Available: https://libeldoc.bsuir.by/
bitstream/123456789/34574/1/Golenkov_Methods.PDF

[19] M. Orlov, “Control tools for reusable components of
intelligent computer systems of a new generation,” in Open
Semantic Technologies for Intelligent Systems: Collection of
Scientific Papers, vol. 7. Minsk: BSUIR, 2023, pp. 191–
206. [Online]. Available: https://proc.ostis.net/proc/Proceedings%
20OSTIS-2023.pdf#page=191

[20] ——, “Comprehensive library of reusable semantically
compatible components of next-generation intelligent computer
systems,” in Open Semantic Technologies for Intelligent Systems:
Research Papers Collection, vol. 6. Minsk: BSUIR, 2022, pp.
261–272. [Online]. Available: https://libeldoc.bsuir.by/bitstream/
123456789/49369/1/Orlov_Comprehensive.pdf

[21] V. Ivashenko, “General-purpose semantic representation language
and semantic space,” in Open Semantic Technologies for
Intelligent Systems (OSTIS-2022): Collection of Scientific
Papers, vol. 6. Minsk: BSUIR, 2022, pp. 41–64. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/49363/1/
Ivashenko_General-purpose.pdf

[22] N. Zotov, “Software platform for next-generation intelligent
computer systems,” in Open Semantic Technologies for Intelligent
Systems: Research Papers Collection, vol. 6. Minsk: BSUIR,
2022, pp. 297–326. [Online]. Available: https://libeldoc.bsuir.by/
bitstream/123456789/49395/1/Zotov_Software.pdf

[23] V. V. Golenkov, D. V. Shunkevich, N. A. Gulyakina, V. P.
Ivashenko, and V. A. Zahariev, “Associative semantic computers

171

https://fundamental-research.ru/ru/article/view?id=39112
https://pqm-online.com/assets/files/lib/books/zinchenko.pdf
https://pqm-online.com/assets/files/lib/books/zinchenko.pdf
https://libeldoc.bsuir.by/bitstream/123456789/4150/1/Golenkov_Otkrytiy.PDF
https://libeldoc.bsuir.by/bitstream/123456789/4150/1/Golenkov_Otkrytiy.PDF
https://ostis-ai.github.io
https://doklady.bsuir.by/jour/article/view/3906/1994
https://github.com/ostis-ai
https://github.com/ostis-ai/ostis-web-platform
https://github.com/ostis-ai/ostis-web-platform
https://libeldoc.bsuir.by/bitstream/123456789/51247/1/Zotov_Design.pdf
https://libeldoc.bsuir.by/bitstream/123456789/51247/1/Zotov_Design.pdf
https://github.com/ostis-ai/ostis-metasystem
https://ostis-ai.github.io/ostis-metasystem/
https://ostis-ai.github.io/ostis-metasystem/
https://libeldoc.bsuir.by/bitstream/123456789/49330/1/Bantsevich_Metasystem.pdf
https://libeldoc.bsuir.by/bitstream/123456789/49330/1/Bantsevich_Metasystem.pdf
https://github.com/ostis-apps/ostis-example-app
https://github.com/ostis-apps/ostis-example-app
https://libeldoc.bsuir.by/bitstream/123456789/37841/1/Golenkov_Ontologicheskoye.pdf
https://libeldoc.bsuir.by/bitstream/123456789/37841/1/Golenkov_Ontologicheskoye.pdf
https://dt.bsuir.by/jour/article/view/819/308
https://dt.bsuir.by/jour/article/view/819/308
https://libeldoc.bsuir.by/bitstream/123456789/55571/1/Towards_the_Theory.pdf
https://libeldoc.bsuir.by/bitstream/123456789/55571/1/Towards_the_Theory.pdf
https://libeldoc.bsuir.by/bitstream/123456789/34574/1/Golenkov_Methods.PDF
https://libeldoc.bsuir.by/bitstream/123456789/34574/1/Golenkov_Methods.PDF
https://proc.ostis.net/proc/Proceedings%20OSTIS-2023.pdf#page=191
https://proc.ostis.net/proc/Proceedings%20OSTIS-2023.pdf#page=191
https://libeldoc.bsuir.by/bitstream/123456789/49369/1/Orlov_Comprehensive.pdf
https://libeldoc.bsuir.by/bitstream/123456789/49369/1/Orlov_Comprehensive.pdf
https://libeldoc.bsuir.by/bitstream/123456789/49363/1/Ivashenko_General-purpose.pdf
https://libeldoc.bsuir.by/bitstream/123456789/49363/1/Ivashenko_General-purpose.pdf
https://libeldoc.bsuir.by/bitstream/123456789/49395/1/Zotov_Software.pdf
https://libeldoc.bsuir.by/bitstream/123456789/49395/1/Zotov_Software.pdf

for intelligent computer systems of a new generation,” in
Open Semantic Technologies for Intelligent Systems: Research
Papers Collection, vol. 7. Minsk: BSUIR, 2023, pp. 39–
60. [Online]. Available: https://proc.ostis.net/proc/Proceedings%
20OSTIS-2023.pdf#page=39

[24] K. Bantsevich, “Structure of knowledge bases of next-
generation intelligent computer systems: A hierarchical system
of subject domains and their corresponding ontologies,” in Open
Semantic Technologies for Intelligent Systems: Research Papers
Collection, vol. 6. Minsk: BSUIR, 2022, pp. 87–98. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/49331/1/
Bantsevich_Structure.pdf

[25] N. Zotov, T. Khodosov, M. Ostrov, A. Poznyak, I. Romanchuk,
K. Rublevskaya, B. Semchenko, D. Sergievich, A. Titov, and
F. Sharou, “OSTIS Glossary — the Tool to Ensure Consistent and
Compatible Activity for the Development of the New Generation
Intelligent Systems,” in Open Semantic Technologies for
Intelligent Systems: Research Papers Collection, vol. 8. Minsk:
BSUIR, 2024, pp. 127–148. [Online]. Available: https://libeldoc.
bsuir.by/bitstream/123456789/55565/1/OSTIS_Glossary.pdf

[26] D. Shunkevich, “Principles of problem solving in distributed
teams of intelligent computer systems of a new generation,”
in Open Semantic Technologies for Intelligent Systems (OSTIS):
Collection of Scientific Papers, V. V. Golenkov et al.,
Eds., vol. 7. Minsk: BSUIR, 2023, pp. 115–120. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/51252/1/
Shunkevich_Principles.pdf

[27] M. Sadouski, P. Nasevich, M. Orlov, and A. Zhmyrko, “Adaptive
user interfaces for intelligent systems: Unlocking the potential of
human-system interaction,” in Open Semantic Technologies for
Intelligent Systems: Research Papers Collection, vol. 8. Minsk:
BSUIR, 2024, pp. 79–86. [Online]. Available: https://libeldoc.
bsuir.by/bitstream/123456789/55532/1/Adaptive_User.pdf

[28] S. Chacon and B. Straub, “Pro Git Book: 1.5 Getting Started -
Installing Git,” 2025, accessed: 15.03.2025. [Online]. Available:
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

[29] Docker, Inc., “Get Started with Docker,” 2025, accessed:
15.03.2025. [Online]. Available: https://www.docker.com/get-
started/

[30] OSTIS-AI, “sc-machine: Software implementation of semantic
memory and its APIs,” 2025, accessed: 15.03.2025. [Online].
Available: https://github.com/ostis-ai/sc-machine

[31] Conan contributors, “Conan: C and C++ Open Source Package
Manager,” 2025, accessed: 15.03.2025. [Online]. Available:
https://conan.io

[32] Kitware, Inc., “CMake: Cross-Platform Make,” 2025, accessed:
15.03.2025. [Online]. Available: https://cmake.org

[33] pipx contributors, “pipx Installation Guide,” 2025, accessed:
15.03.2025. [Online]. Available: https://pipx.pypa.io/stable/
installation/

[34] OSTIS-AI, “OSTIS AI Library Conan Repository,” 2025,
accessed: 15.03.2025. [Online]. Available: https://conan.ostis.net/
artifactory/api/conan/ostis-ai-library

[35] ——, “scp-machine: Software implementation of semantic
network program interpreter,” 2025, accessed: 15.03.2025.
[Online]. Available: https://github.com/ostis-ai/scp-machine

[36] N. Zotov, “An ontology-based approach as foundation for mul-
tidisciplinary synthesis in modern science,” in Topical Issues
of Economics and Information Technologies: Proceedings of the
60th Anniversary Scientific Conference of Postgraduates, Master’s
Degree Students and Students of BSUIR, Minsk, April 22–26,
2024. Minsk: BSUIR, 2024, pp. 745–747.

[37] OSTIS-AI, “C++ Agents API for sc-machine,” https://ostis-
ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/
agents/, 2025, accessed: 15.03.2025.

[38] ——, “C++ Keynodes API for sc-machine,” 2025, accessed:
15.03.2025. [Online]. Available: https://ostis-ai.github.io/sc-
machine/sc-memory/api/cpp/extended/agents/keynodes/

[39] ——, “C++ Modules API for Agent Management
in sc-machine,” 2025, accessed: 15.03.2025. [Online].
Available: https://ostis-ai.github.io/sc-machine/sc-memory/api/
cpp/extended/agents/modules/

[40] ——, “C++ Core API for sc-memory in sc-machine,” 2025,
accessed: 15.03.2025. [Online]. Available: https://ostis-ai.github.
io/sc-machine/sc-memory/api/cpp/core/api/

[41] ——, “C++ Agent Context API for sc-machine,” 2025, accessed:
15.03.2025. [Online]. Available: https://ostis-ai.github.io/sc-
machine/sc-memory/api/cpp/extended/agents/agent_context/

[42] ——, “sc-web: Web oriented sc-models interpreter,” 2025,
accessed: 15.03.2025. [Online]. Available: https://github.com/
ostis-ai/sc-web

[43] OSTIS Project, “OSTIS Technology Support Chat (Ma-
trix),” https://app.element.io/#/room/#ostis_tech_support:matrix.
org, 2025, official technical support chat for OSTIS Technology
on Matrix/Element.

[44] OSTIS Conference Organizing Committee, “International Scien-
tific and Technical Conference “Open Semantic Technologies
for Intelligent Systems” (OSTIS),” http://conf.ostis.net/en/ostis-
conference/, 2025, Annual international conference on open se-
mantic technologies for intelligent systems.

ПРИНЦИПЫ АВТОМАТИЗАЦИИ РАЗРАБОТКИ
ОТКРЫТЫХ ПРОЕКТОВ НА ОСНОВЕ

ЭКОСИСТЕМЫ ИНТЕЛЛЕКТУАЛЬНЫХ
КОМПЬЮТЕРНЫХ СИСТЕМ НОВОГО

ПОКОЛЕНИЯ
Гракова Н. В., Зотов Н. В.,

Орлов М. К., Петрочук К. Д., Банцевич К. А.

Статья предназначена для исследователей, разра-
ботчиков и практиков в области искусственного ин-
теллекта, инженерии знаний и проектирования интел-
лектуальных систем, которые стремятся создавать, рас-
ширять или интегрировать семантически совместимые
интеллектуальные системы.

Данная статья особенно актуальна для тех, кто
интересуется:

• разработкой модульных, повторно используемых
и совместимых интеллектуальных систем с ис-
пользованием технологий с открытым исходным
кодом;

• применением формальных онтологических мето-
дов и SC-кода для представления знаний и рас-
суждений;

• реализацией многоагентных решателей проблем и
их интеграцией с семантическими базами знаний;

• использованием технологии OSTIS для образова-
тельных, исследовательских или промышленных
приложений, требующих адаптивности, масшта-
бируемости и семантической совместимости;

• изучением практических рабочих процессов,
включая установку, настройку и тестирование,
с помощью реальных примеров, таких как ostis-
example-app.

Представленное в статье руководство предполага-
ет базовое знакомство с понятиями искусственного
интеллекта, онтологий и разработки программного
обеспечения, но предоставляет подробные пошаговые
инструкции, подходящие как для новичков, так и для
опытных специалистов в этой области.

Received 13.03.2025

172

https://proc.ostis.net/proc/Proceedings%20OSTIS-2023.pdf#page=39
https://proc.ostis.net/proc/Proceedings%20OSTIS-2023.pdf#page=39
https://libeldoc.bsuir.by/bitstream/123456789/49331/1/Bantsevich_Structure.pdf
https://libeldoc.bsuir.by/bitstream/123456789/49331/1/Bantsevich_Structure.pdf
https://libeldoc.bsuir.by/bitstream/123456789/55565/1/OSTIS_Glossary.pdf
https://libeldoc.bsuir.by/bitstream/123456789/55565/1/OSTIS_Glossary.pdf
https://libeldoc.bsuir.by/bitstream/123456789/51252/1/Shunkevich_Principles.pdf
https://libeldoc.bsuir.by/bitstream/123456789/51252/1/Shunkevich_Principles.pdf
https://libeldoc.bsuir.by/bitstream/123456789/55532/1/Adaptive_User.pdf
https://libeldoc.bsuir.by/bitstream/123456789/55532/1/Adaptive_User.pdf
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.docker.com/get-started/
https://www.docker.com/get-started/
https://github.com/ostis-ai/sc-machine
https://conan.io
https://cmake.org
https://pipx.pypa.io/stable/installation/
https://pipx.pypa.io/stable/installation/
https://conan.ostis.net/artifactory/api/conan/ostis-ai-library
https://conan.ostis.net/artifactory/api/conan/ostis-ai-library
https://github.com/ostis-ai/scp-machine
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/agents/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/agents/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/agents/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/keynodes/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/keynodes/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/modules/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/modules/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/core/api/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/core/api/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/agent_context/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/agent_context/
https://github.com/ostis-ai/sc-web
https://github.com/ostis-ai/sc-web
https://app.element.io/#/room/#ostis_tech_support:matrix.org
https://app.element.io/#/room/#ostis_tech_support:matrix.org
http://conf.ostis.net/en/ostis-conference/
http://conf.ostis.net/en/ostis-conference/

	F:\Конференция OSTIS\2025\Сборник\05. Papers.pdf
	E:\Конференция OSTIS\2025\papers\10. OSTIS25_grakova_zotov_petrochuk.pdf

