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Abstract—Approaches to the analysis of proximity, sim-
ilarities, and differences in knowledge structures are con-
sidered for the purpose of extracting meaning from data
and knowledge. Approaches and models for representing
knowledge with operational semantics for component-based
design of intelligent systems are discussed. An ontology of
generalized measures and relations of difference and simi-
larity, including similarity relations, has been developed. A
class of pre-order scales and measures on structures with
operational semantics has been proposed, along with an
investigation of their algebraic properties. The concept of
operational-informational space has been clarified. A model
of the semantics of fuzzy temporal logic is proposed for
specifying knowledge structures with operational semantics
based on previously suggested parameterized fuzzy logic.
For the ontological structures corresponding to the obtained
results and the three levels of semantic analysis, principles
of their integration are formulated as metric subspaces of
the semantic space.
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I. Inroduction

For the new generation of intelligent systems [11], [52]
it is important to strive for convergence of knowledge
processing processes. This also applies to the processes
of logical inference, including classical and non-classical
deductive, inductive, abductive logical inference [4], etc.
One of the primary mechanisms in analysis tasks that
precede data and knowledge processing is inductive logical
inference, which is based on difference and similarity
relations [14]. In the presence of knowledge non-factors
[12], these relations are characterized by means of non-
classical logics [4], [14], [40] based on the notion of
measure [10], [15].Measures [16], as well as attributes, are
closely related to such knowledge attribute as scaling [13].
Measures are also used in the study of spatial properties

and relations and the definition of metrics [19], [20], [33],
including semantic metrics [16], [17].

II. Review
Similarity and difference relations appear in the sources

in one of the following contexts: as reflexive relations
and irreflexive relations (ij-reflexive and ij-irreflexive
relations) [21], as relations used in inductive inference
methods and mechanisms [4], in fuzzy logic [14],
as relations of formation of concepts and ontological
structures in knowledge processing processes [18], [22].
The name of relations of “similarity” and “difference”
in the second case is not quite good, more suitable
names would be “relations of conceptual confirmation”
or “relations of conceptual refutation”.

In case of presence of non-factors characteristic for the
stages of analysis of incoming data (texts) for the purpose
of analysis of their sense [23], [24], relations can be
characterized by means of attributes taking values on the
ordinal or numerical (metric) scale [16]. In this case, the
analysis can take place at several levels [24] (essentially-
systematic, relationally-phenomenological, intensionally-
logical), which correspond to their own ordinal and metric
scales. Such attributes and scales can serve as the basis
for models of topological, metric, pseudometric (etc.)
semantic spaces for ontological structures. Organization
of ontological structures into semantic spaces with the
help of scales and attributes can ensure minimization of
duplication of meanings and optimization of mechanisms
of search and knowledge processing in knowledge bases,
including logical inference.

One of the main properties of the similarity relation
is reflexivity; a similarity relation can be reflexive,
quasireflexive, left and right quasireflexive, weakly left
and right quasireflexive [36].

Among the properties of similarity relations that serve
to distinguish the corresponding subclasses of similarity
relations, the following can be identified:

symmetricity, transitivity, quasi-transitivity, left
Euclidean, right Euclidean, Euclidean, and others.
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One of the basic properties of the difference relation
is irreflexivity; the similarity relation can be irreflexive,
quasi-irreflexive, left and right quasi-irreflexive, weakly
left and right quasi-irreflexive.

Among the properties of difference relations that serve
to distinguish the corresponding subclasses of similarity
relations, the following symmetry, antitransitivity and
others can be identified.

The main classes of measures that can be
used both to characterize similarity relations and
for subsequent logical inference are: monotonicity,
subadditivity, additivity, superadditivity, submodularity,
supermodularity, modularity.

For efficient logical inference in distributed multi-
agent systems and transition from observed facts and
phenomena to rules and regularities, it is necessary tomove
from static structures to dynamic ones, from denotational
semantics to operational semantics. In this case, efficiency
can be ensured by parallel reduction of the original
task into subtasks that are distributed among agents. In
this connection, it is necessary to take into account not
only the semantics of classical logic models, but also
the operational semantics of logic models oriented to
dynamic subject areas [28], and the game semantics of
logic models [51] oriented to subject areas considering
agents’ interaction.

For the purpose of integrating different types of
operational semantics (“big” and “small step”), a model
of operational-information space [25] was proposed.

Reo Coordination Language (RCL) [26] is an example
of such a model and language, which allows to
design integrable reusable components based on a
unified semantic framework [29] with different semantics
descriptions ranging fromcategory-theoretic to logical and
semantics of probabilistic automata and automata with
constraints [27]. However, the relation of its semantics
to the semantics of “big step” is poorly described; from
the point of view of denotational semantics, RCL is also
insufficiently unified.

When analyzing, including within the semantic space,
models of knowledge processing and representation, it is
necessary to identify various attributes and measures. One
of the key measures is entropy. As for the analysis of
graph structures and their corresponding matrices, several
definitions of entropy are known: von Neumann entropy
[30], entropy of spectral values [32] and others. One of the
most general notions of entropy is the Hinchin entropy
[31]. The concept of entropy is closely related to the
notions of convergence and divergence [35], which are
closely related to the relations of similarity and difference
[33], [34].

When taking into account non-factors in logical
inference processes, including inductive, abductive and
deductive, it is required to integrate models using fuzzy
measures, relational semantics of temporal and spatio-

temporal logics [42], [43]. It is also important to take
into account the similarities and differences between the
logic models themselves and the knowledge structures in
the problems they are used to solve.

As a result of the integration of the above approaches,
their ontological models, and convergence of the
corresponding problem solving processes, a certain model
is formed that can be organized as a semantic space, i.e.,
have spatial features [46]–[50] when knowledge is scaled
[13].

To model and study the sense space [44], the paper
uses models and methods of discrete mathematics, graph
theory, and mathematical logic.

The semiotic conceptual approach [13] based on notions
(concepts) is also used. Each concept has a name (term),
a denotation (referent) and a significat.

A concept is understood as a sign that has an extension
and an intension by analogy to the formal concepts of the
analysis of formal concepts [57].

The basic thesis: the meaning of a concept is completely
determined by its signifier (extensional closure).

Structural and metric features [9], [25] that are resistant
to ontology structure changes are used in modeling
the semantic space. The model of unified knowledge
representation [6], [21], whose texts are understood
as associative, symmetric, pseudo-orgraphic generalized
formal languages [25], is used for representation.

Definition 1. An associative generalized formal
language is Λ if and only if, in its texts, there is a
generalized string of∆ symbols of length n in addition to
T symbols:

∃T∃∆∃n
(
∅ ⊂

(
(∆n ∪ T )∗ ∩ Λ

)
/ (T ∗)

)
. (1)

Definition 2. A symmetric generalized formal language
is Λ if and only if for any ∆n:

((∅ ⊂ ∆n ∩ Λ) → (∆n ⊆ Λ)) . (2)

Definition 3. A (Pseudo(or))graph generalized formal
language Λ , if and only if there exists A for any T , ∆, n:

Λ ⊆
(
A2 ∪A

)∗
;((

∅ ⊂
((
∆2 ∪ T

)n ∩ Λ
)
/ (Tn)

)
→ (∆ ⊆ T )

)
.

(3)

The approach to modeling the semantic space [6],
[44] can be referred to the theoretical-synthetic (interior)
approaches based on unification. Unification assumes that
for a set of notations N = C ∪ I (signs S ⊆ C, concepts
C and names (terms) I), there is a set of values (meanings)
E, between which correspondences are defined.

Correspondence between symbols and their meanings:

vN ⊆ N × E. (4)

Similarity relation tN , tolerance of meanings (values):

tN
def
= vN ◦

(
vN

−1
)
. (5)
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The projection of tN onto the set of concepts C is the
equivalence relation of meanings:

∼C
def
= tN ∩ (C × C) . (6)

The equivalence relation∼C forms equivalence classes
C∼C

, between which and the signs of S there is a bijection
C∼C

| ↔ |S, with (denotation function) dN
def
= vN ◦

(C × E) is an injection: S| ↔ E.
The unification is to go by the similarity relation tN ◦

(∼C ∩ (C × S)) from the N signs to the S signs.
The semantic normalization of [45] in the languages

of the knowledge representation model used assumes that
primary meanings F ⊆ 2N∪F are selected among the
meanings E ⊆ 2N∪F .

III. Generalization of the notion of measure

A. Kinds of generalized measures
Let us introduce the notion of a generalized measure.

Let us first consider the notion of an ordered commutative
monoid.

Definition 4: An ordered commutative monoid:

⟨M, {◁−,⊞}⟩ (7)

satisfies the properties:

{0M} × {0M} ⊆ ◁− ⊆M ×M ;
(a ∈M) → (a ◁− a) ;

((a ◁− b) ∧ (b ◁− a)) → (a = b) ;
((a ◁− b) ∧ (b ◁− c)) → (a ◁− c) ;

(a⊞ 0M ) = a;
(a⊞ b) = (b⊞ a) ;

((a⊞ b)⊞ c) = (a⊞ (b⊞ c)) ;
(a ∈M) → ((a ◁− 0M ) ∨ (0M ◁− a)) ;

(a ◁− b) = ((a⊞ c) ◁− (b⊞ c)) .

(8)

Definition 5. An ordered commutative monoid bounded
from above is an ordered commutative monoid satisfying
the additional property:

M × {⊤M} ⊆ ◁− ⊆M ×M. (9)

Definition 6. An ordered commutative monoid bounded
from below is an ordered commutative monoid satisfying
the additional property:

{⊥M} ×M ⊆ ◁− ⊆M ×M. (10)

Definition 7. A linearly ordered commutative monoid is
an ordered commutative monoid satisfying the additional
property:

((a ∈M) ∧ (b ∈M)) → ((a ◁− b) ∨ (b ◁− a)) . (11)

Definition 8. An ordered commutative group is an ordered
commutative monoid satisfying the additional property:

∃b (a⊞ b) = 0M . (12)

Definition 9. A forward well-ordered commutative
monoid is an ordered commutative monoid satisfying the
additional property:

(A ⊆M) →
(∃ā(((∅ ⊂ A× {ā}) ∧ (A× {ā} ⊆ ◁−))∧
((A× {a} ⊆ ◁−) → ({ā} × {a} ⊆ ◁−)))).

(13)

Definition 10. A backward well-ordered commutative
monoid is an ordered commutative monoid satisfying the
additional property:

(A ⊆M) →
(∃a(((∅ ⊂ A× {a}) ∧ (A× {a} ⊆ ◁−))∧
(({a} ×A ⊆ ◁−) → ({a} × {a} ⊆ ◁−)))).

(14)

Definition 11. Generalized measure is defined as

µ ∈MX , (15)

where M is the support of an ordered commutative
monoid.

Definition 12. A generalized measure bounded from
below is a generalized measure satisfying the additional
property:

⊥M
◁− µ (χ) . (16)

Definition 13. A generalized measure bounded from above
is a generalizedmeasure satisfying the additional property:

µ (χ) ◁− ⊤M . (17)

Definition 14. A bounded measure is a generalized
measure bounded from above and below. A special case of
a bounded measure is a finite-bounded measure.

Definition 15. A basis measure is a generalized measure
bounded from below satisfying the additional property:

∃x (µ (x) = ⊥M = 0M ) . (18)

Definition 16. Regular (normalized) measure is a (basis)
generalized measure bounded from above satisfying the
additional property:

∃x (µ (x) = ⊤M = 1M ) . (19)

Definition 17. A preorder-monotone measure is a
generalized measure such that there is a preorder (a
reflexive transitive binary relation) ⪯ for which:

(a ⪯ b) → (µ (a) ◁− µ (b)) . (20)

Given a scale ⟨⟨⟨X,Σ⟩ , ⟨Y, {ρ}⟩⟩ , σ⟩, where σ ∈ Y X ,
and ρ ⊆ Y × Y is the preorder relation (reflexive
and transitive similarity relation) characterized by the
predicate-measure π ∈MY :

π = (ρ× {1M}) ∪ (((Y × Y ) /ρ)× {0M}) . (21)

Such given scale will be called a pre-order scale.
Definition 18. Filtering ϕ is:

φ (⟨σ, ρ, χ⟩) def=
{(

(σ ◦ ρ) ◦
(
σ−1

))
(χ)

}
. (22)
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Definition 19. Nominal (λ-nominal) measure satisfies:

ψλ (⟨σ, ρ, χ⟩)
def
= |X/φ (⟨σ, ρ, χ⟩)| −

λ ∗ |φ (⟨σ, ρ, χ⟩)| .
(23)

When λ equals 0 the measure is called the mode measure,
when λ equals 1 it is called the meda measure.

Definition 20. Medium (λ-medium) measure:

µ (χ)
def
= |

∣∣φ (〈
σ,
{
π−1 (1M )

}
, χ

〉)∣∣−∣∣∣φ(〈
σ,
{
π−1 (1M )

}−1
, χ

〉)∣∣∣ |+∣∣∣ψλ

(〈
σ,
{
π−1 (1M )

}−1 ∪
{
π−1 (1M )

}
, χ

〉)∣∣∣ .
(24)

When λ equals 0, the measure is called a modian measure,
when λ equals 1, it is called a median measure.

Definition 21. The centroid (τ -centroid) of δ of measure
µ is:

δ (µ)
def
= lim

τ→ε

τ

√∑
χ∈X

(µ (χ))
τ
. (25)

Let a sigma-algebra be given.

⟨Σ, {∩,∪, }̄⟩ (26)

A measurable space (of sets) on X is also given:

⟨X, ⟨Σ, {∩,∪, }̄⟩⟩ , (27)

where Σ ⊆ 2X .
As an ordered commutative monoid we will further

consider as an ordered commutative monoid by default:

⟨R, {≤,+}⟩ . (28)

Definition 22. A monotone measure (of sets) is
a generalized measure on a measurable space
⟨X, ⟨Σ, {∩,∪, }̄⟩⟩ that satisfies the additional property:

(A ⊆ B) → (µ (A) ◁− µ (B)) . (29)

Definition 23. A monotone Sugeno measure is a monotone
measure (of sets) satisfying the additional property:

µ

(
lim
k→ω

⋃k

i=1
Ai

)
= lim

k→ω

(
µ

(⋃k

i=1
Ai

))
. (30)

Definition 24. A subadditive measure is a monotone
measure (of sets) satisfying the additional property:

µ ((A/B) ∪ (B/A)) ◁− µ (A/B)⊞ µ (B/A) . (31)

Definition 25. Superadditive measure is a monotone
measure (of sets) satisfying the additional property

µ (A/B)⊞ µ (B/A) ◁− µ ((A/B) ∪ (B/A)) . (32)

Definition 26. An additive measure is a monotone measure
(of sets) satisfying the additional property:

µ (A/B)⊞ µ (B/A) = µ ((A/B) ∪ (B/A)) . (33)

Definition 27. A submodular measure is a monotone
measure (of sets) satisfying the additional property:

µ ((A/B) ∪ (B/A))⊞ µ ((A/B) ∩ (B/A))
◁−⊞ µ (A/B)µ (B/A) .

(34)

Definition 28. A supermodular measure is a monotone
measure (of sets) satisfying the additional property:

µ (A/B)⊞ µ (B/A)
◁−µ ((A/B) ∪ (B/A))⊞ µ ((A/B) ∩ (B/A)) .

(35)

Definition 29. A modular measure is a monotone measure
(of sets) satisfying the additional property:

µ (A/B)µ⊞ (B/A) =
µ ((A/B) ∪ (B/A))⊞ µ ((A/B) ∩ (B/A)) .

(36)

Definition 30. A necessity measure is a monotone measure
(of sets) on a backward well-orderedmonoid satisfying the
following additional properties:

µ ((A/B) ∩ (B/A)) = min ({µ (A/B)} ∪ {µ (B/A)})
µ (

⋂
iAi) = inf ({µ (Ai) |i}) .

(37)
Definition 31. A possibility measure is a monotone
measure (of sets) on a forward well-ordered monoid
satisfying the additional properties:

µ ((A/B) ∪ (B/A)) = max ({µ (A/B)} ∪ {µ (B/A)})
µ (

⋃
iAi) = sup ({µ (Ai) |i}) .

(38)
Definition 32. A symmetric measure is a monotone
measure (of sets) satisfying the additional property:

(|A/B| = |B/A|) → (µ (A/B) = µ (B/A)) . (39)

B. Measures and metrics

Special kinds of measures are: pre-metric, quasi-metric,
pseudometric, metric, ultrametric, metametric, etc.

Theorem 1. Let λ ≥ 1 be a pseudometric space with
pseudometric π and a metric space with metric µ on the
set X . Then ⟨X, ρ⟩ is a metric space where

ρ (⟨χ, γ⟩) =
((
µ(⟨χ, γ⟩)λ

)
+

(
π(⟨χ, γ⟩)λ

))(λ−1)

(40)
or

ρ (⟨χ, γ⟩) = max ({µ (⟨χ, γ⟩)} ∪ {π (⟨χ, γ⟩)}) . (41)

IV. Relations of similarity and difference

V. Kinds of similarity and difference relations

Based on the introduced measures, let us consider types
(characteristic functions) of similarity and dissimilarity
relations. We will consider some types of n-ary similarity
relations, but mainly we will consider types of binary
similarity relations.

The 1-2-similarity relation is a special case of the ij-
similarity relation.

Definition 33. A right 1-2-similarity relation is an n-ary
relation satisfying:

(µ (⟨x1, x2, x3, ...xn⟩) = 1) →
(∃c ((µ (⟨c, x2, x3...xn⟩) = 1) ∧ (µ (⟨c, x1, xn..., x3⟩) = 1))) .

(42)
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Definition 34. A left 1-2-similarity relation is an n-ary
relation satisfying:

(µ (⟨x1, x2, x3, ...xn⟩) = 1) →
(∃c ((µ (⟨x1, c, x3...xn⟩) = 1) ∧ (µ (⟨x2, c, xn..., x3⟩) = 1))) .

(43)
Definition 35. A 1-2-similarity relation is a right and

left 1-2-similarity relation.
Definition 36. A total right 1-2-similarity relation is an

n-ary relation satisfying:

(⟨x1, x2, x3, ...xn⟩ ∈ Xn) →
(∃c ((µ (⟨c, x2, x3...xn⟩) = 1) ∧ (µ (⟨c, x1, xn..., x3⟩) = 1))) .

(44)
Definition 37. A total left 1-2-similarity relation is an

n-ary relation satisfying:

(⟨x1, x2, x3, ...xn⟩ ∈ Xn) →
(∃c ((µ (⟨x1, c, x3...xn⟩) = 1) ∧ (µ (⟨x2, c, xn..., x3⟩) = 1))) .

(45)
Definition 38. A total 1-2-similarity relation is an total

right and total left 1-2-similarity n-ary relation.
Obviously, a relation of (left\right) total 1-2 similarity

is a relation of (left\right) 1-2 similarity.
Example. The ternary 1-2-similarity relation is satisfied:

(µ (⟨x, y, z⟩) = 1) →
(∃c ((µ (⟨c, y, z⟩) = 1) ∧ (µ (⟨c, x, z⟩) = 1))) .

(46)

The 1-2-reflexive relation is a special case of the ij-
reflexive relation.

Definition 39. A 1-2-reflexive relation is an n-ary
relation satisfying:

(⟨x1, x2, x3, ...xn⟩ ∈ Xn) → (µ (⟨x1, x1, x3...xn⟩) = 1) .
(47)

Obviously, any 1-2-reflexive relation is a 1-2-similarity
relation.

Definition 40. A right 1-2-quasi-reflexive relation is an
n-ary relation satisfying:

(µ (⟨x1, x2, x3...xn⟩) = 1) → (µ (⟨x1, x1, x3...xn⟩) = 1) .
(48)

Definition 41. A left 1-2-quasi-reflexive relation is an
n-ary relation satisfying:

(µ (⟨x1, x2, x3...xn⟩) = 1) → (µ (⟨x2, x2, x3...xn⟩) = 1) .
(49)

Definition 42. A 1-2-quasireflexive relation is an n-ary
right and left 1-2-quasireflexive relation.

Obviously, any 1-2-reflexive relation is 1-2-quasi-
reflexive.

Definition 43. A right similarity (binary similarity
relation) is a binary relation satisfying:

(µ (⟨a, b⟩) = 1) → (∃c ((µ (⟨c, a⟩) = 1) ∧ (µ (⟨c, b⟩) = 1))) .
(50)

Definition 44. A left similarity (binary similarity
relation) is a binary relation satisfying:

(µ (⟨a, b⟩) = 1) → (∃c ((µ (⟨a, c⟩) = 1) ∧ (µ (⟨b, c⟩) = 1))) .
(51)

Definition 45. A similarity (binary similarity relation)
is a right and left similarity binary relation.

Definition 46. A total right similarity is a binary relation
satisfying:
(⟨a, b⟩ ∈ X ×X) → (∃c ((µ (⟨c, a⟩) = 1) ∧ (µ (⟨c, b⟩) = 1))) .

(52)
Definition 47. A total left similarity is a binary relation

satisfying:
(⟨a, b⟩ ∈ X ×X) → (∃c ((µ (⟨a, c⟩) = 1) ∧ (µ (⟨b, c⟩) = 1))) .

(53)
Definition 48. Total similarity is a total right and total

left similarity binary relation.
Definition 49. Right quasisimilarity is a binary relation

satisfying:
(µ (⟨a, b⟩) = 0) → (∃c ((µ (⟨c, a⟩) = 1) ∧ (µ (⟨c, b⟩) = 1))) .

(54)
Definition 50. Left quasisimilarity is a binary relation

satisfying:
(µ (⟨a, b⟩) = 0) → (∃c ((µ (⟨a, c⟩) = 1) ∧ (µ (⟨b, c⟩) = 1))) .

(55)
Definition 51.A quasi-similarity is a right and left quasi-

similarity binary relation.
A reflexive binary similarity relation will be called a

stable similarity relation, otherwise a binary similarity
relation will be called an unstable similarity relation.
similarity relations are defined below.

Quasireflexivity of binary relations, the left and right
quasireflexivity of binary relations is defined in the
standard way as a special case of 1-2-quasireflexivity.

Other useful properties of similarity and binary
relations are defined below.

Definition 52. Right antiquasireflexivity of a binary
relation:

((µ (⟨a, b⟩) = 0) ∧ (¬ (a = b))) → (µ (⟨a, a⟩) = 1).
(56)

Definition 53. Left antiquasireflexivity of a binary
relation:

((µ (⟨a, b⟩) = 0) ∧ (¬ (a = b))) → (µ (⟨b, b⟩) = 1) .
(57)

Definition 54. Antiquasireflexivity of a binary relation:

((µ (⟨a, b⟩) = 0) ∧ (¬ (a = b))) → (µ (⟨b, b⟩) = 1) .
(58)

Definition 55. Weak right quasireflexivity of a binary
relation:

((µ (⟨a, b⟩) = 0) ∧ (¬ (a = b))) →
((µ (⟨a, a⟩) = 1) ∧ (µ (⟨b, b⟩) = 1)) .

(59)

Definition 56. Weak left quasireflexivity of a binary
relation:

((µ (⟨a, b⟩) = 1) ∧ (µ (⟨b, a⟩) = 0)) → (µ (⟨b, b⟩) = 1) .
(60)

Definition 57.Weak quasireflexivity of a binary relation:

((µ (⟨a, b⟩) = 1) ∧ (µ (⟨b, a⟩) = 0)) →
((µ (⟨a, a⟩) = 1) ∧ (µ (⟨b, b⟩) = 1)) .

(61)

The symmetric stable similarity relation will be called
the convergence relation.
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The transitive stable similarity relation will be called
the resemblance relation.

Definition 58. Weak transitivity of a binary relation:

(((µ (⟨a, b⟩) = 1) ∧ (µ (⟨b, c⟩) = 1))∧
((µ (⟨c, b⟩) = 0) ∧ (µ (⟨b, a⟩) = 0))) →

(µ (⟨a, b⟩) = 1) .
(62)

Definition 59. Antiantitransitivity of a binary relation:

((µ (⟨a, b⟩) = 0) ∧ (µ (⟨b, c⟩) = 0)) → (µ (⟨a, c⟩) = 1).
(63)

Definition 60. Quasitransitivity of a binary relation:

(((µ (⟨a, b⟩) = 1) ∧ (µ (⟨b, c⟩) = 1))∧
((µ (⟨c, b⟩) = 0) ∧ (µ (⟨b, a⟩) = 0))) →
((µ (⟨a, c⟩) = 1) ∧ (µ (⟨c, a⟩) = 0)) .

(64)

Definition 61. Euclidean binary relation:

(((µ (⟨b, a⟩) = 1) ∧ (µ (⟨c, a⟩) = 1))∨
((µ (⟨a, b⟩) = 1) ∧ (µ (⟨a, c⟩) = 1))) →

(µ (⟨b, c⟩) = 1) .
(65)

Definition 62. Left Euclidean binary relation:

((µ (⟨a, b⟩) = 1) ∧ (µ (⟨a, c⟩) = 1)) → (µ (⟨b, c⟩) = 1) .
(66)

Definition 63. Right Euclidean binary relation:

((µ (⟨b, a⟩) = 1) ∧ (µ (⟨c, a⟩) = 1)) → (µ (⟨b, c⟩) = 1) .
(67)

Definition 64. Sub-Euclidean binary relation:

(((µ (⟨b, a⟩) = 1) ∧ (µ (⟨c, a⟩) = 1))∧
((µ (⟨a, b⟩) = 1) ∧ (µ (⟨a, c⟩) = 1))) → (µ (⟨b, c⟩) = 1) .

(68)
Definition 65. Quasi-Euclidean binary relation:

(((µ (⟨b, a⟩) = 1) ∧ (µ (⟨c, a⟩) = 1))∧
((µ (⟨a, b⟩) = 0) ∧ (µ (⟨a, c⟩) = 0))) →

(µ (⟨b, c⟩) = 1)
(((µ (⟨b, a⟩) = 0) ∧ (µ (⟨c, a⟩) = 0))∧
((µ (⟨a, b⟩) = 1) ∧ (µ (⟨a, c⟩) = 1))) →

(µ (⟨b, c⟩) = 1) .

(69)

Definition 66. Left quasi-Euclidean binary relation:

(((µ (⟨b, a⟩) = 1) ∧ (µ (⟨c, a⟩) = 1))∧
((µ (⟨a, b⟩) = 0) ∧ (µ (⟨a, c⟩) = 0))) →

(µ (⟨b, c⟩) = 1) .
(70)

Definition 67. Right quasi-Euclidean binary relation:

(((µ (⟨b, a⟩) = 0) ∧ (µ (⟨c, a⟩) = 0))∧
((µ (⟨a, b⟩) = 1) ∧ (µ (⟨a, c⟩) = 1))) →

(µ (⟨b, c⟩) = 1) .
(71)

Definition 68. Left antidivergence of a binary relation:

((µ (⟨a, c⟩) = 0) ∧ (µ (⟨b, c⟩) = 0)) → (µ (⟨a, b⟩) = 1) .
(72)

Definition 69. Right antidivergence of a binary relation:

((µ (⟨c, a⟩) = 0) ∧ (µ (⟨c, b⟩) = 0)) → (µ (⟨a, b⟩) = 1) .
(73)

Definition 70. Antidivergence of a binary relation:

(((µ (⟨b, a⟩) = 0) ∧ (µ (⟨c, a⟩) = 0))∨
((µ (⟨a, b⟩) = 0) ∧ (µ (⟨a, c⟩) = 0))) →

(µ (⟨b, c⟩) = 1).
(74)

Definition 71. Quasi-difference (binary quasi-difference
relation):

(µ (⟨a, b⟩) = 1) →
(∃α(∃c((α ∈ {−1, 1}) ∧ ((µ (⟨a, c⟩) + α = µ (⟨b, c⟩))∨

(µ (⟨c, a⟩) + α = µ (⟨c, b⟩)))))).
(75)

Definition 72. Total quasi-difference (total binary quasi-
difference relation):

(⟨a, b⟩ ∈ X ×X) →
(∃α(∃c((α ∈ {−1, 1}) ∧ ((µ (⟨a, c⟩) + α = µ (⟨b, c⟩))∨

(µ (⟨c, a⟩) + α = µ (⟨c, b⟩)))))).
(76)

Definition 73. Right quasi-difference:

(µ (⟨a, b⟩) = 1) →
(∃c((µ (⟨a, c⟩) = 1 + µ (⟨b, c⟩))∨
(µ (⟨b, c⟩) = 1 + µ (⟨a, c⟩)))).

(77)

Definition 74. Total right quasi-difference:

(⟨a, b⟩ ∈ X ×X) →
(∃c((µ (⟨a, c⟩) = 1 + µ (⟨b, c⟩))∨
(µ (⟨b, c⟩) = 1 + µ (⟨a, c⟩)))).

(78)

Definition 75. Left quasi-difference:

(µ (⟨a, b⟩) = 1) →
(∃c((µ (⟨c, a⟩) = 1 + µ (⟨c, b⟩))∨
(µ (⟨c, b⟩) = 1 + µ (⟨c, a⟩)))).

(79)

Definition 76. Total left quasi-difference:

(⟨a, b⟩ ∈ X ×X) →
(∃c((µ (⟨c, a⟩) = 1 + µ (⟨c, b⟩))∨
(µ (⟨c, b⟩) = 1 + µ (⟨c, a⟩)))).

(80)

Definition 77. Left and right quasi-difference:

(µ (⟨a, b⟩) = 1) →
(∃c((µ (⟨a, c⟩) = 1 + µ (⟨b, c⟩))∨
(µ (⟨b, c⟩) = 1 + µ (⟨a, c⟩))))

(µ (⟨a, b⟩) = 1) →
(∃c((µ (⟨c, a⟩) = 1 + µ (⟨c, b⟩))∨
(µ (⟨c, b⟩) = 1 + µ (⟨c, a⟩)))).

(81)

Definition 78. Total left and right quasi-difference:

(⟨a, b⟩ ∈ X ×X) →
(∃c((µ (⟨a, c⟩) = 1 + µ (⟨b, c⟩))∨
(µ (⟨b, c⟩) = 1 + µ (⟨a, c⟩))))

(⟨a, b⟩ ∈ X ×X) →
(∃c((µ (⟨c, a⟩) = 1 + µ (⟨c, b⟩))∨
(µ (⟨c, b⟩) = 1 + µ (⟨c, a⟩)))).

(82)

One of the basic properties of difference relations is
irreflexivity.
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Other useful properties of binary and difference
relations are defined below.

Definition 79. Right quasi-reflexivity:

(µ (⟨a, b⟩) = 0) → (µ (⟨a, a⟩) = 0) . (83)

Definition 80. Right antiquasi-reflexivity:

((µ (⟨a, b⟩) = 1) ∧ (¬ (a = b))) → (µ (⟨a, a⟩) = 0) .
(84)

Definition 81. Left quasi-reflexivity:

(µ (⟨a, b⟩) = 0) → (µ (⟨b, b⟩) = 0) . (85)

Definition 82. Left antiquasi-reflexivity:

((µ (⟨a, b⟩) = 1) ∧ (¬ (a = b))) → (µ (⟨b, b⟩) = 0) .
(86)

Definition 83. Quasi-reflexivity:

(µ (⟨a, b⟩) = 0) → ((µ (⟨a, a⟩) = 0) ∧ (µ (⟨b, b⟩) = 0)) .
(87)

Definition 84. Antiquasi-reflexivity:
((µ (⟨a, b⟩) = 1) ∧ (¬ (a = b))) →
((µ (⟨a, a⟩) = 0) ∧ (µ (⟨b, b⟩) = 0)) .

(88)

Definition 85. Antitransitivity:

((µ (⟨a, b⟩) = 1) ∧ (µ (⟨b, c⟩) = 1)) → (µ (⟨a, c⟩) = 0).
(89)

Definition 86. Antiantiantitransitivity:

((µ (⟨a, b⟩) = 0) ∧ (µ (⟨b, c⟩) = 0)) → (µ (⟨a, c⟩) = 0).
(90)

Definition 87. Weak antitransitivity:
(((µ (⟨a, b⟩) = 1) ∧ (µ (⟨b, c⟩) = 1))∧
((µ (⟨c, b⟩) = 0) ∧ (µ (⟨b, a⟩) = 0))) →

(µ (⟨c, a⟩) = 0).
(91)

Definition 88. Antiquasi-Euclidean relation:
(((µ (⟨b, a⟩) = 1) ∧ (µ (⟨c, a⟩) = 1))∧
((µ (⟨a, b⟩) = 0) ∧ (µ (⟨a, c⟩) = 0))) →

(µ (⟨b, c⟩) = 0)
(((µ (⟨b, a⟩) = 0) ∧ (µ (⟨c, a⟩) = 0))∧
((µ (⟨a, b⟩) = 1) ∧ (µ (⟨a, c⟩) = 1))) →

(µ (⟨b, c⟩) = 0).

(92)

Definition 89. Left antiquasi-Euclidean relation:
(((µ (⟨b, a⟩) = 1) ∧ (µ (⟨c, a⟩) = 1))∧
((µ (⟨a, b⟩) = 0) ∧ (µ (⟨a, c⟩) = 0))) →

(µ (⟨b, c⟩) = 0).
(93)

Definition 90. Right antiquasi-Euclidean relation:
(((µ (⟨b, a⟩) = 0) ∧ (µ (⟨c, a⟩) = 0))∧
((µ (⟨a, b⟩) = 1) ∧ (µ (⟨a, c⟩) = 1))) →

(µ (⟨b, c⟩) = 0).
(94)

Definition 91. Anti-Euclidean relation:
(((µ (⟨b, a⟩) = 0) ∧ (µ (⟨c, a⟩) = 0))∨
((µ (⟨a, b⟩) = 0) ∧ (µ (⟨a, c⟩) = 0))) →

(µ (⟨b, c⟩) = 0).
(95)

Definition 92. Left anti-Euclidean relation:

((µ (⟨a, b⟩) = 0) ∧ (µ (⟨a, c⟩) = 0)) → (µ (⟨b, c⟩) = 0) .
(96)

Definition 93. Right anti-Euclidean relation:

((µ (⟨b, a⟩) = 0) ∧ (µ (⟨c, a⟩) = 0)) → (µ (⟨b, c⟩) = 0) .
(97)

Definition 94. Antisub-Euclidean relation:
(((µ (⟨b, a⟩) = 0) ∧ (µ (⟨c, a⟩) = 0))∧
((µ (⟨a, b⟩) = 0) ∧ (µ (⟨a, c⟩) = 0))) →

(µ (⟨b, c⟩) = 0).
(98)

Definition 95. Left divergent relation:

((µ (⟨a, c⟩) = 1) ∧ (µ (⟨b, c⟩) = 1)) → (µ (⟨a, b⟩) = 0) .
(99)

Definition 96. Right divergent relation:

((µ (⟨c, a⟩) = 1) ∧ (µ (⟨c, b⟩) = 1)) → (µ (⟨a, b⟩) = 0) .
(100)

Definition 97. Left and right divergent relation:

(((µ (⟨b, a⟩) = 1) ∧ (µ (⟨c, a⟩) = 1))∨
((µ (⟨a, b⟩) = 1) ∧ (µ (⟨a, c⟩) = 1))) →

(µ (⟨b, c⟩) = 0) .
(101)

Similarity and difference relations can be classified
according to the field of definition and its relation to
the type of the subject area: similarity and difference
relations of biological species, chemical similarity and
difference relations, similarity and difference relations of
physical processes [32], [34], [35]. From the point of
view of knowledge representation, including within the
semantic space, the following types of binary relations can
be distinguished among similarity and difference relations.

Relations of similarity and difference of ontological
structures on the basis of syntactic features: qualitative
(structural) and quantitative (including – measures) [55].
For example, similarity and difference by absence of cycles
on the incident links of signs, by the number of types of
alphabet elements: nodes and edges. A separate example
of similarity relation is the relation of coincidence of
elements of ontological structures [21].

Relations of similarity and difference of static
ontological structures on the basis of semantic attributes
(attributes of denotational semantics, primarily related to
essentially-systematic properties): qualitative (structural),
quantitative (including measures). For example, similarity
and difference by the presence of substructures of a certain
kind (subgraphs, motifs), morphisms between structures
(semantically stable), similarity and difference of signs
of sets by their power, similarity and difference of signs
by the power of extensional closures (essential, fully-
connected, etc.). Similarity and difference of (semantically
stable) structures (extensional closures) by the number of
elements of a given kind, by the number of morphisms,
by the number of substructures, motifs, by spectral
characteristics of structures and other invariants.
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The ontology of morphism relations, which are
similarity relations, was developed earlier and is part of
the ontology of measures and similarity and difference
relations [25].

Relations of similarity and difference of dynamic
ontological structures on the basis of semantic attributes
(attributes of operational semantics, primarily related
to relationally-phenomenological properties): qualitative
(structural), quantitative (including measures). For
example, similarity and difference in properties of
operations [7] (determinacy, reversibility, returnability,
etc.), spatio-temporal properties [1], [42], possibility of
simulation [5], [7], [43]. Similarity and dissimilarity
in measures of information quantity, computational
complexity (spatio-temporal), period [25], degree of
parallelism, etc.

Relations of similarity and difference of ontological
structures on the basis of semantic-logical attributes
(attributes of semantics related primarily to intensionally-
logical properties): qualitative (structural), quantitative
(including – measures). For example, similarity relations
by the kind and structure of utterance forms, statements
and axiomatizations, by logical consequence, by the
measure of truth and other quantitative features.

Separate types of similarity and difference relations are
meta-relations of similarity and difference.

A. Meta-relations of similarity and difference
The meta-relations of similarity include binary meta-

relations of equality, equivalence, morphisms of binary
relations, binary meta-relations of closures of binary
relations: reflexive, symmetric and transitive closures, etc.

The meta-relations of difference include binary meta-
relations of non-trivial permutations. Binary meta-
relations of nontrivial permutations, in particular, the
binary meta-relations of the complement of a binary
relation (up to the Cartesian square of the domain of its
definition) can be referred to meta-relations of difference.

In the study of semantic space, static ontological
structures at the entity-system level (semantic), which are
stable to the addition of new fragments of ontologies,
can be investigated first of all. Previously, the hereditary
finite ontological structures of classical and non-classical
[61] kinds were investigated (see fig.1), and their ontology
was constructed on the basis of morphisms between them,
which are special cases of similarity relations (see fig.2).
Topological characterizations of ontological structures
exploit the transitive closure (similarity meta-relations) of
the membership relations associated with the extensional
concepts, elements of ontological structures.

The introduction of the metric on these structures
encounters the fact that the topology of semantically stable
structures is directional (oriented), so the transition to the
metric requires a symmetric closure of the corresponding
topological relations, i.e., the application of a similarity
meta-relations. In addition, due to the flexibility of the

knowledge representation model used, this metric is
obtained bounded (maximal value). The onlyway to ensure
metric distinction of elements of ontological structures,
while preserving integer values of the metric, is to
increase the dimensionality of the space. As it has already
been established, under some natural requirements for
the distinction of elements of ontological structures, the
dimensionality of space in this case will grow linearly
with the number of elements in the [56] structure. A
metric in a multidimensional space can be obtained by
introducing one-dimensional metrics on each dimension
and integrating them through the application of Theorem
1. In this case, metrics are introduced for canonical forms
of ontological structures in order to ensure unambiguity
of semantically stable metrics, allowing to pass to a
canonical metric space integrated into a semantic space
in accordance with the metamodel of semantic space
[25]. Examples of metrics besides the distance between
elements in the ontological structure can also be the powers
of symmetric differences (sets of elements) of element’s
extensions, sets of elements of extensional (essential,
fully-connected) closures, their sections, etc. The metrics
can also be the power of symmetric differences (sets of
elements) of extensional elements. However, to be able to
fully work with such a metric space, ontological structures
must be fully represented (defined).

VI. Measures and similarity in models with operational
semantics

A. Operational information space

Definition 98. An operation-information space [25] is
given by a transition relation R between configurations
from setC, set of operationsO, set of operators (command
or instructions) K, set of parameters P , and set of values
V .

R ⊆ C × C

O ⊆ 2V
2×V ∪ 2V×V 2

C ⊆ 2K∪P∪(P×(V ∪K))∪(K×(O∪P ))

. (102)

The introduced space can be considered as texts of a
generalized formal language [25] in some alphabet A.

K ∪O ∪ P ∪ V ⊆ A(∗∗). (103)

Let us enumerate the structural (syntactic) properties of
configurations.

Statement 1. Operators and parameter values are
distinguishable in each configuration.

(c ∈ C) → (c ∩ (P × (K ∩ V )) = ∅) . (104)

Statement 2. In each configuration, operations and
parameters are distinguishable.

(c ∈ C) → (c ∩ (K × (O ∩ P )) = ∅) . (105)
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Figure 1. General classes of finite structures

Statement 3. If an operator has two input parameters, it
has one output parameter.

(c ∈ C) → ((k ∈ c ∩K) →
((|c ∩ ({k} × P )| = 2) → (|c ∩ (P × {k})| = 1))).

(106)
Statement 4. If an operator has one input parameter, it

has at most one output parameter.

(c ∈ C) → ((k ∈ c ∩K) →
((|c ∩ ({k} × P )| = 1) → (1 ≤ |c ∩ (P × {k})| ≤ 2))).

(107)
Statement 5. Each operator has at least one and no more

than two input and output parameters.

(c ∈ C) → ((k ∈ c ∩K) →
((1 ≤ |c ∩ ({k} × P )| ≤ 2) ∧ (1 ≤ |c ∩ (P × {k})| ≤ 2))).

(108)
Relation of the operational semantics of “big”

and “small step”. Operational (semantic) properties of
configurations:

(⟨c, s⟩ ∈ R) ∼ ∃q(
(
q ∈ 2(c∩K)/ {∅}

)
∧ (s ∩ (P × V ) =(

c ∩ (P × V ) /
⋃
k∈q

(δ (⟨c, k⟩))1

)
∪
⋃
k∈q

(δ (⟨c, k⟩))2t)).

(109)
i.e., the transition can be made only to the next

configuration that contains results of all operations of
some non-empty set of commands and does not contain

input data processed by operations of commands from this
set.

Definition 99. Changes (possible) resulting from an
operation on command k in configuration c:

δ (⟨c, k⟩) ∈ ∆(⟨c, k⟩) . (110)
Definition 100. The set of (possible) changes resulting

from an operation on command k in configuration c:

∆(⟨c, k⟩)
def
=

{⟨r, {(c ∩ ({k} × P )) (k)} × {((c ∩ ({k} ×O)) (k)) (v)}⟩∣∣(v ∈ ×p∈r {p2}
)
∧ (r ∈ Λ (⟨c, k⟩))}

(111)
Definition 101. The set of values of k command inputs

in configuration c:

Λ (⟨c, k⟩) def={
x
∣∣∣x =

⋃
p∈Γ(⟨c,k⟩) {⟨p, (c ∩ (Γ (⟨c, k⟩)× V )) (p)⟩}

}
.

(112)
Definition 102. The set of command inputs k in

configuration c:

Γ (⟨c, k⟩) def=
{
x
∣∣∣x = (c ∩ (P × {k}))−1

(k)
}
. (113)

Statement 6. The number of configurations to which a
transition is possible is equal to the number of all possible
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Figure 2. Ontology of morphisms

different changes caused by the operations of all possible
non-empty instruction sets:

(c ∈ C) →(
|{R (c)}| =

∣∣∣{⋃k∈q ∆(⟨c, k⟩)
∣∣q ∈ (

2c∩K/ {∅}
)}∣∣∣) .
(114)

Operational-information space allows to connect the
operational semantics of “small step” with the operational
semantics of “big step”. The operational-information
space can be viewed as a topological space on a graph with
a transitive closure R or a metric space with a symmetric
closure R. Similarly as a topological or metric space each
of the configurations can be considered.

The operational-information space, having similarities
with themodel-parametric spac [60], is oriented to support
the implementation of knowledge base components with
complex operational semantics (see Reo Coordination
Language [26]) and the design of problem-solving models
for intelligent systems based on reusable and reusable

components as a unified semantic model [29]. On the
other hand, the high degree of unification of ontological
structures of the operational-information space allows us
to consider it as a subspace of the semantic space [25],
[44].

The design of problem-solving models for intelligent
systems relies on the previously discussed technological
principles, which include the typology of reusable
components, consistent with the general classification
of tasks [7]. It is also important to observe the
properties of coreturnability and parareversibility in the
development and adaptation of the intellectual system (and
its components) [54], which, if necessary, allows to pass
to the returnability of operations realized by the system
(component), along with the coreturnability being the
basis of its repeated and multiple application for solving
tasks of the same class.

Since the operational semanticswithin the framework of
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the operational-information space is reduced to the relation
of becoming [25] coordinated with the denotational
semantics, the operational-information space is a model
not only for studying the properties of internal operations
and corresponding processes, but also the phenomena and
processes conditioned by the interaction of the intellectual
system with the external environment, i.e. related to
cognition. Thus, on this basis by means of mechanisms
of semantic logging of events (repeated or not), methods
of analyzing protocols of processes and phenomena, by
revealing relations of similarity and difference, the study
of spatial-temporal, causal relations and attributes between
phenomena, subjects and objects [43] is carried out. The
introduction of corresponding order relations, which allow
to specify and investigate topological properties, as well as
the introduction of measures, which allow to specify and
investigatemetrical, including spatio-temporal, properties,
complements the topology and metrics of the semantic
space [25].

B. Measures of dynamic structures
Let us consider pseudo-orgraphs corresponding to some

orgraphs of configurations of information-operational
space. Let us introduce a binary (meta)operation of the
tensor product of pseudo-orgraphs and the relation to be a
divisor of the tensor product of pseudo-orgraphs.

Definition 103. Tensor product of pseudo-orgraphs [7]:

G×GH = ⟨VG, EG⟩×G ⟨VH , EH⟩
def
=

⟨VG × VH , {⟨⟨y, v⟩ , ⟨u,w⟩⟩ |⟨⟨y, u⟩ , ⟨v, w⟩⟩ ∈ EG × EH }⟩ .
(115)

Definition 104. The divisor of the tensor product of
pseudo-orgraphs.

(G ↾ GH) ∼
(∃X ((H = (G×GX)) ∨ (H = (X×GG)))) .

(116)

Let us consider the time-averaged entropy E of [25]
wave fronts of the equilibrium state of a knowledge
processing model (system) with a pseudo-orgraphic
structure of returnable operations. Returnable operations
are one of the three key features for constructing a general
classification of operations and the tasks (problems) solved
with their help [7].

Theorem 2: Entropy E is a ↾ G-monotone measure:

(G ↾ GH) → (E (G) ≤ E (H)) . (117)

The entropy E satisfies four properties of the Hinchin
entropy.

Property 1. The entropy of a system s is a function only
of the probabilities of its n states P (s) = {p1 (s)} ×
{p2 (s)} × ...× {pn (s)}:

E ∈ (Range (E))
⋃

s P (s)
. (118)

Property 2. For any system swith n states it is true that:

E (P (s)) ≤ E
({
n−1

}n
)
, (119)

where E
({
n−1

}n) is the entropy of a system with
uniform probability distribution of n states.
Property 3. If n+1th state pn+1 (s) = 0 is added to the

system s, the entropy will not change.
Property 4. The entropy of the set of two independent

systems s andm is of the form:

E (P (s⊗m)) = E (P (s)) + E (P (m)) . (120)

Statement 7. The entropy for classes of isomorphic
(multi)pseudo-orgraphs is [×G]∼=-additive measure in the
algebra of the complement [ ]∼=, the GCD [⋏G]∼= and the
LCM [⋎G]∼= of some class of isomorphic (multi)pseudo-
orgraphs [⃝]∼= and the classes of their tensor product
divisors:

E
(
[G]∼=[×G]∼=[H]∼=

)
= E

(
[G]∼=

)
+ E

(
[H]∼=

)
. (121)

Some properties of the operations of this algebra:(
[G]∼=[↾ G]∼=

(
[G]∼=[⋎G]∼=[H]∼=

))
,((

[G]∼=[⋏G]∼=[H]∼=
)
[↾ G]∼=[G]∼=

)
,((

[G]∼=[⋎G]∼=[H]∼=
)
[×G]∼=

(
[G]∼=[⋏G]∼=[H]∼=

))
=(

[G]∼=[×G]∼=[H]∼=
)
,(

[G]∼=[⋎G]∼=[H]∼=

)
=

[(
[G]∼=[⋏G]∼=[H]∼=

)]
∼=,

[G]∼= = [G]∼=.
(122)

The proposed measure differs from the von Neumann
entropy [30], the Laplacian entropy (Kirchhoff matrix
[32]) and the normalized Laplacian [32] of an oriented
graph (multipseudo-orgraph).

E

 0 1 1
0 0 1
2 0 0

 = (0.8 ∗ ln (2)− ln (5)) / ln (2)

(123)
There are similarities and differences betweenmodels with
operational semantics based on the introduced measure,
also based on it we can consider convergence and
divergence measures [35].

The following transformations allow us to introduce
meta-operations and specify the change of a dynamic
system, analogous to the way a semiotic system specifies
the change of a formal system [13]. Thus, the dynamics of
the system can be described along more than one temporal
axis.

Addition of multipseudo-orgraphs. Examples:


0 1 1 0

0 0 0 1

0 0 0 1

2 0 0 0

+


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

=


0 1 1 1

0 0 0 1

0 0 0 1

3 0 0 0




0 1 1 2

0 0 0 1

0 0 0 1

4 0 0 0

=


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

+


0 1 1 1

0 0 0 1

0 0 0 1

3 0 0 0


(124)
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Vertex permutation (permutation matrix is used).
Example:

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ∗


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ∗


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


(125)

Splitting vertices of a multipseudo-orgraph using
diagonal rectangular matrices. Examples:

√
2 0 0

0 1/
√
2 0

0 1/
√
2 0

0 0
√
2

 ∗

 0 1 1
0 0 1
2 0 0

 ∗

 √
2 0 0 0

0 1/
√
2 1/

√
2 0

0 0 0
√
2

 =


0 1 1 2
0 0 0 1
0 0 0 1
4 0 0 0


√
3/

√
2 0 0

0 1 0
0 1 0
0 0 1

 ∗

 0 1 1
0 0 1
2 0 0

 ∗

 1 0 0 0
0 1 1 0

0 0 0
√
3/

√
2

 =


0 1 1 1
0 0 0 1
0 0 0 1
3 0 0 0


(126)

Inverse transformation (gluing) of vertices using
diagonal rectangular matrices. Example: 1 0 0 0

0 1/2 1/2 0

0 0 0
√
2/

√
3

 ∗


0 1 1 1
0 0 0 1
0 0 0 1
3 0 0 0

 ∗


√
2/

√
3 0 0

0 1/2 0
0 1/2 0
0 0 1

 =

 0 1 1
0 0 1
2 0 0


(127)

VII. Logic models. Integration, parametrization,
generalization

A. Similarity, inductive logical inference and multi-
valued logics

Logic models aimed at supporting and integrating
deductive, abductive, and inductive logical inference
mechanisms citebTaxonomy, in particular those based on
the application of the DSM-method and the JSM-method,
use multi-valued [4] logics. DSM-method and JSM-
method, multi-valued [4] logics are used. These logics
are based on four-valued logic using non-associative
binary logic operations of conjunction and disjunction,

which requires consideration of non-binary logic oper-
ations. Increasing the number of values allows us to
rebalance the complexity between the operational and
denotational semantics of logics of the corresponding
[40] class. For example, we can eliminate the use of non-
binary logical operations in such logics, by switching
from four-valued logics to six-valued logics. The DSM
method and the JSM method are based on mechanisms
that utilize similarity and dissimilarity features and rela-
tions.

B. Integration of logical models of knowledge processing
Previously, a model and principles for integrating log-

ical models of knowledge processing have been proposed
[5].

An important property during integration is the pos-
sibility of bisimulation [58].

It should be noted that when integrating logical models
of knowledge processing, it is important to consider the
support of different types of semantics [4], [37], [38],
[38]–[41]: axiomatic, algebraic, relational and others. In
this regard, let us consider the integration of temporal
logics and fuzzy logics on the basis of parameterized
fuzzy logics.

Table I
Integrated logic models

Semantics Double-valued logic Multi-valued logic
Fuzzy logic

Predicate Logic + + +
Modal Logic + + +

Temporal logic + +

C. Parameterized temporal fuzzy logic
Let us consider the generalization of parameterized

fuzzy logics [53] to temporal logics.
Definition 105. Fuzzy negation:

µ∼α (⟨χ, π⟩) def= ∼P
λ µα (⟨χ, π⟩) . (128)

It is usually true for fuzzy negation:

µ∼α (⟨χ, π⟩) def= 1− µα (⟨χ, π⟩) . (129)

Definition 106. Fuzzy conjunction:

µα∧̃β (⟨χ, π⟩)
def
=

(
µα (⟨χ, π⟩) ∧̃P

λ µβ (⟨χ, π⟩)
)
. (130)

In particular, for a fuzzy disjunction of causal prop-
erties (case when triangular norm [8] is minimum) it is
true:

µα∧̃β (⟨χ, π⟩) = inf ({µα (⟨χ, π⟩)} ∪ {µβ (⟨χ, π⟩)}) .
(131)

Definition 107. Fuzzy disjunction:

µα∨̃β (⟨χ, π⟩)
def
=

(
µα (⟨χ, π⟩) ∨̃P

λ µβ (⟨χ, π⟩)
)
=

µ∼((∼α)∧̃(∼β)) (⟨χ, π⟩) .
(132)
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Definition 108. Fuzzy strict disjunction:

µα⊻β (⟨χ, π⟩)
def
=

(
µα (⟨χ, π⟩) ⊻Pλ µβ (⟨χ, π⟩)

)
=

µ(α∨̃β)∧̃((∼α)∨̃(∼β)) (⟨χ, π⟩) .
(133)

Definition 109. Fuzzy implication:

µα⇝β (⟨χ, π⟩)
def
=

(
µα (⟨χ, π⟩)⇝P

λ µβ (⟨χ, π⟩)
)
.
(134)

Definition 110. Fuzzy equivalence:

µα≃β (⟨χ, π⟩)
def
=

(
µα (⟨χ, π⟩) ≃P

λ µβ (⟨χ, π⟩)
)
=

µ(α⇝β)∧̃(β⇝α) (⟨χ, π⟩) .
(135)

Definition 111. Fuzzy existence:

µ∃̃γα(γ) (⟨χ, π⟩)
def
= ∃̃Pλ

({
µα(τ) (⟨χ, π⟩) |τ

})
=

∨̃P
λ

({
µα(τ) (⟨χ, π⟩) |τ

})
.

(136)
In particular, it is true for the fuzzy disjunction of

causal properties (the case of minimum as triangular
norm):

µ∃̃γα(γ) (⟨χ, π⟩) = sup
({
µα(τ) (⟨χ, π⟩) |τ

})
. (137)

Definition 112. Fuzzy univeral quantor:

µ∀̃γα(γ) (⟨χ, π⟩)
def
= ∀̃Pλ

({
µα(τ) (⟨χ, π⟩) |τ

})
=

∧̃P
λ

({
µα(τ) (⟨χ, π⟩) |τ

})
.

(138)
In particular, this is true for the fuzzy conjunction

of causal properties (case the triangular norm is the
minimum):

µ∀̃γα(γ) (⟨χ, π⟩) = inf
({
µα(τ) (⟨χ, π⟩) |τ

})
. (139)

Definition 113. Maximal routes through a vertex in a
model:

Φ (⟨χ, ι⊕ τ, τ, E, V ⟩) def= ((Ψ
(〈
χ, π,E−1, V

〉)
∧

Ψ(⟨χ, τ, E, V ⟩)) ∧
(
ι ∈ ×k=0

k<|π|

(
{πk+1}−1

))
).

(140)
Definition 114. Maximal half-routes from a vertex in

a finite returnable model:

Ψ̂ (⟨χ, π,E, V ⟩) def= ((Θ (⟨χ, π,E, V ⟩)∧(
∃q

((
π|π|

)
2
= (πq)1

))
) ∧

(⋃k<|π|
k=0 {πk+1} ∈

(
V+

V
))

).

(141)
Definition 115. Maximal half-route from a vertex in

the model:

Ψ(⟨χ, π,E, V ⟩) def= (Θ (⟨χ, π,E, V ⟩) ∧ Ξ (⟨χ, π,E, V ⟩)) .
(142)

Definition 116. Half-route from a vertex in the model:

Θ(⟨χ, π,E, V ⟩) def=
(
(χ = (π1)1) ∧

(
π ∈ E|π|))∧(

((j ∈ N/ {0}) ∧ (j < |π|)) →
(
(πj)2 = (πj+1)1

))
.

(143)

Definition 117. Maximality of half-routes from a ver-
tex in the model:

Ξ (⟨χ, π,E, V ⟩) def= ((|π| /∈ N)∨
(¬τ (Θ (⟨χ, τ, E, V ⟩) ∧ ((τ = π ⊕ ⟨ε⟩) ∧ (ε ∈ E))))).

(144)
Definition 118. Fuzzy operator “sometimes in the

future”:

µF̃α (⟨χ, π⟩)
def
=

F̃P
λ ({µα (⟨γ, π⟩) |Φ(⟨χ, π, τ, E, V ⟩) ∧ Φ(⟨γ, π, τ, E, V ⟩)}) .

(145)
The following expression is valid for models of return-

able operations:
µF̃α (⟨χ, π⟩) =

sup ({µα (⟨γ, π⟩) |Φ(⟨χ, π, τ, E, V ⟩) ∧ Φ(⟨γ, π, τ, E, V ⟩)}) ,
(146)

and instead of Ψ, just check Ψ̂.
CTL* [59] operator version.

µF̃α (⟨χ, π⟩) def= µα∨̃F̃α (⟨χ, π⟩) . (147)

Definition 119. Fuzzy operator “always in the future”:

µG̃α (⟨χ, π⟩)
def
=

G̃P
λ ({µα (⟨γ, π⟩) |Φ(⟨χ, π, τ, E, V ⟩) ∧ Φ(⟨γ, π, τ, E, V ⟩)}) .

(148)
The following expression is valid for models of return-

able operations:
µG̃α (⟨χ, π⟩) =

inf ({µα (⟨γ, π⟩) |Φ(⟨χ, π, τ, E, V ⟩) ∧ Φ(⟨γ, π, τ, E, V ⟩)}) ,
(149)

and instead of Ψ, just check Ψ̂.
CTL* operator version.

µG̃α (⟨χ, π⟩) def= µα∧̃G̃α (⟨χ, π⟩) . (150)

Definition 120. Fuzzy operator “sometimes in the
past”:

µP̃α (⟨χ, π⟩) def= P̃P
λ ({µα (⟨γ, π⟩)∣∣Φ (〈

χ, π, τ, E−1, V
〉)

∧ Φ
(〈
γ, π, τ, E−1, V

〉)
}).
(151)

The following expression is valid for models of return-
able operations:

µP̃α (⟨χ, π⟩) def= sup({µα (⟨γ, π⟩)∣∣Φ (〈
χ, π, τ, E−1, V

〉)
∧ Φ

(〈
γ, π, τ, E−1, V

〉)
}),
(152)

and instead of Ψ, just check Ψ̂.
Definition 121. Fuzzy operator “always in the past”:

µH̃α (⟨χ, π⟩) def= H̃P
λ ({µα (⟨γ, π⟩)∣∣Φ (〈

χ, π, τ, E−1, V
〉)

∧ Φ
(〈
γ, π, τ, E−1, V

〉)
}).
(153)

The following expression is valid for models of return-
able operations:

µH̃α (⟨χ, π⟩) def= inf({µα (⟨γ, π⟩)∣∣Φ (〈
χ, π, τ, E−1, V

〉)
∧ Φ

(〈
γ, π, τ, E−1, V

〉)
}),
(154)

and instead of Ψ, just check Ψ̂.
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Definition 122. Fuzzy possibility operator:

µ♢̃α (⟨χ, π⟩) def= ♢̃P
λ ({µα (⟨γ, ι⟩) |Φ (⟨χ, ι, τ, E, V ⟩)}) .

(155)
The following expression is valid for models of return-

able operations:

µ♢̃α (⟨χ, π⟩) = sup ({µα (⟨χ, ι⟩) |Φ (⟨χ, ι, τ, E, V ⟩)}) ,
(156)

and instead of Ψ, just check Ψ̂.
Definition 123. Fuzzy necessity operator:

µ□̃α (⟨χ, π⟩) def= □̃P
λ ({µα (⟨χ, ι⟩) |Φ (⟨χ, ι, τ, E, V ⟩)}) .

(157)
The following expression is valid for models of return-

able operations:

µ□̃α (⟨χ, π⟩) = inf ({µα (⟨χ, ι⟩) |Φ (⟨χ, ι, τ, E, V ⟩)}) .
(158)

Definition 124. Fuzzy operator “next”:

µ⃝̃α (⟨χ, π⟩) def= ⃝̃
P

λ

({µα (⟨(τ1)2, π⟩) |Φ (⟨χ, π, τ, E, V ⟩)}) ,
(159)

i.e.

µ⃝̃α (⟨χ, π⟩) ∈ ({µα (⟨(τ1)2, π⟩) |Φ (⟨χ, π, τ, E, V ⟩)}) .
(160)

Let it:

µ0̃α (⟨χ, π⟩) def= 1, (161)

and

µ
(̃k+1)α

(⟨χ, π⟩)
def
= ˜(k + 1)

P

λ({(
µα (⟨χ, π⟩) ∧̃P

λ µk̃α

(〈
(τ1)2, π

〉))
|Φ(⟨χ, π, τ, E, V ⟩)

})
,

(162)
i.e.

µ
(̃k+1)α

(⟨χ, π⟩) ∈({(
µα (⟨χ, π⟩) ∧̃P

λ µk̃α

(〈
(τ1)2, π

〉))
|Φ(⟨χ, π, τ, E, V ⟩)

})
.

(163)
Definition 125. Fuzzy operator “until”:

µα⊸̃β (⟨χ, π⟩)
def
=

⊸̃P
λ ({

(
µβ (⟨(τk)1, π⟩) ∧̃

P
λ µ(̃k−1)α

(⟨χ, π⟩)
)

|Φ (⟨χ, π, τ, E, V ⟩) ∧ ((k ∈ N) ∧ (k ≤ |τ |))}),
(164)

i.e.

µα⊸̃β (⟨χ, π⟩) ∈
∃̃Pλ ({

(
µβ (⟨(τk)1, π⟩) ∧̃

P
λ µ(̃k−1)α

(⟨χ, π⟩)
)

|Φ (⟨χ, π, τ, E, V ⟩) ∧ ((k ∈ N) ∧ (k ≤ |τ |))}),
(165)

Examples (see figure.3 and tables II, III):

Figure 3. Structure example

Table II
Fuzzy temporal logic formula “sometimes” operators examples

χ π α F̃α G̃α P̃α H̃α ⃝̃α
1 < <1,2>,<2,1> > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
1 <<1,2>,<2,3>,<3,1>> ⊥ ⊤ ⊥ ⊤ ⊥ ⊥
2 < <2,1>,<1,2> > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
2 <<2,3>,<3,1>,<1,2>> ⊥ ⊤ ⊥ ⊤ ⊥ ⊤

< <3,1>,<1,2>,
3 <2,1>, ⊤ ⊥ ⊥ ⊥ ⊥ ⊥

<1,2>,<2,3> >
3 <<3,1>,<1,2>,<2,3>> ⊤ ⊤ ⊥ ⊤ ⊥ ⊥

D. Metrics in logical models
For logical models, one can identify: their order relations and

topology associated with a logical consequence relation, corre-
sponding measures associated with classes of logical formulas
and propositions. Thus, a (pseudo)metric space formed by
classes of logically equivalent formulas and a metric expressing
the difference of values of propositions (can be computed as a
fuzzy strict disjunction) can be considered. This metric induces
pseudometrics on instances of these classes.

Integration of pseudometric spaces of the intensionally-
logical level can be realized similarly to the integration of met-
ric and pseudometric spaces of the essentially-systematic and
relationally-phenomenological levels with the help of Theorem
1.

For the technical realization of metric subspaces of the
semantic space, we propose to consider structures based on k-d
trees, in which dimensions are selected according to the highest
value of the informativeness feature. The number of selected
dimensions for indexing elements of ontology structures using
k-d trees should be sublinear. In the presence of non-factors
that do not allow the formation of a replenishment-resistant
metric space for ontological structures, it is proposed to use
conditionally stable attributes of metacognition structures of
ignorance with respect to these ontological structures. Thus,
these attributes will not be absolutely stable. However, in
the process of accumulation of additional knowledge about
ontological structures, elimination of non-factors (ignorance)
and integration of replenishment-resistant metrics within the
framework of additional dimensions, it is proposed to ensure

Table III
Fuzzy temporal logic formula “until” and necessity examples

χ π (∼ α) ⊸̃α ♢̃α □̃α ♢̃F̃α □̃F̃α
1 < <1,2>,<2,1> > ⊥ ⊥ ⊥ ⊤ ⊥
1 <<1,2>,<2,3>,<3,1>> ⊥ ⊥ ⊥ ⊤ ⊥
2 < <2,1>,<1,2> > ⊥ ⊥ ⊥ ⊤ ⊥
2 <<2,3>,<3,1>,<1,2>> ⊥ ⊥ ⊥ ⊤ ⊥

< <3,1>,<1,2>,
3 <2,1>, ⊤ ⊤ ⊤ ⊤ ⊥

<1,2>,<2,3> >
3 <<3,1>,<1,2>,<2,3>> ⊤ ⊤ ⊤ ⊤ ⊥
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convergence of the corresponding formed metric space to the
metric space based on stable attributes by means of parameter-
ization.

VIII. Conclusion
The review of existing approaches to analyzing semantic

relations, identifying meaning in data and knowledge, similarity
and proximity of knowledge structures has been carried out.
The ontology of measures of similarity and similarity relations
of elements and knowledge structures in ontologies was de-
veloped. The model of operational information space oriented
to the creation of intelligent systems based on reusable and
reusable components was proposed, which provides semantic
unification and integration of models with operational seman-
tics of “big step” and “small step” within the semantic space.
Also, the monotone measure expressing the entropy of the
equilibrium state of information processing models using the
model of returnable computation was proposed. The algebra of
transformations of the models on which this measure is defined
was considered. The model of semantics of the parametrized
fuzzy temporal logic language was developed and proposed
which provides the computation of fuzzy truth values for fuzzy
CTL* language operators and other temporal logic operators
on the models coordinated with denotational and operational
semantics of the unified semantic knowledge representation
model. The principles of construction on the basis of gen-
eralized measures and relations and similarity of semantic
space models that take into account topological and metric
properties of ontological structures at the essentially-systematic,
relationally-phenomenological and intensionally-logical levels
are formulated.
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ПОДХОДЫ К ИССЛЕДОВАНИЮ
СЕМАНТИЧЕСКОГО ПРОСТРАНСТВА И

МОДЕЛЕЙ ИНТЕГРИРОВАННОГО
ЛОГИЧЕСКОГО ВЫВОДА С

ИСПОЛЬЗОВАНИЕММЕР СХОДСТВА,
РАЗЛИЧИЯ И ДРУГИХ МЕР

Ивашенко В.П.
Рассмотрены подходы к анализу близости, сходств и

различий стуктур знаний для выявления смысла в данных
и знаниях, подходы и модели представления знаний с опе-
рационной семантикой для компонентного проектирования
интеллектуальных систем. Разработана онтология обобщён-
ных мер и отношений различия и сходства, включая отно-
шения подобия. Предложен класс предпорядоковых шкал,
меры на структурах с операционной семантикой, проведено
исследование их алгебраических свойств. Уточнено понятие
операционно-информационного пространства. Предложена
модель семантики нечёткой временной логики для специфи-
кации структур знаний с операционной семантикойна основе
ранее предложенной параметризованной нечёткой логики.
Для онтологических структур, соответствующих получен-
ным результатам и трём уровням семантического анализа,
сформулированы принципы их интеграции как метрических
подпространств смыслового пространства.
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