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Abstract—Network traffic contains numerous patterns,
and deviations from these patterns can indicate cyber-
attacks or system failures. Traditional machine learning
methods, such as the Gaussian Mixture Model (GMM),
are effective in detecting anomalies, but do not provide
meaningful interpretations of these anomalies. This paper
presents an approach that integrates semantic analysis with
GMM to improve anomaly detection accuracy and provide
contextual insights into abnormal behavior in network
traffic. Using cybersecurity ontologies and semantic rea-
soning, detected anomalies can be mapped to known cyber
threats, improving the reliability of detection. The proposed
method is evaluated using real-world network traffic logs,
demonstrating its effectiveness in reducing false positives
and enhancing interpretability.

Keywords—Anomaly detection, network traffic analysis,
Gaussian mixture model (GMM), semantic analysis, ma-
chine learning, cybersecurity, intrusion detection systems
(IDS), unsupervised learning.

I. Introduction

The rapid increase in cyberattacks poses a serious
challenge to modern network security. Anomalous net-
work traffic can indicate a variety of threats, including
denial-of-service (DoS) attacks, unauthorized intrusions,
and data exfiltration. Traditional methods for anomaly
detection are based on statistical models and machine
learning techniques, such as clustering and classification.
Among these, the Gaussian Mixture Model (GMM) has
proven to be effective in identifying outliers in network
data. However, GMM has a significant drawback: it can
identify anomalies but lacks interpretability, meaning
that detected anomalies must be manually analyzed to
determine their nature and relevance.

To address this limitation, semantic technologies can
be leveraged. Semantic analysis provides a structured
way to interpret and classify anomalies by linking them
to ontologies, formal representations of knowledge that
describe concepts, relationships, and rules. In the domain
of cybersecurity, ontologies such as MITRE ATT&CK,

STIX, and CybOX provide structured threat intelligence
that can be used to categorize and explain network
anomalies.

This paper proposes a hybrid approach that combines
GMM-based anomaly detection with semantic reasoning,
enabling automated classification and interpretation of
detected anomalies. The primary contributions of this
work are as follows.

1) Integration of semantic technologies and ontologies
with machine learning for anomaly detection.

2) A methodology for mapping GMM-detected anoma-
lies to known cyber threats using semantic reasoning.

3) An experimental evaluation that demonstrates the
effectiveness of this approach in improving the precision
and interpretability of network anomaly detection.

II. Related Work and Background
A. Gaussian Mixture Model (GMM) in Anomaly Detec-
tion

The Gaussian Mixture Model (GMM) is a probabilis-
tic model that clusters data into multiple distributions,
allowing for soft clustering – each data point can belong
to multiple clusters with a certain probability. This makes
GMM effective for detecting network anomalies because
it can model complex traffic distributions and detect
outliers in real-time.

B. Semantic Technologies and Ontologies in Cybersecu-
rity

Cybersecurity Ontologies: Structured Knowledge
of Threats

Ontologies provide structured knowledge bases that
describe attack techniques, vulnerabilities, and network
behaviors. Popular cybersecurity ontologies include:

• MITRE ATT&CK – A global framework categorizing
cyber threats based on real-world attack techniques.

• STIX (Structured Threat Information Expression) – A
language for sharing structured threat intelligence.
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• CybOX (Cyber Observable Expression) – A format for
describing network activities and anomalies.

How Semantic Analysis Improves Anomaly Detec-
tion

By combining GMM with semantic analysis, we can:
• Classify detected anomalies by mapping them to known

cyber threats.
• Reduce false positives by filtering out normal variations.
• Describe the detected anomalies, making it easier for

security analysts to respond.
Example: Suppose that GMM detects multiple failed

login attempts followed by an unusual data transfer.
• Without semantic analysis: It is simply labeled as "anoma-

lous".
• With semantic analysis: It is classified as a "Brute Force

Attack" using the MITRE ATT&CK framework, trigger-
ing security recommendations.

Flowchart: Anomaly Detection with GMM and Seman-
tic Technologies

The following diagram illustrates the step-by-step pro-
cess of detecting anomalies using GMM combined with
semantic technologies.

Figure 1. Detecting anomalies using GMM combined with semantic
technologies.

Table I
Comparison of technologies for anomaly detection

Technology Purpose Advantages Limitations
GMM Detects

network
anomalies.

Flexible clus-
tering, handles
complex data.

No inter-
pretability,
high false
positives.

MITRE
ATT&CK

Classifies cy-
ber threats.

Knowledge
base of real-
world attack
methods.

Needs
integration
with detection
systems.

STIX Standardized
cyber threat
information
sharing.

Improves
collaboration
across
organizations.

Doesn’t detect
attacks on its
own.

CybOX Describes
network events
and attack
indicators.

Helps analyze
network
traffic.

Requires
integration
with other
tools.

By integrating GMM and semantic technologies, we
create a smart, context-sensitive anomaly detection sys-
tem that not only finds network anomalies but explains

and classifies them for an effective cybersecurity re-
sponse.

III. Proposed Methodology: Integrating GMM with
Semantic Analysis

A. Overview of the Hybrid Approach
The core of our approach lies in the use of the

Gaussian Mixture Model (GMM). Mathematically, the
GMM is represented as a weighted sum of multiple
Gaussian distributions:

The proposed system combines Gaussian Mixture
Models (GMM) for anomaly detection with semantic
reasoning to interpret and classify these anomalies. The
hybrid approach leverages the strengths of both tech-
niques to create a robust and scalable solution to detect
and understand cybersecurity threats in network traffic.
The system consists of three main components:

1) Anomaly detection using GMM: GMM is applied
to network traffic data to identify clusters of normal
and abnormal behaviors. This probabilistic model helps
identify deviations from expected network patterns by
grouping data points into distinct groups. Each group
represents a specific pattern of behavior, and anomalies
are detected when traffic deviates significantly from the
norm.

2) Semantic Interpretation of Anomalies: The raw out-
put from GMM, which identifies anomalies in network
traffic, is mapped to a more meaningful context using
cybersecurity ontologies. Ontologies provide structured
frameworks that categorize different types of cyberse-
curity threats and network behaviors. This allows the
system to interpret what each anomaly represents in
terms of known attack types.

3) Threat Classification and Explanation: After identi-
fying and interpreting the anomalies, the system proceeds
to categorize them into specific types of cybersecurity
threats (such as DDoS, phishing, or brute-force attacks).
In addition, the system automatically generates textual
explanations, helping security analysts understand the na-
ture of the threat, its potential impact, and recommended
countermeasures.

Together, these components enable the system to not
only detect anomalies, but also contextualize and classify
them, providing deeper insights into network security.

B. Ontology-Based Threat Mapping
Once GMM detects an anomaly, the next step is to

determine the nature of the anomaly. This is done using
an ontology-based reasoning system, which integrates the
anomaly detection results with a comprehensive cyber-
security knowledge base. The reasoning system classifies
the anomaly and provides an explanation leveraging the
following two key components.

1. Semantic Knowledge Base: The knowledge base
consists of a comprehensive set of cybersecurity-related
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rules, patterns, and attack signatures. These patterns
include both high-level attack types (such as DDoS, mal-
ware propagation, and brute-force attacks) and low-level
network behaviors (such as packet frequency, failed login
attempts, and unusual traffic patterns). The knowledge
base is structured to accommodate a wide variety of
network security events, providing context and detailed
relationships between different types of anomaly and
attack categories.

For example, the knowledge base might include the
following.

• Behavioral patterns: Normal and abnormal behavior asso-
ciated with different network protocols (e.g. HTTP, FTP,
DNS) and network devices (e.g. routers, switches).

• Attack signatures: Known attack patterns such as port
scanning, SQL injection, or Distributed Denial of Service
(DDoS).

• Contextual rules: Rules that define the relationship be-
tween different network events, such as multiple failed
login attempts leading to a brute-force attack or a sudden
spike in traffic indicating a potential DDoS attack.

The knowledge base is regularly updated to include
the latest attack techniques and evolving network traffic
patterns, ensuring the reasoning system remains effective
over time.

2. Reasoning Engine: The reasoning engine is respon-
sible for inferring the most likely type of attack based on
the data provided by the GMM and the knowledge stored
in the semantic knowledge base. The engine applies
semantic reasoning techniques to map the anomalies
detected by GMM to specific attack types. The reasoning
process follows a rule-based inference mechanism, which
can be implemented using logical rules or machine
learning models.

The engine operates by processing the output from
GMM, which includes a set of anomaly scores or data
points. Then these are compared against the patterns and
relationships in the knowledge base. The system uses
inference rules (e.g., if X and Y occur simultaneously,
the event is classified as Z) to determine the most
likely attack type. The reasoning engine can also handle
complex scenarios, in which multiple anomalies must be
considered together to accurately classify an attack type.

For example, if the system detects an anomaly involv-
ing unusually high packet frequency along with a high
number of failed authentication attempts, the reasoning
engine might infer that this is a brute-force attack. Maps
these two factors (high packet frequency and authentica-
tion failures) to predefined rules in the knowledge base
that describe brute-force attacks.

C. Benefits of the Hybrid Approach

By combining GMM and semantic reasoning, the
proposed system offers several key advantages over tra-
ditional methods.

1) Scalability: GMM is highly scalable and can handle
large volumes of network traffic data, making it suitable
for real-time network monitoring.

2) Accurate Threat Classification: The integration of
semantic reasoning ensures that detected anomalies are
accurately classified into meaningful cybersecurity threat
categories. This reduces false positives and improves the
reliability of the system.

3) Explainability: The system generates automated ex-
planations of detected threats, providing security analysts
with clear and actionable insights into the nature of the
attack, its potential impact, and appropriate countermea-
sures.

4) Adaptability: The system’s knowledge base can be
updated with new attacks and patterns, which allows it
to remain relevant in the face of evolving cyber threats.

IV. Experimental Evaluation
In this section, we evaluate the effectiveness of the

proposed methodology by conducting experiments using
real-world network datasets. The evaluation focuses on
evaluating the performance of the anomaly detection
system, its ability to classify network traffic anomalies,
and its overall accuracy in identifying various types of
cyber threats.

A. Dataset and Preprocessing
The proposed method is evaluated using two widely

recognized datasets commonly used in network intrusion
detection research. These data sets provide diverse and
comprehensive examples of both traditional and modern
attack scenarios, ensuring that the proposed system is
tested under varied conditions.

• KDD Cup 1999: This data set is one of the most well
known in the field of intrusion detection and contains
network traffic data captured from a simulated military
network. It includes both normal traffic and multiple types
of attacks, such as DoS (Denial of Service), U2R (User
to Root), R2L (Remote to Local), and probing attacks.
The data set is used to assess the ability of the system to
detect different types of attacks and to assess its general
performance in intrusion detection.

• CICIDS2017: This data set contains modern attack sce-
narios, including advanced threats such as botnets, DoS
attacks, and malware activities. It offers more realistic
network traffic compared to KDD Cup 1999, including
a mix of benign and malicious traffic from both known
and unknown attack patterns. The CICIDS2017 data set
is designed to test the system’s adaptability to more
contemporary attack vectors.

Data Preprocessing: The raw data from these datasets
are preprocessed to extract key features that are relevant
for the detection and classification of anomalies. The
preprocessing steps include the following.

• Packet Sizes and Intervals: The size of each packet and
the time intervals between packets are important features
in detecting anomalies. For example, in a DDoS attack,
there might be a sudden surge in packet sizes or a high
frequency of packet transmissions in a short period.
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• Source and Destination IP Addresses: The source and
destination IP addresses help to identify the origin and
target of the network traffic. Suspicious behavior, such
as traffic from a single IP address targeting multiple
destinations, may indicate a botnet or other malicious
activity.

• Protocol Types and Connection Attempts: The types of
protocols (e.g., HTTP, FTP, ICMP) and the number of
connection attempts are key indicators of malicious activ-
ity. Abnormal patterns, such as multiple failed connection
attempts using a particular protocol, may point to a brute-
force attack or scanning attempts.

By extracting these features, the data become suit-
able for analysis by the GMM-based anomaly detection
system, enabling the identification of deviations from
normal behavior in the network traffic.

B. Performance Metrics

The effectiveness of the proposed anomaly detection
method is evaluated using several standard performance
metrics, which provide insight into the system’s ability
to detect anomalies and classify threats accurately. These
metrics include:

1) Accuracy: Accuracy is one of the most straightfor-
ward metrics used to evaluate the overall performance
of the detection system. It is calculated as the ratio of
correctly identified anomalies (both true positives and
true negatives) to the total number of instances. High ac-
curacy indicates that the system is good at distinguishing
between normal and anomalous traffic.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where:
• TP: True Positives (correctly identified anomalies)
• TN: True Negatives (correctly identified normal traffic)
• FP: False Positives (normal traffic incorrectly identified

as anomalous)
• FN: False Negatives (anomalous traffic missed by the

system)

2) Precision: Precision measures the accuracy of pos-
itive predictions made by the system. In the context of
anomaly detection, precision represents the proportion
of correctly detected anomalies out of all instances that
were classified as anomalous by the system. A high
precision value indicates that the system produces few
false positives.

Precision =
TP

TP + FP
(2)

Precision is particularly important in situations where
false positives are costly, such as in a security system
where falsely flagging normal traffic as anomalous may
disrupt business operations or waste resources.

3) Recall: Recall (also known as Sensitivity or True
Positive Rate) measures the ability of the system to detect
all actual anomalies. It is the proportion of true anomalies
that were correctly identified by the system. A high recall
value indicates that the system is good at identifying most
of the malicious activity present in the network.

Recall =
TP

TP + FN
(3)

4) False Positive Rate (FPR): The False Positive
Rate measures the proportion of normal traffic that is
incorrectly classified as anomalous. It is calculated as the
number of false positives divided by the total number
of actual normal instances. A low FPR is crucial for
ensuring that the system does not generate too many false
alarms, which can lead to alert fatigue among security
analysts.

FPR =
FP

FP + TN
(4)

A high FPR can reduce the effectiveness of the system,
as analysts may ignore or overlook legitimate alerts if too
many false positives are raised.

5) F1 score: The F1 score is the harmonic mean of
precision and recall. It provides a balanced measure of
the system’s performance when both false positives and
false negatives are important to consider. The F1 score is
particularly useful when there is an imbalance between
the number of normal and anomalous traffic instances.

F1 = 2×
(
Precision× Recall
Precision+ Recall

)
(5)

Using these metrics, we can comprehensively evaluate
the performance of the proposed anomaly detection sys-
tem, ensuring that it strikes an optimal balance between
identifying threats and minimizing false alarms. Further-
more, performance can be compared between different
datasets and compared against existing anomaly detection
methods to demonstrate the advantages of the proposed
approach.

C. Results and Analysis
The experimental evaluation reveals several key in-

sights into the performance of the proposed hybrid sys-
tem, which combines Gaussian mixture models (GMM)
with semantic analysis for network anomaly detection
and threat classification. The results were analyzed in
comparison to using GMM alone, as well as against
existing baseline methods.

1) Performance of GMM Alone: When applied inde-
pendently, GMM achieves high anomaly detection rates,
demonstrating its effectiveness in detecting deviations
from normal network behavior. The model is able to
identify various outliers in traffic data and can effectively
group normal and anomalous behavior into separate
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groups. However, while GMM excels at detecting anoma-
lies, it suffers from a high false positive rate (FPR). This
means that benign traffic, which exhibits slight devia-
tions due to network variability, is often misclassified
as anomalous. As a result, security analysts may be
overwhelmed by a large number of false alarms, making
it difficult to prioritize real threats.

Despite this drawback, the strength of GMM lies in its
unsupervised nature, which allows it to work with diverse
and large datasets without requiring labeled training data.
This makes it particularly useful in real-world scenarios
where labeled data may be scarce or hard to obtain.

2) Improvement with Semantic Analysis: When com-
bined with semantic analysis and the use of a cybersecu-
rity ontology, the system shows a substantial improve-
ment in both the accuracy and reliability of anomaly
detection:

• Improved Classification Accuracy: Using the semantic
analysis component, the system can map detected anoma-
lies to known cyber threat categories, such as DDoS,
brute-force attacks, and malware. This contextualization
improves the system’s ability to classify anomalies accu-
rately. For example, a high number of failed login attempts
combined with abnormal packet patterns can now be
confidently classified as a brute-force attack based on
the reasoning engine’s inference from the ontology. This
mapping process significantly improves the overall clas-
sification accuracy, as the system now classifies detected
anomalies with a clear understanding of their underlying
cybersecurity implications.

• Reduced False Positives: One of the primary advantages
of integrating semantic reasoning is the reduction in false
positives. The semantic engine helps filter out benign
anomalies that may have been incorrectly flagged by
GMM. For instance, certain traffic spikes or slight varia-
tions in packet sizes that are normal in specific network
contexts can be recognized as nonthreatening based on
the semantic rules in the ontology. This selective filtering
minimizes the risk that benign traffic is misclassified as
an attack, allowing security teams to focus on genuine
threats. Consequently, the false positive rate (FPR) is
significantly reduced, leading to a more efficient and
manageable workflow for cybersecurity professionals.

• Automated Threat Explanations: Another key benefit of
integrating semantic analysis is the automatic generation
of threat explanations. When an anomaly is detected and
classified, the system provides detailed information on the
nature of the detected threat. These explanations include
the type of attack, the key features or behaviors that led to
the classification, and potential mitigation strategies. For
example, in the case of a DDoS attack, the explanation
might describe the abnormal traffic patterns observed,
such as the volume of incoming requests and the specific
targets affected. This transparency helps cybersecurity
analysts make more informed decisions, reducing the
time required to understand the nature of the attack and
respond effectively.

3) Comparative Performance: To further validate the
effectiveness of the proposed hybrid approach, a com-
parative analysis was performed against other existing
methods in the field of anomaly detection.

• Accuracy: The hybrid system showed a significant im-
provement in accuracy over GMM alone, demonstrating
a better balance between true positive detections and
minimizing false positives. When tested on both the KDD
Cup 1999 and CICIDS2017 datasets, the hybrid system
outperformed traditional methods, particularly in detect-
ing complex attack patterns that GMM alone struggled to
identify.

• Precision and Recall: Precision and recall were also
improved in the hybrid model. The integration of semantic
reasoning allowed the system to be more selective in
flagging anomalies, leading to higher precision in attack
classification. At the same time, the system recall rate
remained high, ensuring that most attacks were still de-
tected. This balance is critical in ensuring that the system
does not sacrifice the detection rate for fewer false alarms,
a common issue in many anomaly detection systems.

• False Positive Rate (FPR): As mentioned, the false posi-
tive rate saw a significant decrease when semantic analysis
was applied. This is crucial for operational efficiency,
as high FPR can lead to alert fatigue, where security
teams become desensitized to the large number of false
alarms. By reducing FPR, the system ensures that security
personnel can focus their efforts on investigating real
threats.

4) Performance of GMM Alone: The results of the
experimental evaluation suggest that the proposed hybrid
approach offers a highly practical solution for real-time
network traffic monitoring and cyber threat detection.

• Enhanced Threat Detection: By combining the statistical
clustering of GMM with the semantic understanding pro-
vided by the ontology, the system can detect and classify
a wide range of cyber threats more accurately and reliably
than GMM alone.

• Operational Efficiency: The reduction in false positives
and the ability to provide automated and understandable
explanations of detected threats help improve the overall
operational efficiency of cybersecurity teams. Analysts
can make quicker decisions, reduce response times, and
allocate resources more effectively to mitigate real threats.

• Adaptability: The system’s reliance on an evolving se-
mantic knowledge base means that it can be continuously
updated with new attack patterns and emerging threats,
making it adaptable to the changing landscape of cyber
attacks.

5) Future Work: Although the current results are
promising, further improvements can be made to increase
the robustness and efficiency of the system.

• Expansion of the Knowledge Base: The knowledge base
can be expanded to include additional attack patterns,
protocols, and more fine-grained network behaviors. This
would improve the system’s ability to detect new and
evolving threats.

• Real-Time Deployment: Future work will focus on opti-
mizing the system for real-time deployment in live net-
works, ensuring that it can scale to handle large volumes
of traffic without compromising detection performance.

• Integration with Other Security Tools: The system could
also be integrated with other security solutions, such
as firewalls and intrusion prevention systems (IPS), to
provide a more comprehensive security infrastructure.
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D. System Diagram
A high-level overview of the proposed hybrid system

architecture can be visualized in the form of a system
diagram. This diagram will help illustrate the compo-
nents involved in the anomaly detection pipeline, showing
how the Gaussian Mixture Model (GMM) interacts with
the semantic analysis component to improve detection
accuracy and reduce false positives.

The system consists of the following key components:
1) Data Collection: Raw network traffic data data col-

lected and preprocessed. This data includes packet sizes,
IP addresses, protocol types, and connection attempts.

2) Anomaly Detection (GMM): The Gaussian Mixture
Model (GMM) is used to model network traffic and iden-
tify potential anomalies based on statistical deviations.

3) Semantic Analysis: Once anomalies are detected,
the system uses an ontology-based semantic reasoning
engine to interpret and classify the anomalies. This en-
gine links the detected anomalies to known cybersecurity
threats.

4) Threat Classification: The system classifies the
anomalies into specific cyber threats such as DoS, DDoS,
brute-force attacks, and more.

5) Explanations and Decision Support: The system
generates automated explanations for detected threats,
providing security analysts with context and reasoning
behind each classification.

Figure 2. System diagram which shows the flow of data from one
component to another.

E. Explanation of the System Diagram
• Data Collection: This block represents the initial step

where raw network traffic is gathered and preprocessed.
Preprocessing includes feature extraction such as packet
sizes, IP addresses, protocols, and connection attempts.
The preprocessed data are then passed to the next stage
for anomaly detection.

• Anomaly Detection (GMM): GMM models normal traffic
behavior and flags deviations as anomalies. These are
passed to semantic analysis.

• Semantic analysis: Using a cybersecurity ontology, the
system interprets anomalies by matching them to known
attack patterns (e.g., DoS, brute force, botnets).

• Threat Classification: The mapped anomalies are cate-
gorized (DDoS, malware, etc.) to assess the type and
potential impact.

• Explanations and Decision Support: The system generates
human-readable explanations to help analysts understand
and respond to threats effectively.

V. Conclusion
This paper presents a novel hybrid approach for

network anomaly detection and threat classification
that combines Gaussian Mixture Model (GMM)-based
anomaly detection with semantic reasoning. The inte-
gration of these two techniques significantly improves
the effectiveness of cybersecurity analysis by addressing
some of the key limitations of traditional machine learn-
ing approaches.
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ПРИМЕНЕНИЕ СЕМАНТИЧЕСКОГО
АНАЛИЗА ИМОДЕЛЕЙ GMM ДЛЯ

ОБНАРУЖЕНИЯ АНОМАЛИЙ В СЕТЕВОМ
ТРАФИКЕ

Бекиева М. Б., Ораздурдыева Г. О.

Сетевой трафик содержит многочисленные шабло-
ны, и отклонения от этихшаблонов могут указывать на
кибератаки или сбои системы. Традиционные методы
машинного обучения, такие как модель гауссовской
смеси (GMM), эффективны для обнаружения ано-
малий, но не дают содержательной интерпретации
этих аномалий. В этой статье представлен подход,
который объединяет семантический анализ с GMM
для повышения точности обнаружения аномалий и
предоставления контекстуальных сведений об ано-
мальном поведении в сетевом трафике. Используя
онтологии кибербезопасности и семантическое обос-
нование, обнаруженные аномалииможно сопоставить с
известными киберугрозами, что повышает надежность
обнаружения. Предлагаемый метод оценивается с ис-
пользованием журналов реального сетевого трафика,
демонстрируя его эффективность в снижении ложных
срабатываний и улучшении интерпретируемости.
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