
OSTIS Platform — a Framework for Developing
Intelligent Agents Based on Semantic Networks

Nikita Zotov
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: n.zotov@bsuir.by

Abstract—This paper examines AI agent frameworks and
introduces the OSTIS Platform as a solution to limitations
in current approaches. It analyzes the principles of AI
agents, evaluates frameworks like LangGraph, CrewAI,
AutoGen, Semantic Kernel, and LlamaIndex, and details
the advantages of the OSTIS Technology. These advantages
include a unified semantic basis and deep knowledge repre-
sentation. The paper will also discuss the implementation
of OSTIS Platform and agent-driven models, highlighting
their potential for advancing intelligent systems.

Keywords—AI, Agent AI, intelligent systems, OSTIS,
OSTIS Platform, ostis-systems, semantic networks, SC-code,
knowledge base

I. INTRODUCTION

The development of artificial intelligence has witnessed
remarkable progress in recent years, particularly in the
realm of intelligent agents – software entities capable of
autonomous decision [1] – making and problem-solving.
These agents have become fundamental components in AI
systems across various domains, from virtual assistants
to complex robotic systems. As AI applications grow
increasingly sophisticated, the need for robust frameworks
to facilitate agent development has become critical.

AI agents represent a paradigm shift in software
development, moving from passive programs that merely
respond to inputs toward active entities that can sense
their environment, reason about it, and take actions to
achieve goals. These intelligent agents work through
continuous cycles of perception, reasoning, and action,
adapting to changes in their environment and learning
from experiences. Their applications span diverse domains
including robotics, virtual assistants, smart environments,
and simulation systems.

Current frameworks for developing AI agents, including
LangGraph [2], AutoGen [3], CrewAI [4], LlamaIndex
[5], and Semantic Kernel [6], have made significant con-
tributions to this field. Each offers distinct approaches to
agent orchestration, from LangGraph’s workflow-oriented
architecture to CrewAI’s role-based collaborative model.
However, despite their strengths, these frameworks exhibit
fundamental limitations that restrict their effectiveness in
addressing complex, cross-domain problems.

These limitations [7]–[10] include shallow integration
of problem-solving methods, where frameworks often
focus on specific problem-solving paradigms without
providing a unified semantic foundation. Additionally,
existing frameworks struggle with flexibility and
scalability, making them less suitable for large-scale
or highly dynamic AI systems. The complexity of
maintaining and updating developed agents represents
another significant challenge, stemming from the
lack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverselack of a unified semantic basis for integrating diverse
problem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methodsproblem-solving methods.

The OSTIS Platform [11], [12] emerges as a compre-
hensive solution to these challenges, offering a frame-
work specifically designed for developing intelligent
agents based on semantic networks. Unlike traditional
approaches, OSTIS Platform integrates diverse problem-
solving methods on a common semantic basiscommon semantic basiscommon semantic basiscommon semantic basiscommon semantic basiscommon semantic basiscommon semantic basiscommon semantic basiscommon semantic basiscommon semantic basiscommon semantic basiscommon semantic basiscommon semantic basiscommon semantic basiscommon semantic basiscommon semantic basiscommon semantic basis, enabling
the creation of complex, interconnected knowledge mod-
els capable of addressing nuanced problems.

This paper examines the principles and implementation
of the OSTIS Platform, highlighting its advantages over
existing frameworks and detailing its event-driven and
agent-driven models. By providing a unified semantic
basis and deep knowledge representation capabilities,
the OSTIS Platform establishes a robust foundation for
building intelligent agents capable of tackling complex
real-world problems more effectively than existing frame-
works.

II. STATE OF THE ART

In recent years, the development of intelligent agents
– computer programs that can make decisions and act
by themselves – has become a major area in artificial
intelligence (AI) [1], [13]–[15]. Many software tools,
called frameworks, have been created to help build these
agents. These frameworks aim to make it easier to design,
build, and manage systems that can act on their own,
learn, and solve different types of problems.

A. What are AI agents

AI agents are like digital workers. They can:
• sense what is happening around them (using data or

sensors);

113



• think about what to do next (using rules or goals);
• take actions to reach their goals.
How AI Agents Work
AI agents can be defined as software programs that

use AI techniques to perform tasks autonomously.
AI agents work by following a basic cycle of perception,

reasoning, and action [16]:
1) The agent receives information about its environment

through sensors or other data sources.
2) The agent uses this information to make decisions

based on its goals, rules, and models of the environ-
ment.

3) The agent takes actions to achieve its goals, which
can involve interacting with the environment or other
agents.

This cycle is repeated continuously as the agent
adapts to changes in its environment and learns from
its experiences.

Role of AI agents in modern systems
They are used in a wide range of applications, including

[1], [13], [14]:
• robots that move and interact with the world;
• virtual assistants (like Siri or Alexa);
• smart homes and cities that control lights, heating,

or traffic;
• systems that simulate groups of people or organiza-

tions.
What makes an AI agent framework
AI agent frameworks provide the infrastructure and

tools needed to build autonomous systems that can per-
ceive, reason, plan, and take actions to achieve specified
goals [17]. These frameworks extend the capabilities
of large language models with orchestration, planning,
memory, and tool-use capabilities, transforming them into
systems that can interact with their environment and make
decisions based on available information.

At their core, AI agent frameworks solve several
challenging aspects of agent development:

• managing context and persistent memory across
interactions;

• enabling structured interaction with external tools,
APIs, and data sources;

• making logical decisions based on available infor-
mation;

• planning multi-step processes to achieve complex
goals;

• and evaluating performance and improving reliabil-
ity.

B. Overview of existing frameworks

Several popular AI agent frameworks have gained
traction due to their diverse capabilities [18], [19]:

• LangGraph [2], [20] extends the LangChain ecosys-
tem with a graph-based architecture that treats agent

steps as nodes in a directed graph. Developed by
the creators of LangChain, it uses graph-based
technology to create detailed workflows for AI agent
systems. LangGraph provides scalable infrastructure,
an opinionated API for user interfaces, and an inte-
grated developer studio for streamlined deployment
and development [21]–[23].

• AutoGen [24] borns out of Microsoft Research, Auto-
Gen frames agent interactions as asynchronous con-
versations among specialized agents. This approach
reduces blocking, making it well-suited for longer
tasks or scenarios requiring real-time concurrency.
AutoGen supports free-form chat among many agents
and is backed by a research-driven community [3],
[25].

• CrewAI [26] is an open-source Python framework
that simplifies the development and management
of multi-agent AI systems. It assigns specific roles
to agents, enabling autonomous decision-making
and facilitating seamless communication. CrewAI
supports both sequential and hierarchical task ex-
ecution modes, providing a user-friendly platform
for creating and managing multi-agent systems [4],
[26].

• LlamaIndex [27] excels in retrieval-centric applica-
tions by integrating retrieval-augmented generation
(RAG) with indexing capabilities. This synergy
allows for extensive data lookup and knowledge
fusion, making it ideal for use-cases revolving around
data retrieval [5].

• Semantic Kernel [6], [28] is Microsoft’s .NET-first
approach to orchestrating AI "skills" and combining
them into full-fledged plans or workflows. It supports
multiple programming languages and focuses on
enterprise readiness, including security, compliance,
and integration with Azure services. Semantic Kernel
allows for the creation of a range of skills, some
powered by AI and others by pure code, making it
popular among teams integrating AI into existing
business processes.

C. Comparison of frameworks

The table I summarizes the key features and limitations
of each framework [7]–[10].

D. Other limitations of existing frameworks

Despite their strengths, these frameworks face other
significant limitations:

1) Shallow integration of problem-solving methods.
Most frameworks focus on specific problem-solving
paradigms, such as procedural or declarative meth-
ods, without providing a unified semantic basis
for integrating diverse approaches [29], [30]. For
example, AutoGen excels in conversation-based
workflows but lacks support for declarative knowl-
edge representation.

114



Framework Architecture Key Features Strengths Limitations Best use cases
LangGraph Graph-

based
archi-
tecture,
workflow-
oriented

• Explicit workflow
graphs

• State persistence
• Human-in-the-

loop support

• Fine-grained con-
trol

• LangChain integra-
tion

• Steep learning
curve

• LangChain depen-
dency

• Complex
workflows

• Research
• Multi-agent

systems

AutoGen Multi-
agent
conversa-
tional

• Asynchronous
agent messaging

• GUI support
• Tool/human inte-

gration

• Multi-agent
support

• Flexible
• Python/.NET

• Requires prompt
engineering

• Possible looping
issues

• Conversational AI
• Collaboration
• Enterprise

solutions

CrewAI Role-based
collabora-
tive

• Pythonic annota-
tions

• UI-driven engine
• 700+ integrations
• Logging

• Beginner-friendly
• Rapid prototyping

• Less suited for
single-agent

• Smaller
community

• Teamwork
• Project

management
• Healthcare

LlamaIndex Data-
centric,
retrieval-
focused

• Knowledge graph
integration

• Vector database
support

• Query routing

• Data integration
• Knowledge-

intensive tasks

• Not focused on or-
chestration

• Needs pairing with
other frameworks

• Data analysis
• Research
• Knowledge agents

Semantic
Kernel

Plugin-
based,
modular

• Multi-language
support

• Memory manage-
ment

• Enterprise security
• Plugins

• Enterprise-ready
• Microsoft ecosys-

tem

• Focus on C#
• Steep learning

curve

• Enterprise applica-
tions

• Document process-
ing

Table I
COMPARISON OF AI AGENT FRAMEWORKS

2) Limited flexibility and scalability. Frameworks like
LangGraph and AutoGen struggle with scalability
and flexibility, making them less suitable for large-
scale or highly dynamic AI systems [31].

3) Lack of support for complex tasks. Existing frame-
works often focus on specific tasks or domains,
lacking the versatility needed to tackle complex,
cross-domain problems [31]. For instance, CrewAI’s
limited orchestration strategies restrict its ability to
handle complex workflows.

4) Maintenance complexity. The lack of a unified
semantic basis for integrating diverse problem-
solving methods leads to increased complexity in
maintaining and updating developed agents. This
complexity arises from the need to manage multiple
paradigms without a common foundation, making
it difficult to ensure consistency and adaptability
across different components [31], [32].

5) Lack of standardization and interoperability. The
diversity of agent architectures and communication
protocols leads to integration and management
challenges. The lack of standardization makes it
difficult to unify practices and ensure seamless
interoperability across platforms and vendors [31].

E. Advantages of OSTIS Platform

The OSTIS Platform addresses these limitations by
providing a comprehensive framework for developing
intelligent agents based on semantic networks. The OSTIS
Technology [33] offers several key advantages:

• Unified semantic basis. The OSTIS Technology
integrates diverse problem-solving methods (both
declarative and procedural) on a common semantic
basis, allowing for the creation of complex, intercon-
nected models that can handle diverse and nuanced
information [34]–[37].

• Deep knowledge representation. The OSTIS Technol-
ogy utilizes semantic networks to represent knowl-
edge, enabling rich, interconnected models that can
address complex tasks more effectively than existing
frameworks [12], [34].

• Flexibility and scalability. The modular design of
OSTIS Technology ensures that systems can scale
efficiently without compromising performance, mak-
ing it suitable for large-scale AI applications [38],
[39].

• Adaptability and learning. ostis-systems are designed
to adapt to changing conditions and learn from
interactions, enhancing their effectiveness in dynamic

115



environments [40].
The key factor hindering the development of systems

where various problem-solving models could be freely
integrated is the lack of compatibility among different
problem-solving approaches. This stems from the absence
of a common formal framework that would enable the
implementation of models in such a way that they can be
easily integrated into a single system and supplemented
with new models as needed [32], [41].

Having established the advantages of the OSTIS Plat-
form, the following section will delve into the principles
of its implementation.

III. PRINCIPLES OF IMPLEMENTATION OF
OSTIS-PLATFORMS

All intelligent systems developed according to the
principles of the OSTIS Technology are commonly referred
to as ostis-systems. Each ostis-system consists of an
sc-model, including a knowledge base, problem solver,
a user interface, and an ostis-platform on which the
sc-model is interpreted [30], [38]. An sc-model of an
ostis-system constitutes a logical-semantic model of that
system described in SC-code, the language of universal
information encoding. An ostis-platform represents a
hardware-implemented computer or a software emulator
for interpretation of sc-models of ostis-systems [42].

Implementations of ostis-platform may vary, but each
should adhere to basic principles described in [12].

In contrast to traditional computer systems, ostis
systems orient towards:

• independenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependenceindependence from the implementation of a particu-
lar ostis-platform;

• storage of information in a unifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunified and
semantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatiblesemantically compatible form (in SC-code [43]);

• event-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-orientedevent-oriented and parallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processingparallel processing of this infor-
mation.

The principles of ostis-systems are provided by a
concrete implementation of the ostis-platform. Within
each ostis-platform, there exists:

• a shared semantic memory that allows [44]:
– storage of information constructions belonging to

SC-code (sc-texts);
– storage of information constructions not belonging

to SC-code (images, text files, audio and video
files, etc.);

– storage of subscriptions to occurrences of events
in memory;

– initiation of agents after events appear in memory;
– the use of a programming interface to work with

SC-code and non-SC-code information construc-
tions, including:
∗ operations to create, search, modify, and delete

constructions in the memory;
∗ operations for subscribing to the occurrence

of events in the memory;

∗ operations for controlling and synchronizing
processes in the memory;

∗ programming interface for creating platform-
dependent agents;

• an interpreter of the SCP asynchronous-parallel pro-
gramming language, which is a platform-independent
programming interface that implements platform-
independent operations on the shared semantic
memory.

IV. ABOUT SC-MACHINE

sc-machine [45] is the core of the OSTIS Platform
[11], designed to emulate semantic computer behavior by
storing and processing knowledge in the form of semantic
networks. At its foundation, sc-machine functions as a
graph database management system that enables efficient
storage, retrieval, and manipulation of knowledge graphs
within a shared memory structure called sc-memory.

Key features of sc-machine are:
1) Unified knowledge representation. sc-machine uses

SC-code, a universal knowledge representation lan-
guage, to encode both declarative (facts, data struc-
tures, documentation) and procedural (agents, al-
gorithms, workflows) knowledge. This approach
ensures semantic compatibility and interoperability
across different intelligent systems.

2) Agent-based processing. The system leverages an
agent-based architecture, where agents are au-
tonomous components that process knowledge
graphs, execute tasks, and solve problems. Agents
can be implemented in various languages, including
C++ and SCP Language, and interact with sc-
memory through well-defined APIs.

3) Event-driven workflow. sc-machine includes an event
manager that supports asynchronous, event-based
processing. Agents are triggered by events in the
knowledge base, enabling dynamic and parallel task
execution.

4) Extensible APIs. The platform provides native C++
APIs, as well as network APIs via the sc-server
(WebSocket/JSON), allowing integration with exter-
nal applications and services.

5) Tools. sc-machine includes tools such as sc-builder,
which loads SCs-code files into storage, and sc-server,
which exposes the knowledge base over the network
for remote access and manipulation

V. EVENT-DRIVEN MODEL WITHIN THE OSTIS
PLATFORM

The sc-machine uses event-driven model to manage
processing sc-constructions. The sc-memory stores SC-
code constructions, which are graph structures, then any
kind of events, occurring in sc-memory, is related to
changes in these graph constructions [46].

These are methods that generate events:

116



• GenerateConnector,
• EraseElement,
• SetLinkContent.
They publish events to an event queue without needing

to know which consumers will receive them. These
components filter and distribute events to appropriate
consumers. They manage the flow of events and ensure
that they reach the correct destinations. Event consumers
are the components that listen for and process events.
Event consumers can be modules, agents or something
else.

Within the OSTIS Technology, events are considered
only situations in which relationships have changed or
new relationships have been generated, or link content
have been changed, or some sc-element have been erased.

The sc-machine provides functionality for subscribing
to the following elementary types of sc-events:

• ScElementaryEvent is base class for all sc-
events, it can be used to handle all sc-events for
specified sc-element;

• ScEventAfterGenerateConnector, emits
each time, when sc-connector from or to specified
sc-element is generated;

• ScEventAfterGenerateOutgoingArc,
emits each time, when outgoing sc-arc from
specified sc-element is generated;

• ScEventAfterGenerateIncomingArc,
emits each time, when incoming sc-arc to specified
sc-element is generated;

• ScEventAfterGenerateEdge, emits each
time, when sc-edge from or to specified sc-element
is generated;

• ScEventBeforeEraseConnector, emits each
time, when sc-connector from or to specified sc-
element is erasing;

• ScEventBeforeEraseOutgoingArc, emits
each time, when outgoing sc-arc from specified
sc-element is erasing;

• ScEventBeforeEraseIncomingArc, emits
each time, when incoming sc-arc to specified
sc-element is erasing;

• ScEventBeforeEraseEdge, emits each time,
when sc-edge from or to specified sc-element is
erasing;

• ScEventBeforeEraseElement, emits, when
specified sc-element is erasing;

• ScEventBeforeChangeLinkContent, emits
each time, when content of specified sc-link is
changing.

All these sc-events classes are inher-
ited from ScElementaryEvent class.
ScElementaryEvent class is inherited from
ScEvent class that is an abstract class.

The ScElementaryEventSubscription class
serves as the base class for all sc-event subscriptions.

It is utilized to capture all sc-events for a specified sc-
element.

Each sc-event subscription constructor, excluding
the ScElementaryEventSubscription construc-
tor, requires three parameters:

• context is an object of ScMemoryContext
used to interact with sc-events.

• subscriptionElementAddr is an object of
ScAddr representing the sc-element that needs to
be monitored for a specific sc-event.

• delegateFunc is a delegate to a callback func-
tion that will be invoked upon each event emis-
sion. The callback function signature is void
delegateFunc(TScEvent const &), where
TScEvent corresponds to the respective sc-event
class.

The constructor for the ScElementaryEventSubscription
class takes four parameters:

• context is An object of ScMemoryContext
used for sc-event handling.

• eventClassAddr is an object of ScAddr repre-
senting the sc-event class.

• subscriptionElementAddr is an object of
ScAddr for the sc-element to be monitored.

• delegateFunc is a delegate to a callback function
invoked on each event emission, with the signature
void delegateFunc(ScElementaryEvent
const &).

These constructors are private and cannot be called
directly.

All sc-event classes are located in core keynodes:
• ScKeynodes::sc_event_after_generate
_connector;

• ScKeynodes::sc_event_after_generate
_outgoing_arc;

• ScKeynodes::sc_event_after_generate
_incoming_arc;

• ScKeynodes::sc_event_after_generate
_edge;

• ScKeynodes::sc_event_before_erase
_connector;

• ScKeynodes::sc_event_before_erase
_outgoing_arc;

• ScKeynodes::sc_event_before_erase
_incoming_arc;

• ScKeynodes::sc_event_before_erase
_edge;

• ScKeynodes::sc_event_before_erase
_element;

• ScKeynodes::sc_event_before_change
_link_content.

They can be used as eventClassAddr for
CreateElementaryEventSubscription.

The table II describes the parameters of the call-
back function, named in the figures. If no parameter

117



name is provided in the figure, it defaults to an empty
value. Here, context is a pointer to an object of the
ScAgentContext class.

VI. AGENT-DRIVEN MODEL WITHIN THE OSTIS
PLATFORM

The sc-machine employs an agent-driven model
for knowledge processing. This model facilitates mes-
sage exchange between agents through shared memory.
Agents can be added or removed without affecting
others, promoting decentralized and independent initiation.
The sc-machine API in C++ provides tools for
creating, managing, and integrating agents within the
sc-machine [47].

Within the OSTIS Technology, agents are classified
as either platform-independent or platform-dependent
[47]. Platform-independent agents are implemented us-
ing SC-code, interpreted by the scp-machine [48].
Platform-dependent agents are implemented using the
sc-machine API in C++.

Agents react to events (sc-events) in sc-memory. An
agent is triggered when a subscribed sc-event occurs.
The primary initiation condition defines the sc-event that
awakens the agent. Upon awakening, the agent checks
its full initiation condition. If successful, it initiates
and executes an action using an agent program. After
execution, the agent checks for a result [47].

Since the OSTIS Platform 0.10.0 [45], the API for
agents has been significantly modified—transitioning from
code generation to template-based programming. New
classes and methods have been introduced for working
with agents:

• Two base classes for all types of agents [47]:
– The ScAgent class for implementing agent

classes that respond to any elementary events in
sc-memory.

– The ScActionInitiatedAgent class for im-
plementing agents that respond to events of
initiated actions in sc-memory.

• The ScAgentContext class for working with
ScEvent events, ScEventSubscription sub-
scriptions, and ScWait and ScEventWaiter
waiters [49].

• The ScAction class for handling actions in sc-
memory.

• The ScAgentBuilder class for managing dy-
namic agent specifications [50].

• The ScKeynodes and ScModule classes have
been simplified for use [51].

ScAgent can be compared to a person who reacts
to any sc-events in their environment. For instance, if
someone shouts "Fire!", this person immediately responds
and starts acting according to a plan to help in the
situation. In terms of ScAgent, this means the agent
reacts to any elementary sc-events in sc-memory.

ScActionInitiatedAgent is similar to a person
who waits for a specific signal to start an action. For
example, if someone says "Begin the rescue operation!",
this person knows exactly what to do and starts acting.
In the case of ScActionInitiatedAgent, the agent
reacts to events related to the initiation of specific actions
in sc-memory.

The key scientific distinction between these agent archi-
tectures lies in their event-processing mechanisms and be-
havioral complexity. While ScAgent exhibits stimulus-
response patterns characteristic of purely reactive archi-
tectures, ScActionInitiatedAgent demonstrates
targeted responsiveness with higher-level goal orientation.

VII. AGENT SPECIFICATION

A. Agent specification relations

The agent specification within the OSTIS Technology
is a formalized approach to defining and managing
agents, which are entities responsible for performing
transformations in sc-memory of ostis-systems. This
approach includes [52]:

1) Agents are described using a set of ontologies that
define their concept, roles, and relationships. These
ontologies also provide formal tools to synchronize
the actions performed by agents in sc-memory.

2) The specification ensures compatibility and synchro-
nization of sc-agent actions within the semantic
network, contributing to the seamless operation
of intelligent systems developed under the OSTIS
Technology.

The agent’s specification includes:
• its primary initiation condition,
• action class it performs,
• initiation condition,
• result condition,
• key sc-elements used during action execution,
• and other details.
Storing agent specifications in a knowledge base

provides several benefits [29], [52]:
1) Agent specifications allow for easy modification

or extension of agent behavior without needing to
rewrite code. This makes the system more flexible
and adaptable to new conditions.

2) By storing specifications in a knowledge base, it
becomes easier to manage agent behavior, add new
agents, or remove existing ones without affecting
other parts of the system.

3) Agent specifications help understand how and why
agents make decisions, which is crucial for debug-
ging and optimizing the system.

4) Agent specifications provide a unified representa-
tion of their behavior, facilitating integration with
other system components and understanding their
interactions.

118



Class Description
ScElementaryEventSubscription

1 auto subscription = context->
CreateElementaryEventSubscription(

2 eventClassAddr,
3 subscriptionElementAddr,
4 [](ScElementaryEvent const & event) -> void
5 {
6 // Handle sc-event.
7 });

ScEventAfterGenerateConnector (simi-
larly ScEventAfterGenerateOutgoingArc,
ScEventAfterGenerateIncomingArc and
ScEventAfterGenerateEdge)

1 auto subscription = context->
CreateElementaryEventSubscription<

2 ScEventAfterGenerateConnector<ScType::
ConstPermPosArc>>(

3 subscriptionElementAddr,
4 [](ScEventAfterGenerateConnector<ScType::

ConstPermPosArc> const & event) -> void
5 {
6 // Handle sc-event.
7 });

ScEventBeforeEraseConnector (similarly
ScEventBeforeEraseOutgoingArc,
ScEventBeforeEraseIncomingArc and
ScEventBeforeEraseEdge)

1 auto subscription = context->
CreateElementaryEventSubscription<

2 ScEventBeforeEraseConnector<ScType::
ConstPermPosArc>>(

3 subscriptionElementAddr,
4 [](ScEventBeforeEraseConnector<ScType::

ConstPermPosArc> const & event) -> void
5 {
6 // Handle sc-event.
7 });

ScEventBeforeEraseElement

1 auto subscription = context->
CreateElementaryEventSubscription<

2 ScEventBeforeEraseElement>(
3 subscriptionElementAddr,
4 [](ScEventBeforeEraseElement const & event) ->

void
5 {
6 // Handle sc-event.
7 });

ScEventBeforeChangeLinkContent

1 auto subscription = context->
CreateElementaryEventSubscription<

2 ScEventBeforeChangeLinkContent>(
3 subscriptionElementAddr,
4 [](ScEventBeforeChangeLinkContent const & event)

-> void
5 {
6 // Handle sc-event.
7 });

Table II
TYPES OF SC-EVENT SUBSCRIPTION IN SC-MEMORY

119



Thus, storing agent specifications in a knowledge base
is a key aspect of supporting complex agent-based systems
and allows for the creation of more effective and adaptive
solutions.

Key to this API are the relations that define the agent’s
specification, connecting the agent to events, actions,
conditions, key elements, and its program. The denota-
tional semantics of these relations define their meaning in
specifying agent behavior, while the operational semantics
describe how the sc-machine uses these relations during
agent execution (table III).

This specification can be represented in a knowledge
base using SC-code [53] or programmatically using the
sc-machine API in C++.

Consider an abstract sc-agent for calculating the power
of a set. The following SCs-code (listing 1) and SCg-code
(figure 1) illustrates its specification:

The agent specification is directly involved in its
invocation process.

B. Agent call process

Below is a detailed enumeration of the steps in this
process, followed by a sequence diagram (figure 2)
illustrating the flow of operations.

1) Event occurrence. When a specific sc-event occurs
in sc-memory, the system checks for any agents
subscribed to that event type.

2) Checking primary initiation condition. The primary
initiation condition defines the sc-event that will
trigger the agent. This condition acts as a preliminary
filter.

3) Checking full initiation condition. Upon an event,
the agent checks its full initiation condition. This
is a more detailed check to ensure the agent should
execute.

4) Action initiation. If the full initiation condition is
met, the agent initiates an action of a specified class.

5) Agent program execution. The agent executes its
program (defined in the DoProgram method). This
program performs the agent’s task, processing input
and generating output.

6) Checking result condition. After executing its pro-
gram, the agent can check if a result condition is
met, which might involve verifying the outcome of
the action.

C. Ways of providing agent’s specification

The sc-machine API provides two methods for
implementing agents in C++:

• when the agent’s specification is represented in the
knowledge base;

• when the agent’s specification is represented directly
in C++ code.

Agent specifications can be static, dynamic, or semi-
dynamic.

1) Static agent specification is provided externally in
the agent’s class (via overriding public getters). It is
not stored in the knowledge base (see Static agent
specification).

2) Dynamic agent specification is provided in the
knowledge base or initially in the code but is
automatically saved into the knowledge base. Use the
API of ScModule and ScAgentBuilder classes
(see Dynamic agent specification).

3) Semi-dynamic agent specification is provided in the
knowledge base or initially in the code and appended
externally (via overriding public getters, see Semi-
dynamic agent specification).

D. Static agent specification

This section discusses implementing an agent with a
static specification. For dynamic agent specifications, see
Dynamic agent specification.

Two main classes are used for implementing agents:
ScAgent and ScActionInitiatedAgent.
ScAgent
It is a base class for agents in C++. This class provides

implemented methods to retrieve elements of the agent’s
specification from the knowledge base. All these methods
can be overridden in agent class [47].

A distinction should be made between an abstract
sc-agent as a class of functionally equivalent sc-agents
described in the knowledge base and ScAgent as a
C++ class that implements an API to work with abstract
sc-agents in the knowledge base.

This class can be used for all types of platform-
dependent agents. Agents of this class react for events in
the knowledge base, check the full initiation condition. If
the check is successful, generate, initiate and perform the
action. After that, they check full result condition. The
example using this class is represented in listing 2.

1 // File my_agent.hpp
2 #pragma once
3

4 #include <sc-memory/sc_agent.hpp>
5

6 // The agent class should inherit from
the ScAgent class and specify the
template argument as the sc-event
class. Here,
ScEventAfterGenerateIncomingArc<
ScType::ConstPermPosArc> is the type
of event to which the given agent

reacts.
7 class MyAgent : public ScAgent<
8 ScEventAfterGenerateIncomingArc<ScType

::ConstPermPosArc>>
9 {

10 public:
11 // Here, the class of actions that the

given agent performs should be
specified.

12 // Here ‘GetActionClass‘ overrides ‘
GetActionClass‘ in ‘ScAgent‘ class
. This overriding is required.

13 ScAddr GetActionClass() const override
;

120



Relation identifier Denotational semantics Operational semantics
nrel_primary_initiation
_condition

Specifies the initial event in sc-memory that
triggers the agent. Indicates which event will
cause the agent to "awaken."

The system checks for agents subscribed to an
event type. The relation is used to determine
if an agent is subscribed to that event.

nrel_sc_agent_action
_class

Specifies the type or class of actions that
the agent is designed to perform. Defines the
agent’s role or the kind of actions it’s capable
of executing.

If the full initiation condition is met, the agent
initiates an action of the class specified by
this relation. Determines what "action" will
be created when the agent starts to perform a
task.

nrel_initiation_condition
_and_result

Encapsulates a pair of conditions: the initiation
condition (a detailed check after the primary
condition) and the result condition (a check
after the action’s execution).

Upon awakening, the agent checks its full ini-
tiation condition. After executing its program,
the agent checks if the result condition is met.
These conditions allow the agent to verify its
context and the outcome of its actions.

nrel_sc_agent_key
_sc_elements

Defines the set of key knowledge elements
that the agent needs to access and manipulate
during its operation. These are important
concepts or data structures the agent relies
on.

During the agent’s program execution, this
relation identifies the specific SC-elements
needed by the agent, allowing the agent to
quickly locate and use them.

nrel_sc_agent_program Specifies the actual code or program that the
agent executes. This is the implementation
of the agent’s logic, defining how the agent
processes input and generates output.

The agent executes the program specified by
this relation. This program processes input,
interacts with the knowledge base, and gener-
ates the desired output based on the agent’s
purpose.

nrel_inclusion This relation connects an abstract sc-agent
to a concrete implementation of that agent.
It specifies implementations of an abstract
agent, which can be implemented in C++
or SC-code. It is important for linking the
general specification of an agent to its specific
implementation details.

–

Table III
DENOTATIONAL AND OPERATIONAL SEMANTICS OF RELATIONS IN AGENT SPECIFICATION

14 // Here, the program of the given
agent should be implemented. This
overriding is required.

15 ScResult DoProgram(
16 ScEventAfterGenerateIncomingArc<
17 ScType::ConstPermPosArc> const &

event,
18 ScAction & action) override;
19

20 // Other user-defined methods.
21 };

Listing 2. Definition of an agent inheriting ScAgent class

It is possible to override DoProgram without sc-event
argument (listing 3).

1 // File my_agent.hpp
2 #pragma once
3

4 #include <sc-memory/sc_agent.hpp>
5

6 class MyAgent : public ScAgent<
7 ScEventAfterGenerateIncomingArc<ScType

::ConstPermPosArc>>
8 {
9 public:

10 ScAddr GetActionClass() const override
;

11 ScResult DoProgram(ScAction & action)
override;

12

13 // Other user-defined methods.
14 };

Listing 3. Definition of an agent inheriting ScAgent class
with one-argument DoProgram

Any existing event types can be specified as a template
argument to the ScAgent class. For example, an agent
can be created that will be triggered by an sc-event
involving the removal of an sc-element (see listing 4).

1 // File my_agent.hpp
2 #pragma once
3

4 #include <sc-memory/sc_agent.hpp>
5

6 class MyAgent : public ScAgent<
ScEventBeforeEraseElement>

7 {
8 public:
9 ScAddr GetActionClass() const override

;
10 ScResult DoProgram(
11 ScEventBeforeEraseElement const &

event, ScAction & action)
override;

12

13 // Other user-defined methods.
14 };

Listing 4. Example of an agent triggered by removing sc-element

ScActionInitiatedAgent
ScActionInitiatedAgent facilitates the imple-

mentation of agents that execute actions initiated by other
agents. It requires passing the action class node rather
than manually checking the initiation condition.

This class is only applicable for agents trig-
gered by generating an outgoing sc-arc from the
action_initiated class node (listing 5).

121



1 // Abstract sc-agent
2 agent_calculate_set_power
3 <- abstract_sc_agent;
4 => nrel_primary_initiation_condition:
5 // Class of sc-event and listen (subscription) sc-element
6 (sc_event_after_generate_outgoing_arc => action_initiated);
7 => nrel_sc_agent_action_class:
8 // Class of actions to be performed by agent
9 action_calculate_set_power;

10 => nrel_initiation_condition_and_result:
11 (..agent_calculate_set_power_initiation_condition
12 => ..agent_calculate_set_power_result_condition);
13 <= nrel_sc_agent_key_sc_elements:
14 // Set of key sc-elements used by this agent
15 {
16 action_initiated;
17 action_calculate_set_power;
18 concept_set;
19 nrel_set_power
20 };
21 => nrel_inclusion:
22 // Instance of abstract sc-agent; concrete implementation of agent in C++
23 agent_calculate_set_power_implementation
24 (*
25 <- platform_dependent_abstract_sc_agent;;
26 // Set of links with paths to sources of agent programs
27 <= nrel_sc_agent_program:
28 {
29 [github.com/path/to/agent/sources]
30 (* => nrel_format: format_github_source_link;; *)
31 };;
32 *);;
33

34 // Full initiation condition of agent
35 ..agent_calculate_set_power_initiation_condition
36 = [*
37 action_calculate_set_power _-> .._action;;
38 action_initiated _-> .._action;;
39 .._action _-> rrel_1:: .._set;;
40 concept_set _-> .._set;;
41 *];;
42 // Agent should check by this template that initiated action is instance of
43 // class ‘action_calculate_set_power‘ and that it has argument.
44

45 // Full result condition of agent
46 ..agent_calculate_set_power_result_condition
47 = [*
48 .._set _=> nrel_set_power:: _[];;
49 *];;
50 // Agent should check by this template that action result contains
51 // sc-construction generated after performing action.

Listing 1. An example of abstract sc-agent spefication represented in SCs-code

1 // File my_agent.hpp
2 #pragma once
3

4 #include <sc-memory/sc_agent.hpp>
5

6 // The agent class should inherit from
the ScActionInitiatedAgent class.

7 class MyAgent : public
ScActionInitiatedAgent

8 {
9 public:

10 // Here, the class of actions that the
given agent performs should be

specified.
11 // This overriding is required.
12 ScAddr GetActionClass() const override

;
13 // Here, the program of the given

agent should be implemented.
14 // This overriding is required.
15 ScResult DoProgram(
16 ScActionInitiatedEvent const & event

, ScAction & action) override;
17 // Here ‘ScActionInitiatedEvent‘ is

type of event to which the given
agent reacts.

18

19 // Other user-defined methods.
20 };

Listing 5. Definition of an agent inheriting
ScActionInitiatedAgent class

122



Figure 1. An example of abstract sc-agent spefication represented in SCg-code

123



Figure 2. Sequence diagram of agent call

ScActionInitiatedAgent has default
GetInitiationConditionTemplate that returns
template that can be used to check that initiated action is
action with class of specified agent.
ScActionInitiatedEvent is alias for

ScEventAfterGenerateOutgoingArc with
subscription sc-element action_initiated.
Required Methods
GetActionClass
This method retrieves the action class performed

by the agent. If the abstract sc-agent for this agent
class lacks an action class, the method throws
utils::ExceptionItemNotFound. See listing 6.

1 // File my_agent.cpp
2 #include "my_agent.hpp"
3 #include "keynodes/my_keynodes.hpp"
4

5 ScAddr MyAgent::GetActionClass() const
6 {
7 // A valid sc-address of the action

class must be specified, and the
action class must be one of the
following types: ‘receptor_action
‘, ‘effector_action‘, ‘
behavioral_action‘, or ‘
information_action‘. Otherwise,
the given sc-agent cannot be
subscribed to the sc-event.

8 return MyKeynodes::my_action;
9 }

Listing 6. Implementation of GetActionClass method

DoProgram

This method is executed when the agent successfully
checks the initiation condition. The agent processes an
input construction and generates an output construction
(listing 7).

1 ScResult MyAgent::DoProgram(
ScActionInitiatedEvent const & event
, ScAction & action)

2 {
3 // Class ‘ScAction‘ encapsulates

information about sc-action. The
provided action is action that the
given agent performs right now.

It belongs to ‘MyKeynodes::
my_action‘ class. If agent
inherits ‘ScActionInitiatedAgent‘
class then this agent performs
action initiated externally. If
agent inherits ‘ScAgent‘ then this
agent generates action, initiates
and performs new action, not

provided externally. Actions are
copyable and movable. ‘ScAction‘
is inherited from ‘ScAddr‘.

4

5 // ‘ScActionInitiatedEvent‘ class is
event type on which the given
agent is triggered. It is
encapsulate information about sc-
event. The provided event is event
on which the agent is triggered

right now. It has methods to get
information about initiated sc-
event: ‘GetUser‘, ‘GetArc‘, ‘
GetSubscriptionElement‘, ‘
GetArcSourceElement‘.

6

7 // Main logic of agent...
8

124



9 // The action state must be specified
at all ends of the agent program.
‘FinishSuccessfully‘ sets the
action as ‘
action_finished_successfully‘. The
‘ScResult‘ object cannot be

generated via a constructor
because it is private.

10 return action.FinishSuccessfully();
11 }

Listing 7. Implementation of DoProgram method

The ScAgent class has a field m_context, an object
of the ScAgentContext class, which can be used
to complete operations in sc-memory. The ScAgent
class also has a field m_logger, an object of the
ScLogger class, for logging code.

If sc-exceptions are not caught in DoProgram, then
sc-machine will catch them, finish the action with an
error, and issue a warning about it.

Handling action arguments
Various methods are available for retrieving action

arguments to simplify code (listings 8 and 9).

1 ScResult MyAgent::DoProgram(
2 ScActionInitiatedEvent const & event,

ScAction & action)
3 {
4 auto [argAddr1, argAddr] = action.

GetArguments();
5

6 // Some logic...
7

8 return action.FinishSuccessfully();
9 }

Listing 8. Retrieving action arguments via GetArguments method

1 ScResult MyAgent::DoProgram(
2 ScActionInitiatedEvent const & event,

ScAction & action)
3 {
4 ScAddr const & argAddr1 = action.

GetArgument(ScKeynodes::rrel_1);
5 // Parameter has ScAddr type.
6

7 // Some logic...
8

9 return action.FinishSuccessfully();
10 }

Listing 9. Retrieving action arguments via GetArgument method

Retrieving action arguments

1 ScResult MyAgent::DoProgram(
2 ScActionInitiatedEvent const & event,

ScAction & action)
3 {
4 ScAddr const & argAddr1 = action.GetArgument

(1); // size_t
5 // This would be the same if ScKeynodes::

rrel_1 were passed instead of 1.
6

7 // Some logic...
8

9 return action.FinishSuccessfully();
10 }

Listing 10. Retrieving action argument by position

1 ScResult MyAgent::DoProgram(
2 ScActionInitiatedEvent const & event,

ScAction & action)
3 {
4 ScAddr const & argAddr1
5 = action.GetArgument(1, MyKeynodes::

default_text_link);
6 // If the action does not have the first

argument, MyKeynodes::default_text_link
will be returned.

7

8 // Some logic...
9

10 return action.FinishSuccessfully();
11 }

Listing 11. Retrieving action argument with a default value

Using ScAction as ScAddr

1 ScResult MyAgent::DoProgram(
2 ScActionInitiatedEvent const & event,

ScAction & action)
3 {
4 // The ScAction object can be used as ScAddr.
5 ScIterator3Ptr const it3 = m_context.

CreateIterator3(action, ..., ...);
6

7 // Some logic...
8

9 return action.FinishSuccessfully();
10 }

Listing 12. Using ScAction as ScAddr

Handling action result

1 ScResult MyAgent::DoProgram(
2 ScActionInitiatedEvent const & event,

ScAction & action)
3 {
4 // Some logic...
5

6 action.FormResult(foundAddr1, generatedAddr1,
...);

7 // Or the ‘UpdateResult‘ method can be used
for this.

8 return action.FinishSuccessfully();
9 }

Listing 13. Forming an action result

1 ScResult MyAgent::DoProgram(
2 ScActionInitiatedEvent const & event,

ScAction & action)
3 {
4 // Some logic...
5

6 action.SetResult(structureAddr);
7 return action.FinishSuccessfully();
8 }

Listing 14. Setting an action result

Handling action finish state

1 ScResult MyAgent::DoProgram(
2 ScActionInitiatedEvent const & event,

ScAction & action)
3 {
4 // Some logic...
5

6 if (/* case 1 */)
7 return action.FinishSuccessfully();

125



8 else if (/* case 2 */)
9 return action.FinishUnsuccessfully();

10 else
11 return action.FinishWithError();
12 }

Listing 15. Finishing an action with different statuses

1 ScResult MyAgent::DoProgram(
2 ScActionInitiatedEvent const & event,

ScAction & action)
3 {
4 action.IsInitiated(); // result: true
5 action.IsFinished(); // result: false
6 action.IsFinishedSuccessfully(); // result:

false
7

8 // Some logic...
9

10 return action.FinishSuccessfully();
11 }

Listing 16. Checking action status

Optional methods
GetAbstractAgent
This method searches for an abstract agent for an

agent of the specified class. If the agent implemen-
tation for this agent class is not included in any ab-
stract sc-agent, GetAbstractAgent will throw a
utils::ExceptionItemNotFound.

1 ScAddr MyAgent::GetAbstractAgent() const
2 {
3 // A valid sc-address of the abstract agent

must be specified here. Otherwise, the
given sc-agent cannot be subscribed to an
sc-event.

4 return MyKeynodes::my_abstract_agent;
5 }

Listing 17. Overriding the GetAbstractAgent method

Remember, if only this method and the required
methods are overridden, other getters will return elements
of the specification for the specified abstract agent. All
non-overridden getters call GetAbstractAgent.

GetEventClass
This method searches for the sc-event class to

which the agent class is subscribed. It will throw a
utils::ExceptionItemNotFound if the abstract
sc-agent for this agent class does not have a primary
initiation condition.

1 ScAddr MyAgent::GetEventClass() const
2 {
3 // It is necessary to specify a valid sc-

address of the event class. Otherwise,
the given sc-agent cannot be subscribed
to an sc-event.

4 return ScKeynodes::
sc_event_after_generate_outgoing_arc;

5 }

Listing 18. Overriding the GetEventClass method

GetEventSubscriptionElement
This method searches for the sc-event subscription

sc-element that initiates the sc-event. It will throw a

utils::ExceptionItemNotFound if the abstract
sc-agent for this agent class does not have a primary
initiation condition.

1 ScAddr MyAgent::GetEventSubscriptionElement()
const

2 {
3 // It is necessary to specify a valid sc-

address of the sc-event subscription sc-
element. Otherwise, the given sc-agent
cannot be subscribed to an sc-event.

4 return ScKeynodes::action_initiated;
5 }

Listing 19. Overriding the GetEventSubscriptionElement method

Do not override GetEventClass and
GetEventSubscriptionElement for agents
with statically specified sc-event types. Such code
cannot be compiled. Override them if agent class
inherits from ScAgent<ScElementaryEvent>
(ScElementaryEventAgent).
ScModule
This class is a base class for subscribing/unsubscribing

agents to/from sc-events. It’s like a complex component
that contains connected agents.

To subscribe agents to sc-events, implement module
class (listing 20) and call Agent methods to subscribe
agents (listing 21).

1 // File my_module.hpp
2 #pragma once
3

4 #include <sc-memory/sc_module.hpp>
5

6 class MyModule : public ScModule
7 {
8 };

Listing 20. Definition of module class inheriting ScModule class

1 // File my_module.cpp:
2 #include "my-module/my_module.hpp"
3

4 #include "my-module/keynodes/my_keynodes
.hpp"

5 #include "my-module/agent/my_agent.hpp"
6

7 SC_MODULE_REGISTER(MyModule)
8 // It initializes static object of ‘

MyModule‘ class that can be used
to call methods for subscribing
agents to sc-events.

9 ->Agent<MyAgent>();
10 // This method subscribes the agent

and returns an object of MyModule.
MyAgent is inherited from

ScActionInitiatedAgent. It points
to the module to which the agent
class MyAgent should be subscribed
to the sc-event of adding an

outgoing sc-arc from the sc-
element action_initiated. This is
a default parameter in this method
for subscribing agent classes

inherited from
ScActionInitiatedAgent.

Listing 21. Subscribing agent via module class

126



The Agent method should be called without
arguments for agent classes that inherit from
ScActionInitiatedAgent. However, for agent
classes that inherit from ScAgent, the Agent method
should be called while providing an sc-event subscription
sc-element.

A module subscribes agents when the sc-memory
initializes and it unsubscribes them when the sc-memory
shutdowns.

Additionally, a module can be used to subscribe a set
of agents (see listing 22).

1 // File my_module.cpp:
2 #include "my-module/my_module.hpp"
3

4 #include "my-module/agent/my_agent1.hpp"
5 #include "my-module/agent/my_agent2.hpp"
6 #include "my-module/agent/my_agent3.hpp"
7 #include "my-module/agent/my_agent4.hpp"
8 #include "my-module/agent/my_agent5.hpp"
9

10 SC_MODULE_REGISTER(MyModule)
11 ->Agent<MyAgent1>()
12 ->Agent<MyAgent2>()
13 ->Agent<MyAgent3>()
14 ->Agent<MyAgent4>()
15 ->Agent<MyAgent5>()
16 // ...
17 ;

Listing 22. Subscribing several agents via module class

If initialization of non-agent objects in a module is
required, the Initialize and Shutdown methods
can be overridden in the module class (see listings 23
and 24).

1 // File my_module.hpp:
2 class MyModule : public ScModule
3 {
4 + void Initialize(ScMemoryContext *

context) override;
5 + void Shutdown(ScMemoryContext *

context) override;
6 };

Listing 23. Definition of module class with overriding
Initialize and Shutdown methods

1 // File my_module.cpp:
2 #include "my-module/my_module.hpp"
3

4 #include "my-module/agent/my_agent.hpp"
5

6 SC_MODULE_REGISTER(MyModule)
7 ->Agent<MyAgent>();
8

9 + // This method will be called once.
10 + void MyModule::Initialize(

ScMemoryContext * context)
11 + {
12 + // Implement initialize of non-agent

objects here.
13 + }
14 + // This method will be called once.
15 + void MyModule::Shutdown(

ScMemoryContext * context)
16 + {
17 + // Implement shutdown of non-agent

objects here.

18 + }

Listing 24. Implementation of module class with overriding
Initialize and Shutdown methods

E. Dynamic agent specification

Modules allow to subscribe agents with dynamic
specification provided in knowledge base or in code.
Dynamic specification can be changed by other agents.

The ScModule class includes the AgentBuilder
method. This method can be called with an agent class,
providing the keynode of the agent implementation
specified in the knowledge base, or by calling methods
after this to set the specification elements for the given
agent [50].
ScAgentBuilder
The AgentBuilder method creates object of

ScAgentBuilder class that is needed to initialize
agent specification from code or from knowledge base.

Loading initial agent specification in C++.
An initial specification for an agent class can be defined

in code using the ScAgentBuilder (see listing 25).

1 // File my_module.cpp:
2 #include "my-module/my_module.hpp"
3

4 #include "my-module/agent/my_agent.hpp"
5

6 SC_MODULE_REGISTER(MyModule)
7 ->AgentBuilder<MyAgent>()
8 // Abstract agent must belong to ‘

abstract_sc_agent‘.
9 ->SetAbstractAgent(MyKeynodes::

my_abstract_agent)
10 ->SetPrimaryInitiationCondition({
11 // Event class must belong to ‘

sc_event‘.
12 ScKeynodes::

sc_event_after_generate_
outgoing_arc,

13 ScKeynodes::action_initiated
14 })
15 // The action class should be one of

the following types:
16 // ‘receptor_action‘, ‘

effector_action‘, ‘
behavioral_action‘ or

17 // ‘information_action‘.
18 ->SetActionClass(MyKeynodes::

my_action_class)
19 ->SetInitiationConditionAndResult({
20 MyKeynodes::my_agent_initiation_

condition_template,
21 MyKeynodes::my_agent_result_

condition_template
22 })
23 ->FinishBuild();

Listing 25. Definition of initial agent specification

So, the initial specification for an agent can be loaded
into the knowledge base from the code. It can be modified
or left unchanged, depending on the specific problem.

If a specification for an agent already exists in the
knowledge base, no new connections will be generated,
i.e., there will be no duplicates. All provided arguments

127



must be valid; otherwise, the module will not be sub-
scribed, as errors will occur. If the specification for an
agent is not already in the knowledge base, all the methods
listed after the AgentBuilder call must be invoked.

At the end of the list following the AgentBuilder
call, the FinishBuild method must be called; other-
wise, the code cannot be compiled.

Loading agent specification from knowledge base.
If a specification for an agent exists in the knowledge

base, written in SCs-code or SCg-code, then the imple-
mentation of the agent can be specified.

Write the scs-specification (see listings 26) (or scg-
specification (figure 3)) for the agent and use it to
subscribe the agent within a module (listing 27).

1 // File my_module.cpp:
2 #include "my-module/my_module.hpp"
3

4 #include "my-module/agent/my_agent.hpp"
5

6 SC_MODULE_REGISTER(MyModule)
7 ->AgentBuilder<MyAgent>(ScKeynodes::

my_agent_implementation)
8 ->FinishBuild();

Listing 27. Subscribing agent with dynamic specification
within ScModule class

If the specification of an agent is not complete in the
knowledge base, the module will not be subscribed, as
errors will occur. Other correctly specified agents will be
subscribed without errors.

F. Semi-dynamic agent specification

Semi-dynamic agent specification is a hybrid approach
that combines the advantages of both static and dynamic
agent specifications within the OSTIS Platform. In this
approach, part of the agent’s specification is stored in the
knowledge base and can be modified at runtime, while
another part is defined directly in the agent’s source code
by overriding public getter methods.

Key features of semi-dynamic specification are:
1) Partial storage in the knowledge base. Some spec-

ification elements (such as initiation conditions or
key sc-elements) are defined in the knowledge base,
allowing them to be analyzed and modified by other
agents during system operation.

2) Partial implementation in code. Other specification
elements (such as the action class or the agent’s
program) are implemented directly in the agent’s
code, providing fast access and execution.

When to use semi-dynamic specification:
1) When certain aspects of agent behavior require high

performance, while others need to be adaptable at
runtime.

2) In systems where some specification elements are
frequently accessed and should be retrieved quickly,
while others may change.

3) For incremental migration from static to dynamic
specification.

Implementation example

1 // File my_agent.hpp
2 #pragma once
3

4 #include <sc-memory/sc_agent.hpp>
5

6 class MyAgent : public ScAgent<
ScEventAfterGenerateIncomingArc<
ScType::ConstPermPosArc>>

7 {
8 public:
9 // Static part: action class is

defined in code
10 ScAddr GetActionClass() const override
11 {
12 return MyKeynodes::my_action;
13 }
14

15 // Static part: agent program
implemented in code

16 ScResult DoProgram(ScAction & action)
override

17 {
18 // Agent logic implementation
19 return action.FinishSuccessfully();
20 }
21

22 // Dynamic part: initiation condition
retrieved from knowledge base

23 ScAddr GetInitiationCondition() const
override

24 {
25 ScAddr abstractAgent =

GetAbstractAgent();
26 if (!abstractAgent.IsValid())
27 return ScAddr::Empty;
28 ScAddr result =

FindInitiationConditionInKB(
abstractAgent);

29 return result.IsValid() ? result :
ScAgent::GetInitiationCondition
();

30 }
31

32 // Other methods can be similarly
implemented

33 };

Listing 28. Example of a semi-dynamic agent specification

Subscribing agent with semi-dynamic specification

1 // File my_module.cpp
2 #include "my-module/my_module.hpp"
3 #include "my-module/agent/my_agent.hpp"
4

5 SC_MODULE_REGISTER(MyModule)
6 ->AgentBuilder<MyAgent>(MyKeynodes::

my_agent_implementation)
7 // Only dynamic parts of the

specification are set here
8 ->SetInitiationConditionAndResult({
9 MyKeynodes::my_agent_initiation

_condition_template,
10 MyKeynodes::my_agent_result

_condition_template
11 })
12 ->FinishBuild();

Listing 29. Agent subscribing with semi-dynamic specification

128



1 // Specification of agent in knowledge base.
2 my_abstract_agent
3 <- abstract_sc_agent;
4 => nrel_primary_initiation_condition:
5 (sc_event_after_generate_outgoing_arc => action_initiated);
6 => nrel_sc_agent_action_class:
7 my_action_class;
8 => nrel_initiation_condition_and_result:
9 (my_agent_initiation_condition_template

10 => my_agent_result_condition_template);
11 <= nrel_sc_agent_key_sc_elements:
12 {
13 action_initiated;
14 my_action_class;
15 my_class
16 };
17 => nrel_inclusion:
18 my_agent_implementation
19 (*
20 <- platform_dependent_abstract_sc_agent;;
21 <= nrel_sc_agent_program:
22 {
23 [github.com/path/to/agent/sources]
24 (* => nrel_format: format_github_source_link;; *)
25 };;
26 *);;
27

28 my_agent_initiation_condition_template
29 = [*
30 my_action_class _-> .._action;;
31 action_initiated _-> .._action;;
32 .._action _-> rrel_1:: .._parameter;;
33 *];;
34

35 my_agent_result_condition_template
36 = [*
37 my_class _-> .._my_node;;
38 *];;

Listing 26. An example of dynamic agent specification represented in SCs-code

G. Comparative analysis of types of agent specifications

Agent specification in the OSTIS Platform can be imple-
mented in three principal ways: static, dynamic, and semi-
dynamic. Each approach offers distinct advantages and
trade-offs, making them suitable for different development
scenarios.

Static agent specification is defined entirely in the
agent’s source code by overriding public getter meth-
ods of the ScAgent or ScActionInitiatedAgent
classes. This method ensures maximum performance
and predictability, as the specification is hardcoded and
not affected by changes in the knowledge base. It is
ideal for agents whose behavior is fixed and does not
require runtime adaptation. However, modifying the
agent’s behavior requires changes to the source code
and recompilation, which can limit flexibility in dynamic
environments.

Dynamic agent specification is stored in the knowl-
edge base, either defined directly in SCs/SCg-code or
loaded via the ScAgentBuilder API. This approach
allows agent specifications to be modified at runtime by
other agents or system components, supporting greater

flexibility and adaptability. It is particularly useful in
systems where agent behavior must evolve in response
to changing data or requirements. The trade-off is a
potential performance overhead due to the need to query
the knowledge base for specification details, and the
increased complexity of ensuring that all specification
elements are correctly defined and synchronized.

Semi-dynamic agent specification combines elements
of both static and dynamic approaches. Some parts of the
specification – typically those that are performance-critical
or rarely changed – are defined in code, while others are
stored in the knowledge base and can be modified at
runtime. This hybrid method offers a balance between
performance and flexibility, enabling developers to opti-
mize access to critical specification elements while still
allowing for dynamic adaptation where needed. However,
it introduces additional complexity, as developers must
carefully manage the division between static and dynamic
components to avoid inconsistencies.

The implementation of agent specifications in the
OSTIS Platform establishes a clear mapping between
semantic relations in the knowledge base and program
interfaces. Table IV demonstrates this correspondence.

129



Figure 3. An example of dynamic agent specification represented in SCg-code

130



Table V summarizes the main characteristics of each
specification type.

VIII. CONCLUSION

The OSTIS Platform marks a major step forward in in-
telligent agent frameworks by introducing an architecture
grounded in semantic networks, effectively overcoming
key limitations of current approaches.

By establishing a unified semantic foundation, OSTIS
Platform enables integration of diverse problem-solving
methods, supporting the development of advanced AI
systems that can tackle complex, cross-domain challenges
beyond the reach of conventional frameworks.

The sc-machine, as the central component of the OSTIS
Technology, delivers critical features including unified
knowledge representation, agent-based processing, event-
driven workflow, and extensible APIs. This infrastructure
supports the development of intelligent agents that can
operate autonomously within a shared semantic environ-
ment, reacting to events and executing tasks based on
their specifications.

The event-driven model in OSTIS Platform allows
agents to process semantic constructions by responding
to specific events in sc-memory, supporting decentralized
and independent knowledge processing. Agents can be
added or removed without disrupting others, ensuring
system robustness and flexibility.

The agent-driven model enhances adaptability and
autonomy by enabling agents to exchange messages via
shared memory, fostering collaborative decision-making
and dynamic response to new situations.

The flexible specification system for agents – offering
static, dynamic, and semi-dynamic approaches – provides
developers with multiple options for implementing agents
according to their specific requirements. This flexibility,
combined with the platform’s robust API for creating,
managing, and integrating agents, makes OSTIS Platform
a versatile framework suitable for diverse AI applications.

As the field of artificial intelligence continues to evolve,
the OSTIS Platform stands as a promising foundation for
developing next-generation intelligent systems.

ACKNOWLEDGMENT

The authors would like to thank the scientific team
of the Department of Intelligent Information Technolo-
gies at the Belarusian State University of Informatics
and Radioelectronics for their assistance and valuable
comments.

This work was carried out with financial support from
the Belarusian Republican Foundation for Fundamental
Research (contract with BRFFR № F24MV-011 from
15.04.2024).

REFERENCES

[1] A. Kapoor et al., “AI Agents: Evolution, Architecture, and
Real-World Applications,” arXiv preprint arXiv:2503.12687, 2024,
comprehensive review of AI agent architectures, knowledge
representation, evaluation, and real-world applications. [Online].
Available: https://arxiv.org/abs/2503.12687

[2] Zep AI, “LangGraph Tutorial: Building LLM Agents with
LangChain’s Agent Framework,” 2024, tutorial and conceptual
overview of LangGraph’s architecture and features. [Online].
Available: https://www.getzep.com/ai-agents/langgraph-tutorial

[3] Qingyun Wu and others, “AutoGen: Enabling Next-Gen LLM
Applications via Multi-Agent Conversation,” arXiv preprint
arXiv:2308.08155, 2023, foundational paper on AutoGen’s
multi-agent conversational framework for LLM applications.
[Online]. Available: https://arxiv.org/abs/2308.08155

[4] WorkOS, “Top AI Agent Frameworks and Platforms in 2025,”
WorkOS Blog, 2025, feature analysis and evaluation of CrewAI
among leading frameworks. [Online]. Available: https://workos.
com/blog/top-ai-agent-frameworks-and-platforms-in-2025

[5] AIM Research, “LlamaIndex is Building AI Agents
That Actually Understand Your Data,” AIM Research,
2025, in-depth look at LlamaIndex’s architecture, data
integration, and enterprise applications. [Online]. Avail-
able: https://aimresearch.co/ai-startups/llamaindex-is-building-ai-
agents-that-actually-understand-your-data

[6] Microsoft Developer Blogs, “The Future of AI: Customizing
AI Agents with the Semantic Kernel Agent Framework,”
2025, explains agent orchestration and multi-agent system
construction with Semantic Kernel. [Online]. Available:
https://devblogs.microsoft.com/semantic-kernel/the-future-of-ai-
customizing-ai-agents-with-the-semantic-kernel\hyphenation-
agent-framework/

[7] Y. Zhang et al., “Review of Autonomous Systems and
Collaborative AI Agent Frameworks,” SSRN Electronic Journal,
2025, in-depth review and comparison of frameworks such
as LangGraph, CrewAI, OpenAI Swarm, AutoGen, and IBM
Watsonx.AI. [Online]. Available: https://papers.ssrn.com/sol3/
Delivery.cfm/5142205.pdf?abstractid=5142205&mirid=1

[8] World Journal of Advanced Engineering and Technology
Sciences, “A Comprehensive Review of AI Agent Frameworks,
Challenges and Opportunities,” WJAETS, 2024, comparative
analysis of LangGraph, CrewAI, AutoGen, and other frameworks;
discusses strengths, limitations, and enterprise use cases. [Online].
Available: https://journalwjaets.com/sites/default/files/fulltext_pdf/
WJAETS-2025-0071.pdf

[9] Turing.com, “A Detailed Comparison of Top 6 AI Agent
Frameworks in 2025,” 2025, feature-by-feature comparison of
LangGraph, LlamaIndex, CrewAI, Semantic Kernel, AutoGen,
and OpenAI Swarm. [Online]. Available: https://www.turing.com/
resources/ai-agent-frameworks

[10] AI21 Labs, “12 AI Agent Frameworks for Enterprises in 2025,”
2025, comparison and selection criteria for enterprise AI agent
frameworks. [Online]. Available: https://www.ai21.com/blog/ai-
agent-frameworks/

[11] N. Zotov, “Design principles, structure, and development
prospects of the software platform of ostis-systems,” in Open
Semantic Technologies for Intelligent Systems: Research Papers
Collection, vol. 7. Minsk: BSUIR, 2023, pp. 67–76. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/51247/1/
Zotov_Design.pdf

[12] ——, “Software platform for next-generation intelligent computer
systems,” in Open Semantic Technologies for Intelligent Systems:
Research Papers Collection, vol. 6. Minsk: BSUIR, 2022, pp.
297–326. [Online]. Available: https://libeldoc.bsuir.by/bitstream/
123456789/49395/1/Zotov_Software.pdf

[13] IBM Think, “AI Agents in 2025: Expectations vs. Reality,” IBM
Insights, 2025, overview of the state, expectations, and enterprise
adoption of AI agents in 2025. [Online]. Available: https://www.
ibm.com/think/insights/ai-agents-2025-expectations-vs-reality

[14] BitMart Research, “AI Agents: 2024 Status and 2025 Outlook,”
BitMart Research Reports, 2025, comprehensive report on the evo-
lution of AI agents, multi-agent ecosystems, and future trends. [On-

131

https://arxiv.org/abs/2503.12687
https://www.getzep.com/ai-agents/langgraph-tutorial
https://arxiv.org/abs/2308.08155
https://workos.com/blog/top-ai-agent-frameworks-and-platforms-in-2025
https://workos.com/blog/top-ai-agent-frameworks-and-platforms-in-2025
https://aimresearch.co/ai-startups/llamaindex-is-building-ai-agents-that-actually-understand-your-data
https://aimresearch.co/ai-startups/llamaindex-is-building-ai-agents-that-actually-understand-your-data
https://devblogs.microsoft.com/semantic-kernel/the-future-of-ai-customizing-ai-agents-with-the-semantic-kernel\hyphenation -agent-framework/
https://devblogs.microsoft.com/semantic-kernel/the-future-of-ai-customizing-ai-agents-with-the-semantic-kernel\hyphenation -agent-framework/
https://devblogs.microsoft.com/semantic-kernel/the-future-of-ai-customizing-ai-agents-with-the-semantic-kernel\hyphenation -agent-framework/
https://papers.ssrn.com/sol3/Delivery.cfm/5142205.pdf?abstractid=5142205&mirid=1
https://papers.ssrn.com/sol3/Delivery.cfm/5142205.pdf?abstractid=5142205&mirid=1
https://journalwjaets.com/sites/default/files/fulltext_pdf/WJAETS-2025-0071.pdf
https://journalwjaets.com/sites/default/files/fulltext_pdf/WJAETS-2025-0071.pdf
https://www.turing.com/resources/ai-agent-frameworks
https://www.turing.com/resources/ai-agent-frameworks
https://www.ai21.com/blog/ai-agent-frameworks/
https://www.ai21.com/blog/ai-agent-frameworks/
https://libeldoc.bsuir.by/bitstream/123456789/51247/1/Zotov_Design.pdf
https://libeldoc.bsuir.by/bitstream/123456789/51247/1/Zotov_Design.pdf
https://libeldoc.bsuir.by/bitstream/123456789/49395/1/Zotov_Software.pdf
https://libeldoc.bsuir.by/bitstream/123456789/49395/1/Zotov_Software.pdf
https://www.ibm.com/think/insights/ai-agents-2025-expectations-vs-reality
https://www.ibm.com/think/insights/ai-agents-2025-expectations-vs-reality


Relation Identifier ScAgent (ScActionInitiatedAgent) Method ScAgentBuilder Method
nrel_primary_initiation
_condition

ScAddr GetEventClass()
const and ScAddr
GetEventSubscriptionElement() const

ScAgentBuilder *
SetPrimaryInitiationCondition(
std::tuple<ScAddr, ScAddr> const
& primaryInitiationCondition)
noexcept

nrel_sc_agent_action
_class

ScAddr GetActionClass() const ScAgentBuilder *
SetActionClass(ScAddr const &
actionClassAddr) noexcept

nrel_initiation_condition
_and_result

ScAddr GetInitiationCondition()
const and ScAddr GetResultCondition()
const

ScAgentBuilder *
SetInitiationConditionAndResult(
std::tuple<ScAddr, ScAddr> const
& initiationConditionAndResult)
noexcept

nrel_sc_agent_key_sc
_elements

– –

nrel_sc_agent_program ScResult DoProgram(ScAction &
action)

–

nrel_inclusion – –

Table IV
AGENT SPECIFICATION RELATIONS AND CORRESPONDING API METHODS

Specification at-
tribute

Static agent specification Dynamic agent specification Semi-dynamic agent specification

Definition loca-
tion

In the agent’s class (by overriding
public getters of the ScAgent
or ScActionInitiatedAgent
classes).

In the knowledge base or initially in
code (using the API of ScModule class
and the API of the ScAgentBuilder
class) but automatically saved into the
knowledge base.

In the knowledge base or initially in
code (using the API of ScModule class
and the API of the ScAgentBuilder
class) and supplemented externally (via
overriding public getters of ScAgent
or ScActionInitiatedAgent
classes).

Persistence Not stored in the knowledge base. Stored in the knowledge base. Partially stored in the knowledge base,
partially defined in the code.

Mutability Changes in the knowledge base do not
affect the specification, as it is defined
in the code.

Other agents can modify the specifica-
tion.

Some parts of the specification can be
changed dynamically, others are defined
in the code.

Use Case
• Implementing an agent in C++ for

the first time.
• Minimizing the number of

searches in the knowledge base.

Analyzing and modifying the specifica-
tion by other agents.

Changing some parts of this specifi-
cation, while allowing other parts of
specification to have fast access.

Implementation
method

Overriding public get-
ters of the ScAgent or
ScActionInitiatedAgent
classes.

Using the API of the ScModule class
and the API of the ScAgentBuilder
class.

Combination of defining the specifica-
tion in the knowledge base and overrid-
ing public getters of agent classes.

Example
scenario

An agent that always performs the same
task with predefined parameters.

An agent that changes its behavior de-
pending on the data in the knowledge
base.

An agent that uses part of the speci-
fication from the knowledge base and
defines part in the code for optimization.

Key characteris-
tics

Requires overriding the
GetActionClass and DoProgram
methods.

Provides the ability to analyze and mod-
ify the agent’s specification by other
agents.

Combines the advantages of static and
dynamic specifications.

Event handling The agent reacts to events in the knowl-
edge base, checks the initiation condi-
tion, generates and executes an action.

The agent reacts to events in the knowl-
edge base based on its dynamically
changing specification.

The agent reacts to events based on
a combination of static and dynamic
specifications.

Applicability When the agent specification should not
change dynamically and is defined in
the code.

When the agent specification should
be able to change dynamically during
system operation.

When it is needed to change some parts
of the specification, but quick access
to other parts defined in the code is
required.

Table V
AGENT SPECIFICATION TYPES

132



line]. Available: https://medium.com/@BitMartResearch/ai-agent-
current-status-in-2024-and-outlook-for-2025-9b9f8492d9db

[15] Sifted, “AI agents (2025),” Sifted Pro Briefings, 2025, market
analysis and future outlook for AI agents across industries.
[Online]. Available: https://sifted.eu/pro/briefings/ai-agents-2025

[16] R. Patel et al., “Understanding Agentic Frameworks in AI
Development: A Technical Analysis,” International Journal
of Scientific Research in Computer Science, Engineering and
Information Technology, 2025, technical analysis of agentic
frameworks, architectural components, and industry applications.
[Online]. Available: https://ijsrcseit.com/index.php/home/article/
view/CSEIT25111249

[17] T. Grenawalt, “Agentic AI Architecture: A Deep Dive,”
Markovate Research, 2025, explores the building blocks and
layered architecture of agentic AI systems, detailing perception,
cognitive, orchestration, and governance modules. [Online].
Available: https://markovate.com/blog/agentic-ai-architecture/

[18] GetStream.io, “Best 5 Frameworks To Build Multi-Agent AI
Applications,” 2024, overview of agent architecture, memory,
tools, and reasoning in multi-agent frameworks. [Online].
Available: https://getstream.io/blog/multiagent-ai-frameworks/

[19] SmythOS, “AI Agent Frameworks: A Comprehensive Guide,”
2025, explains the core components and design principles of AI
agent frameworks. [Online]. Available: https://smythos.com/ai-
integrations/tool-usage/ai-agent-frameworks/

[20] Z. Duan, “Agent AI with LangGraph: A Modular Framework
for Enhancing Machine Translation Using Large Language
Models,” arXiv preprint arXiv:2412.03801, 2024, explores
LangGraph’s modular, graph-based orchestration for AI agents
and its integration with LLMs. [Online]. Available: https:
//arxiv.org/abs/2412.03801

[21] LangChain Team, “Top 5 LangGraph Agents in Production
2024,” LangChain Blog, 2025, case studies and best practices for
deploying LangGraph agents in real-world applications. [Online].
Available: https://blog.langchain.dev/top-5-langgraph-agents-in-
production-2024/

[22] MarkTechPost, “Creating An AI Agent-Based System
with LangGraph: A Beginner’s Guide,” MarkTechPost,
2025, detailed technical introduction to LangGraph,
its architecture, and use cases. [Online]. Avail-
able: https://www.marktechpost.com/2025/01/29/creating-an-ai-
agent-based-system-with-langgraph-a-beginners-guide/

[23] Towards AI, “Building LLM Agents with LangGraph
#1: Introduction to LLM Agents & LangGraph,”
Towards AI, 2025, step-by-step guide to building
LLM agents and workflows with LangGraph. [Online].
Available: https://pub.towardsai.net/building-llm-agents-with-
langgraph-1-introduction-to-llm-agents\hyphenation-langgraph-
d94648aad62f

[24] Stackademic, “Navigating the AI Agent Landscape: In-Depth
Analysis of Autogen, CrewAI, LlamaIndex, and LangChain,”
Stackademic Blog, 2024, comprehensive analysis of AutoGen’s
multi-agent conversational architecture and integration capabilities.
[Online]. Available: https://blog.stackademic.com/navigating-the-
ai-agent-landscape-in-depth-analysis-of-autogen\hyphenation-
crewai-llamaindex-and-langchain-2a3bcd932abc

[25] Shakudo, “Top 9 AI Agent Frameworks as of April 2025,”
Shakudo Blog, 2025, comparative review including AutoGen’s
strengths, architecture, and use cases. [Online]. Available:
https://www.shakudo.io/blog/top-9-ai-agent-frameworks

[26] DataCamp, “CrewAI: A Guide With Examples of Multi AI
Agent Systems,” 2024, overview and practical guide to CrewAI’s
role-based, multi-agent system features and architecture. [Online].
Available: https://www.datacamp.com/tutorial/crew-ai

[27] LlamaIndex Team, “A Powerful Framework for Building Produc-
tion Multi-Agent AI Systems,” 2024, introduction to llama-agents,
distributed service-oriented architecture, and orchestration flows.

[28] Visual Studio Magazine, “Semantic Kernel Agent Framework
Graduates to Release Candidate,” 2025, news and
technical summary of Semantic Kernel’s agent framework,
plugins, and enterprise integration. [Online]. Available:
https://visualstudiomagazine.com/Articles/2025/03/04/Semantic-
Kernel-Agent-Framework-Graduates-to-Release-Candidate.aspx

[29] N. Zotov, “Semantic Theory of Programs in Next-Generation
Intelligent Computer Systems,” in Open Semantic Technologies for
Intelligent Systems (OSTIS-2022): Collection of Scientific Papers.
Minsk, Belarus: Belarusian State University of Informatics
and Radioelectronics, 2022, pp. 145–160. [Online]. Available:
https://libeldoc.bsuir.by/handle/123456789/49326

[30] D. Shunkevich, “Principles of problem solving in distributed
teams of intelligent computer systems of a new generation,” in
Open Semantic Technologies for Intelligent Systems (OSTIS):
Collection of Scientific Papers, V. V. Golenkov et al.,
Eds., vol. 7. Minsk: BSUIR, 2023, pp. 115–120. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/51252/1/
Shunkevich_Principles.pdf

[31] V. V. Golenkov, N. A. Guliakina, and D. V. Shunkevich,
“Methodological problems and strategic goals of the work
on creation of the theory and technology of new generation
intelligent computer systems,” Digital Transformation, vol. 30,
no. 1, pp. 40–51, 2024. [Online]. Available: https://dt.bsuir.by/
jour/article/view/819/308

[32] M. Orlov, “Comprehensive library of reusable semantically
compatible components of next-generation intelligent computer
systems,” in Open Semantic Technologies for Intelligent Systems:
Research Papers Collection, vol. 6. Minsk: BSUIR, 2022, pp.
261–272. [Online]. Available: https://libeldoc.bsuir.by/bitstream/
123456789/49369/1/Orlov_Comprehensive.pdf

[33] OSTIS-AI, “OSTIS-AI: Open Semantic Technology for Intelligent
Systems,” 2025, accessed: 15.03.2025. [Online]. Available:
https://ostis-ai.github.io

[34] V. V. Golenkov, N. A. Gulyakina, I. T. Davydenko, and A. P.
Eremeev, “Methods and tools for ensuring compatibility of
computer systems,” in Open Semantic Technologies for Intelligent
Systems (OSTIS-2019): Proceedings of the International Scientific
and Technical Conference, Minsk, February 21-23, 2019. BSUIR,
2019, pp. 25–52. [Online]. Available: https://libeldoc.bsuir.by/
bitstream/123456789/34574/1/Golenkov_Methods.PDF

[35] N. Zotov, “An ontology-based approach as foundation for mul-
tidisciplinary synthesis in modern science,” in Topical Issues of
Economics and Information Technologies: Proceedings of the
60th Anniversary Scientific Conference of Postgraduates, Master’s
Degree Students and Students of BSUIR, Minsk, April 22–26, 2024.
Minsk: BSUIR, 2024, pp. 745–747.

[36] N. Zotov, T. Khodosov, M. Ostrov, A. Poznyak, I. Romanchuk,
K. Rublevskaya, B. Semchenko, D. Sergievich, A. Titov, and
F. Sharou, “OSTIS Glossary — the Tool to Ensure Consistent and
Compatible Activity for the Development of the New Generation
Intelligent Systems,” in Open Semantic Technologies for Intelligent
Systems: Research Papers Collection, vol. 8. Minsk: BSUIR,
2024, pp. 127–148. [Online]. Available: https://libeldoc.bsuir.by/
bitstream/123456789/55565/1/OSTIS_Glossary.pdf

[37] V. Ivashenko, “Semantic space integration of logical knowledge
representation and knowledge processing models,” in Open
Semantic Technologies for Intelligent Systems: Research Papers
Collection, vol. 7. Minsk: Belarusian State University of
Informatics and Radioelectronics, 2023, pp. 95–114. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/51250/3/
Ivashenko_Semantic.pdf

[38] V. V. Golenkov, N. A. Gulyakina, and D. V. Shunkevich, Open
Technology of Ontological Design, Production and Operation of
Semantically Compatible Hybrid Intelligent Computer Systems.
Minsk: Bestprint, 2021.

[39] M. Orlov, A. Makarenko, and K. Petrochuk, “Current State
of OSTIS-systems Component Design Automation Tools,” in
Open Semantic Technologies for Intelligent Systems: Research
Papers Collection, vol. 8. Minsk: Belarusian State University of
Informatics and Radioelectronics, 2024, pp. 49–62.

[40] V. V. Golenkov and N. A. Gulyakina, “Open project aimed at
creating a technology for component-based design of intelligent
systems,” in Open Semantic Technologies for Intelligent Systems
(OSTIS-2013): Proceedings of the 3rd International Scientific
and Technical Conference, Minsk, February 21-23, 2013, V. V.
Golenkov, Ed. Minsk: BSUIR, 2013, pp. 55–78. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/4150/1/
Golenkov_Otkrytiy.PDF

133

https://medium.com/@BitMartResearch/ai-agent-current-status-in-2024-and-outlook-for-2025-9b9f8492d9db
https://medium.com/@BitMartResearch/ai-agent-current-status-in-2024-and-outlook-for-2025-9b9f8492d9db
https://sifted.eu/pro/briefings/ai-agents-2025
https://ijsrcseit.com/index.php/home/article/view/CSEIT25111249
https://ijsrcseit.com/index.php/home/article/view/CSEIT25111249
https://markovate.com/blog/agentic-ai-architecture/
https://getstream.io/blog/multiagent-ai-frameworks/
https://smythos.com/ai-integrations/tool-usage/ai-agent-frameworks/
https://smythos.com/ai-integrations/tool-usage/ai-agent-frameworks/
https://arxiv.org/abs/2412.03801
https://arxiv.org/abs/2412.03801
https://blog.langchain.dev/top-5-langgraph-agents-in-production-2024/
https://blog.langchain.dev/top-5-langgraph-agents-in-production-2024/
https://www.marktechpost.com/2025/01/29/creating-an-ai-agent-based-system-with-langgraph-a-beginners-guide/
https://www.marktechpost.com/2025/01/29/creating-an-ai-agent-based-system-with-langgraph-a-beginners-guide/
https://pub.towardsai.net/building-llm-agents-with-langgraph-1-introduction-to-llm-agents\hyphenation -langgraph-d94648aad62f
https://pub.towardsai.net/building-llm-agents-with-langgraph-1-introduction-to-llm-agents\hyphenation -langgraph-d94648aad62f
https://pub.towardsai.net/building-llm-agents-with-langgraph-1-introduction-to-llm-agents\hyphenation -langgraph-d94648aad62f
https://blog.stackademic.com/navigating-the-ai-agent-landscape-in-depth-analysis-of-autogen\hyphenation -crewai-llamaindex-and-langchain-2a3bcd932abc
https://blog.stackademic.com/navigating-the-ai-agent-landscape-in-depth-analysis-of-autogen\hyphenation -crewai-llamaindex-and-langchain-2a3bcd932abc
https://blog.stackademic.com/navigating-the-ai-agent-landscape-in-depth-analysis-of-autogen\hyphenation -crewai-llamaindex-and-langchain-2a3bcd932abc
https://www.shakudo.io/blog/top-9-ai-agent-frameworks
https://www.datacamp.com/tutorial/crew-ai
https://visualstudiomagazine.com/Articles/2025/03/04/Semantic-Kernel-Agent-Framework-Graduates-to-Release-Candidate.aspx
https://visualstudiomagazine.com/Articles/2025/03/04/Semantic-Kernel-Agent-Framework-Graduates-to-Release-Candidate.aspx
https://libeldoc.bsuir.by/handle/123456789/49326
https://libeldoc.bsuir.by/bitstream/123456789/51252/1/Shunkevich_Principles.pdf
https://libeldoc.bsuir.by/bitstream/123456789/51252/1/Shunkevich_Principles.pdf
https://dt.bsuir.by/jour/article/view/819/308
https://dt.bsuir.by/jour/article/view/819/308
https://libeldoc.bsuir.by/bitstream/123456789/49369/1/Orlov_Comprehensive.pdf
https://libeldoc.bsuir.by/bitstream/123456789/49369/1/Orlov_Comprehensive.pdf
https://ostis-ai.github.io
https://libeldoc.bsuir.by/bitstream/123456789/34574/1/Golenkov_Methods.PDF
https://libeldoc.bsuir.by/bitstream/123456789/34574/1/Golenkov_Methods.PDF
https://libeldoc.bsuir.by/bitstream/123456789/55565/1/OSTIS_Glossary.pdf
https://libeldoc.bsuir.by/bitstream/123456789/55565/1/OSTIS_Glossary.pdf
https://libeldoc.bsuir.by/bitstream/123456789/51250/3/Ivashenko_Semantic.pdf
https://libeldoc.bsuir.by/bitstream/123456789/51250/3/Ivashenko_Semantic.pdf
https://libeldoc.bsuir.by/bitstream/123456789/4150/1/Golenkov_Otkrytiy.PDF
https://libeldoc.bsuir.by/bitstream/123456789/4150/1/Golenkov_Otkrytiy.PDF


[41] M. Orlov, “Control tools for reusable components of intelligent
computer systems of a new generation,” in Open Semantic
Technologies for Intelligent Systems: Collection of Scientific
Papers, vol. 7. Minsk: BSUIR, 2023, pp. 191–206. [Online].
Available: https://proc.ostis.net/proc/Proceedings%20OSTIS-2023.
pdf#page=191

[42] V. V. Golenkov, D. V. Shunkevich, N. A. Gulyakina, V. P.
Ivashenko, and V. A. Zahariev, “Associative semantic computers
for intelligent computer systems of a new generation,” in Open
Semantic Technologies for Intelligent Systems: Research Papers
Collection, vol. 7. Minsk: BSUIR, 2023, pp. 39–60. [Online].
Available: https://proc.ostis.net/proc/Proceedings%20OSTIS-2023.
pdf#page=39

[43] V. Ivashenko, “General-purpose semantic representation language
and semantic space,” in Open Semantic Technologies for
Intelligent Systems (OSTIS-2022): Collection of Scientific
Papers, vol. 6. Minsk: BSUIR, 2022, pp. 41–64. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/49363/1/
Ivashenko_General-purpose.pdf

[44] N. Zotov, “A formal model of shared semantic memory
for next-generation intelligent systems,” in Open Semantic
Technologies for Intelligent Systems: Research Papers Collection,
vol. 8. Minsk: Belarusian State University of Informatics and
Radioelectronics, 2024, pp. 63–78. [Online]. Available: https:
//libeldoc.bsuir.by/bitstream/123456789/55531/1/A_Formal.pdf

[45] OSTIS-AI, “sc-machine: Software implementation of semantic
memory and its APIs,” 2025, accessed: 15.03.2025. [Online].
Available: https://github.com/ostis-ai/sc-machine

[46] ——, “C++ Events API for sc-machine,” 2025, accessed:
15.03.2025. [Online]. Available: https://ostis-ai.github.io/sc-
machine/sc-memory/api/cpp/extended/agents/events/

[47] ——, “C++ Agents API for sc-machine,” 2025, accessed:
15.03.2025. [Online]. Available: https://ostis-ai.github.io/sc-
machine/sc-memory/api/cpp/extended/agents/agents/

[48] ——, “scp-machine: Software implementation of semantic
network program interpreter,” 2025, accessed: 15.03.2025.
[Online]. Available: https://github.com/ostis-ai/scp-machine

[49] ——, “C++ Agent Context API for sc-machine,” 2025, accessed:
15.03.2025. [Online]. Available: https://ostis-ai.github.io/sc-
machine/sc-memory/api/cpp/extended/agents/agent_context/

[50] ——, “C++ Modules API for Agent Management
in sc-machine,” 2025, accessed: 15.03.2025. [Online].
Available: https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/
extended/agents/modules/

[51] ——, “C++ Keynodes API for sc-machine,” 2025, accessed:
15.03.2025. [Online]. Available: https://ostis-ai.github.io/sc-
machine/sc-memory/api/cpp/extended/agents/keynodes/

[52] D. V. Shunkevich, Semantic Technologies for Designing
Problem Solvers. Minsk: Belarusian State University of
Informatics and Radioelectronics, 2022. [Online]. Available:
https://libeldoc.bsuir.by/handle/123456789/48018

[53] K. Bantsevich, “Structure of knowledge bases of next-
generation intelligent computer systems: A hierarchical system of
subject domains and their corresponding ontologies,” in Open
Semantic Technologies for Intelligent Systems: Research Papers
Collection, vol. 6. Minsk: BSUIR, 2022, pp. 87–98. [Online].
Available: https://libeldoc.bsuir.by/bitstream/123456789/49331/1/
Bantsevich_Structure.pdf

ПЛАТФОРМА OSTIS – ФРЕЙМВОРК
ДЛЯ РАЗРАБОТКИ

ИНТЕЛЛЕКТУАЛЬНЫХ АГЕНТОВ НА
БАЗЕ СЕМАНТИЧЕСКИХ СЕТЕЙ

Зотов Н.В.
Данная статья рассматривает фреймворки для со-

здания ИИ-агентов и представляет OSTIS Platform как
решение существующих ограничений современных под-
ходов. В работе анализируются принципы построения
ИИ-агентов, проводится оценка таких фреймворков,
как LangGraph, CrewAI, AutoGen, Semantic Kernel и
LlamaIndex, а также подробно описываются преиму-
щества технологии OSTIS. К этим преимуществам
относятся единая семантическая основа и глубокое
представление знаний. В статье также рассматривается
реализация платформы на базе Технологии OSTIS и
моделей, управляемых агентами, акцентируя внимание
на их потенциал в развитии интеллектуальных систем.

Received 15.03.2024

134

https://proc.ostis.net/proc/Proceedings%20OSTIS-2023.pdf#page=191
https://proc.ostis.net/proc/Proceedings%20OSTIS-2023.pdf#page=191
https://proc.ostis.net/proc/Proceedings%20OSTIS-2023.pdf#page=39
https://proc.ostis.net/proc/Proceedings%20OSTIS-2023.pdf#page=39
https://libeldoc.bsuir.by/bitstream/123456789/49363/1/Ivashenko_General-purpose.pdf
https://libeldoc.bsuir.by/bitstream/123456789/49363/1/Ivashenko_General-purpose.pdf
https://libeldoc.bsuir.by/bitstream/123456789/55531/1/A_Formal.pdf
https://libeldoc.bsuir.by/bitstream/123456789/55531/1/A_Formal.pdf
https://github.com/ostis-ai/sc-machine
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/events/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/events/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/agents/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/agents/
https://github.com/ostis-ai/scp-machine
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/agent_context/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/agent_context/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/modules/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/modules/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/keynodes/
https://ostis-ai.github.io/sc-machine/sc-memory/api/cpp/extended/agents/keynodes/
https://libeldoc.bsuir.by/handle/123456789/48018
https://libeldoc.bsuir.by/bitstream/123456789/49331/1/Bantsevich_Structure.pdf
https://libeldoc.bsuir.by/bitstream/123456789/49331/1/Bantsevich_Structure.pdf

	F:\Конференция OSTIS\2025\Сборник\05. Papers.pdf
	E:\Конференция OSTIS\2025\papers\07. OSTIS2025_Agents_API.pdf


