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Abstract—This paper proposes a method for filtering
vector representations and forming universal signatures
based on the geometric interpretation of semantic space
as points on a hypersphere. The algorithm combines
differential-geometric characteristics with statistical metrics
to create a unified representation ensuring compatibility
between various neural networks. The method reduces data
dimensionality by selecting the most informative connec-
tions and forming compact signatures that are invariant
to architectural features of models. Experiments confirm
a reduction in computational complexity while simultane-
ously improving analysis quality. This approach potentially
establishes a foundation for a universal knowledge exchange
interface between heterogeneous neural network systems.

Keywords—Semantic technologies, geometric feature
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I. Introduction
In modern neural networks, significant advances are

observed in the fields of computer vision [1], natural
language processing [2], and complex time series analy-
sis [3]. Progress in these areas has substantially improved
the quality of solutions for many practical artificial
intelligence tasks. However, the fundamental problem of
semantic compatibility and efficient knowledge exchange
between heterogeneous architectures remains unresolved,
creating a significant barrier to the further development
of multimodal intelligent systems and collaborative arti-
ficial intelligence, where heterogeneous neural network
models must function within a unified semantic space,
ensuring coherent interaction.

The main difficulties in this field arise from the
absence of mathematically sound and computationally
efficient methods for optimal knowledge transfer between
different neural network architectures. Currently existing
methods of transfer learning [4] and knowledge distil-
lation [5] require significant computational resources,
structural compatibility of source models, and long train-
ing times, substantially limiting their practical applica-

tion in a number of important scenarios. Moreover, these
approaches are often unable to preserve conceptual and
semantic integrity of representations when working with
complex structured data, which is critically important for
modern artificial intelligence applications.

As Hinton et al. (2015) note, "knowledge distillation
provides a mechanism for information transfer between
models, however, it remains problematic when substan-
tial architectural differences exist" [5]. This limitation
becomes especially significant in the context of modern
trends in deep neural network development, where there
is considerable diversification of architectural solutions
optimized for specific data types and tasks. Bronstein
et al. (2017) emphasize that "non-Euclidean geometry
provides an effective mathematical apparatus for process-
ing complex-structured data" [7], which opens new per-
spectives for developing unified methods of knowledge
representation in heterogeneous neural network systems.

This paper proposes an innovative method for forming
unified signatures, based on the geometric interpretation
of feature space as a multidimensional hypersphere.
Such a geometric concept potentially allows overcoming
limitations of existing approaches and likely can provide
stable knowledge translation between different neural
network architectures. The approach considered in this
paper allows:

• reduce data dimensionality by selecting the most
informative features;

• create compact signatures that can be used as nor-
malized data representations;

• enable knowledge transfer between neural networks
with different architectures.

The research objectives include attempting to develop
a mathematically rigorous approach to feature selec-
tion, describing a possible algorithm for data signature
formation, and verifying the method’s effectiveness on
synthetic data.
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Research object: methods for processing multidimen-
sional data to create a unified representation.

Research subject: geometric approach to feature filter-
ing and data signature formation to enable knowledge
transfer between neural networks.

Research method: mathematical modeling and geomet-
ric analysis of the feature space, as well as experimental
verification of the developed method on synthetic data.

The proposed approach aims to solve the problem of
data unification for various neural network architectures,
which will increase the efficiency of their joint use in
multimodal systems.

II. Analysis of Existing Approaches to Organizing
Interfaces for Inter-Neural Network Information

Exchange
A. Problem of Knowledge Transfer Between Neural Net-
works

Modern machine learning methods allow for effective
training of neural networks on specialized tasks. How-
ever, when there is a need to transfer knowledge between
neural networks, for example, between models with dif-
ferent architectures or tasks, significant obstacles arise. In
particular, the lack of unified interfaces for representing
data and knowledge complicates the implementation of
collaborative learning or multimodal systems.

B. Main Approaches to Information Exchange Between
Neural Networks

Transfer learning allows the use of a pre-trained model
to accelerate the training of a new model on a similar
task [4]. This is achieved by "transferring" weights or
network layers to a new task. Examples include using
pre-trained models such as ResNet [6] or BERT [2] for
fine-tuning on specific tasks. Limitations:

• architectural similarity between models is required;
• it is impossible to use data with completely different

structures;
• difficult to adapt to multimodal data (e.g., video,

text, and numerical data).
Knowledge distillation allows transferring knowledge

from a larger (teacher) model to a smaller (student)
model, using the outputs of the teacher model as addi-
tional information when training the student model [5].
Limitations:

• dependence on the architectural features of the
teacher model;

• complexity of training, especially in the case of
significantly different architectures;

• high computational complexity for large models.
Training Multimodal Models Multimodal models, such

as CLIP [8] or T5 [10], combine information from
various sources (e. g., text and images) to solve tasks.
These models are created using complex pretraining on
enormous datasets. Limitations:

• enormous computational resources for training;
• lack of universality when adding new data types;
• inability to transfer knowledge between individual

components of the model.
Geometric approaches Geometric methods, such as

data representation on manifolds or in hyperbolic
spaces [7], allow for considering complex dependencies
between features. For example, graph neural networks
(GNNs) use graph structures to transmit information.
Limitations:

• high implementation complexity;
• limited applicability for tasks with time series or

tabular data;
• necessity of prior knowledge of data structure.
Common Limitations of Existing Approaches
• architectural dependence: most methods require

similar architectures for information transfer, mak-
ing them unsuitable for heterogeneous systems;

• high computational complexity: methods such as
knowledge distillation or transfer learning require
significant resources for training;

• lack of normalized data representation: existing ap-
proaches do not offer a universal method for data
representation suitable for transfer between neural
networks;

• complexity of processing multimodal data: multi-
modal models are limited to predefined data types,
making their extension difficult.

C. Potential Solution to Limitations Through the Pro-
posed Method

Universality of data representation: potential data sig-
natures can be compact, normalized vectors that can be
transmitted to any neural network regardless of its archi-
tecture. This eliminates the dependency on architectural
similarity.

Effective dimensionality reduction: using radii of cur-
vature and angular deficits can allow selection of only
the most important features, reducing data dimensionality
and computational complexity.

Adaptability to data structure: the method can poten-
tially automatically adapt to the data structure through
analysis of the geometric properties of features. This
allows for accounting for complex non-linear dependen-
cies.

Noise resistance: noisy features can potentially be au-
tomatically excluded during filtering based on geometric
criteria, increasing the quality of data representation. It
should be noted that this research did not consider cases
where noise contains useful information. This would
require additional signature analysis prior to parameter
filtering.

Multimodality: data signatures can potentially be
formed for various data types (e. g., numerical, time se-
ries, images) and combined into a unified representation.
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Thus, spherical filtering and data signature formation
can potentially provide a unified interface for knowledge
transfer between neural networks, making it suitable for
building collaborative and multimodal systems.

III. Mathematical Formalization of the Proposed
Method

A. Mapping Characteristics into a Multi-level Hyper-
spherical Structure

The vector space of characteristics X ∈ Rm×n, where
m represents the number of instances and n is the
dimension of the characteristic vector, undergoes trans-
formation to form a multilevel hyperspherical structure.
Within the simplified model considered in this section,
we focus on the basic mapping to a unit hypersphere
Sn−1, which is accomplished through centering followed
by normalization (1):

x̃i =
xi − µ

|xi − µ|
, µ =

1

m

m∑
i=1

xi, (1)

where µ denotes the centroid of the characteristic
distribution.

The fundamental advantage of this approach lies in
the ability to organize different contextual feature sets
into separate unit spheres, which collectively form a
multidimensional hyperspherical structure. This allows
modeling complex semantic relationships, where features
from different modalities or architectures can exist in
their own spherical subspaces while maintaining consis-
tency within the overall hyperspherical topology. Such
an organization provides a natural mechanism for encap-
sulating context-dependent semantic spaces, simultane-
ously creating prerequisites for constructing a metaspace
in which coherent interaction of heterogeneous neural
network representations becomes possible.

In the simplified model described by Equation (1), we
consider projection onto a unit hypersphere as a basic
case that demonstrates the key properties of the proposed
method; however, the complete concept envisions a more
complex structure of nested and interconnected spherical
spaces.

B. Correlation Matrix
To analyze the relationships between features, an ad-

justed correlation matrix C is calculated, representing
the cosine similarity between normalized features (2):

Cij =
⟨x̃i, x̃j⟩
|x̃i||x̃j |

, ∀i, j ∈ [1, n], (2)

where ⟨·, ·⟩ is the dot product. Cosine similarity allows
to evaluate the degree of dependence between features,
considering their direction in space. Values close to 1
indicate a strong correlation, while values close to 0
indicate independence.

It is important to note that in the context of normalized
features on a hypersphere, cosine similarity has a natural
geometric interpretation as a measure of the angle be-
tween vectors. Since all vectors x̃i have unit length, the
expression simplifies to the dot product of normalized
vectors. For vectors located on the same hypersphere,
this measure reflects their geodesic proximity and is
more informative than traditional correlation measures in
Euclidean space, especially when identifying non-linear
dependencies in high-dimensional data.

The matrix C provides a complete topological map
of relationships in the feature space, which is particu-
larly important when integrating heterogeneous neural
network architectures, where semantic consistency must
be maintained not only at the level of individual charac-
teristics but also at the level of their mutual relationships.

C. Radius of Curvature

The radius of curvature rj determines the degree of
independence of the feature j from other features (3):

rj = 1− 1

k

∑
i∈k-neighbors

|Cij |, (3)

where k is the number of closest neighbors, deter-
mined by the correlations |Cij |. The larger the radius
of curvature, the less dependent the feature is on others.
This indicator is used to select features that contribute
unique information to the model. Features with a low
rj can be considered redundant, as they have a strong
correlation with other characteristics.

The concept of radius of curvature has a deep connec-
tion with the differential geometry of manifolds. In this
context, it characterizes the local curvature of the infor-
mation space around a specific feature. Mathematically,
the value of rj reflects the degree of "distinctiveness" of
a feature in the overall data structure: high values corre-
spond to features that form relatively isolated information
clusters, while low values indicate features that are part
of denser information structures.

The choice of parameter k in this context is critical and
should be determined taking into account the dimension-
ality of the data and the expected degree of sparsity of
the information space. Too small values of k can lead to
noisy estimates of the radius of curvature, while too large
values can level out local features of the data structure.

Applying the concept of radius of curvature allows
effective solving the feature selection problem within
the proposed hyperspherical representation, providing a
balance between the informativeness of the model and
its computational complexity. Furthermore, it creates a
theoretical foundation for the subsequent development of
mechanisms for combining heterogeneous neural network
models through selective matching of their most informa-
tive components.

399



D. Angular Deficit
To evaluate the non-linearity of features, the angular

deficit Dj is used, which is calculated as the deviation
of the sum of angles from 2π (4):

Dj = 2π −
k∑

i=1

arccos(Cij), (4)

where the angles arccos(Cij) are calculated for the
nearest neighbors of feature j. The angular deficit allows
for the identification of features with non-linear depen-
dencies, since the sum of angles for linearly dependent
features will be close to 2π.
The concept of angular deficit has roots in differential

geometry, representing a measure of deviation of the
local topology from Euclidean geometry. Positive values
of Dj indicate positive curvature in the vicinity to the
feature j, indicating non-linear relationships within the
data structure.

The angular deficit and radius of curvature comple-
ment each other: while rj characterizes the degree of
independence of a feature, Dj evaluates the nature of this
dependence. Two features may have similar rj values but
differ in Dj , indicating different types of relationships —
linear or non-linear.

For reliable estimation of the angular deficit, it is
recommended to use a sufficiently large sample and
perform data normalization. The combined use of met-
rics rj and Dj enables multi-criteria feature selection,
accounting for both informational uniqueness and ability
to model nonlinear relationships, which is particularly
valuable when integrating heterogeneous neural network
architectures.

E. Feature Filtering
Feature selection is carried out the basis of the radius

of curvature and angular deficit. Feature j is included in
the final set if the following conditions are met:

• The radius of curvature rj exceeds a specified
threshold ϵr, indicating its independence.

• The angular deficit Dj has a significant positive
value, indicating the feature’s ability to capture
nonlinear relationships in the data.

This approach allows reducing the dimensionality of
the feature space while preserving the most important
features that contribute unique information to the model,
thus reducing data redundancy and improving model
interpretability.

The feature filtering process represents a multi-criteria
optimization problem, balancing feature independence
and their ability to describe nonlinear relationships. High
values of rj (closer to 1) indicate that the feature j is
weakly correlated with other features and carries unique
information. For the angular deficit Dj , minimal values
indicate linear dependencies, while higher positive values

correspond to nonlinear relationships. The selection of
the optimal threshold ϵr depends on the specific domain
and data characteristics, with adaptive thresholds some-
times preferable.

The methodology can be enhanced with a feature
ranking procedure, where each feature is assigned a
composite rating based on a weighted combination of rj
and Dj , allowing for more flexible control of the feature
selection process.

F. Formation of Semantic Signature as a Unified Inter-
face

For each time window Xt, a semantic signature is
formed, representing a unified representation of aggre-
gated characteristics of the selected features:

Signature(Xt) = [µ1, σ1, kurt1, skew1, . . . ,

µp, σp, kurtp, skewp], (5)

where µ, σ, kurt, skew are the mean value, standard
deviation, kurtosis, and skewness respectively, calculated
for each selected feature.

The semantic signature serves as a unified interface en-
abling effective interaction between heterogeneous neural
network architectures. This approach creates an interme-
diate abstraction layer allowing different types of neural
networks to exchange information in a standardized for-
mat, functioning as a semantic data descriptor invariant
to the internal architectural specifics of particular models.

The proposed interface addresses the problem of in-
tegrating heterogeneous neural components by forming
a common semantic space for data interpretation. For
example, a transformer-based model can utilize signa-
tures from a convolutional neural network without trans-
forming internal data representations. This is crucial in
ensemble systems and multimodal architectures where
subsystems specialize in different aspects of analysis.

From an ontological perspective, the semantic signa-
ture maps multidimensional feature space into a struc-
tured representation preserving key distributional char-
acteristics of the original data. The semantic interop-
erability provided by this mechanism enables scalable
hybrid architectures where different neural networks can
be dynamically combined depending on the task context
and input data characteristics.

IV. Experimental Results

To conduct experimental verification of the method,
a synthetic dataset was used, containing 14 descriptive
features of various types: independent basic features,
linearly dependent derivatives, nonlinearly dependent
derivatives, and stochastic noise components.
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A. Description of the Experiment
Generation of Synthetic Data:
• 1500 samples were created using sinusoidal signals,

noise, and nonlinear dependencies;
• the data includes independent features, derivative

features, and noise components;
• the target variable (y) is constructed as a nonlinear

combination of features with added random noise.
Feature Filtering:
• spherical filtering was performed using radii of

curvature and angular deficits;
• 12 of the most informative features out of 14 were

selected;
• filtering reduced the dimensionality of the space

while preserving useful information.
Data Preparation:
• without using signatures: feature windows were

used in their "raw" form;
• with signatures: statistical characteristics (mean,

standard deviation, seasonality, and trend) were cal-
culated for each time window.

Model Training and Evaluation:
• 6 models were used: MLP, Random Forest, Linear

Regression, SVR, XGBoost, LightGBM, as well as
the VotingRegressor ensemble;

• evaluation was conducted using cross-validation
(TimeSeriesSplit, 5 folds);

• metric: MSE (Mean Squared Error).
Comparison of Results:
• MSE of models was compared when using "raw"

data and data with signatures;
• For each model, it was determined whether the

signature improved the forecasts.
Final Analysis:
• a table with results was constructed and conclusions

were drawn about the impact of signatures on the
performance of each model;

• it was noted that signatures are particularly useful
for linear models and ensembles, but require refine-
ment for nonlinear models.

B. Analysis of Results
Feature Selection Using Spherical Filtering:
• 12 features out of 14 were selected based on radii of

curvature and angular deficits. The dimensionality
of the space was reduced while preserving key
information. This confirms the effectiveness of the
selection method based on geometric characteristics
of the feature space;

• The dimensionality of the hypersphere after feature
selection: S13, which corresponds to 14 features in
the original space

Results Without Using Signatures:

• Linear Regression showed the worst MSE value
(2409.5115), which is expected since it performs
poorly with nonlinear relationships;

• SVR showed the best MSE value (12.0612), which
is related to its ability to process nonlinear relation-
ships;

• Ensemble methods (Random Forest, XGBoost,
LightGBM, VotingRegressor) demonstrated MSE in
the range of 15-79, which also shows their robust-
ness.

Results Without Using Signatures:
• Significant improvement is observed for Linear

Regression: MSE decreased from 2409.5115 to
117.0779 (95.1% reduction). This suggests that
signatures help linear models better account for
complex dependencies;

• Ensemble models (Random Forest, XGBoost, Light-
GBM) also showed a decrease in MSE, confirming
the value of signatures for models working with
nonlinear data;

• For MLP and SVR, MSE increased, which may be
related to signatures distorting the original data that
these models could optimally process.

VotingRegressor: The average MSE of VotingRegres-
sor with signatures improved: decreasing from 78.9186 to
20.9154. This indicates that combining multiple models
benefits from using signatures.

Application of the developed filtering algorithm, based
on evaluating the radii of curvature of spherical polygons
and calculating angular deficits, made it possible to
reduce the dimensionality of the feature space by 14.3%,
reducing the number of features to 12.

When exceeding the critical volume of the feature
set, which allows for generating new descriptors through
algebraic or functional transformations of the basic sub-
set, a significantly more pronounced dimensionality re-
duction is theoretically predicted. The prediction quality
results are shown in Table I.

Table I
Comparison of Mean Squared Error (MSE) for Various Models:

№ Results
Model Without signature With signature

1 MLP 14.5487 14.9106
2 RF 15.8648 14.3694
3 LR 2409.5115 117.0779
4 SVR 12.0612 14.9699
4 XGB 15.0982 13.7349
4 LGBM 16.2109 13.8642
4 Voting 78.9186 20.9154
aUsing synthetic data

The use of data signatures demonstrated a significant
improvement in the quality of forecasts for most mod-
els, especially for Linear Regression (LR), where the
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reduction in Mean Squared Error (MSE) was 95%. This
confirms the high efficiency of the method for models
that are sensitive to input data quality and redundant
features. However, for MLP (Multi-Layer Perceptron) and
SVR (Support Vector Regression) models, the use of
signatures led to a slight deterioration in forecast quality.
Nevertheless, this deterioration is not significant and
demonstrates that the method can be applicable to these
models after additional refinement and optimization.

V. Conclusion

In this work, an innovative feature filtering method
based on geometric formalization and data signature
creation is presented. The method provides a unified
information representation for compatibility between het-
erogeneous neural network architectures.

The proposed mathematical apparatus, utilizing ge-
ometric characteristics of the feature space (curvature
radii, angular deficits), allows for efficient selection of the
most significant descriptors. The formation of complex
signatures achieves compression of semantic relation-
ships while preserving contextual integrity.

Experimental verification confirmed the approach’s
effectiveness: on a heterogeneous dataset, a dimension-
ality reduction of 14.3% was achieved without loss
of informativeness. The positive effect is particularly
pronounced for linear models and ensemble algorithms
(MSE reduction up to 95.1%).

Prospects for further research include adapting the
method for nonlinear architectures (MLP, SVR) and
expanding testing on complex multi-level data, approxi-
mating real-world semantic information processing tasks.

Method Advantages
• effective feature filtering based on geometric char-

acteristics, providing a 14.3% dimensionality reduc-
tion without loss of informational significance;

• formation of informative signatures integrating sta-
tistical, frequency, and seasonal parameters, ensur-
ing unified representation for various architectures;

• significant improvement in modeling quality for lin-
ear (95.1% MSE reduction) and ensemble methods;

• reduced computational complexity: decreasing the
feature space dimensionality facilitates model train-
ing and reduces the risk of overfitting.

Method Limitations
• insufficient effectiveness for nonlinear architectures

(MLP, SVR), requiring additional method adapta-
tion;

• validation on synthetic data, necessitating verifica-
tion on real-world multimodal datasets;

• sensitivity to filtering parameters, requiring careful
tuning of geometric characteristics (curvature radii
and angular deficits).

References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet clas-

sification with deep convolutional neural networks,” Advances in
Neural Information Processing Systems, vol. 25, pp. 1097–1105,
2012.

[2] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2019.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[4] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A
survey on deep transfer learning,” in International Conference on
Artificial Neural Networks, pp. 270–279, 2018.

[5] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in
a neural network,” arXiv preprint arXiv:1503.02531, 2015.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778, 2016.

[7] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst, “Geometric deep learning: going beyond Euclidean
data,” IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 18–
42, 2017.

[8] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S.
Agarwal, et al., “Learning transferable visual models from nat-
ural language supervision,” in Proceedings of the International
Conference on Machine Learning, pp. 8748–8763, 2021.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, et al., “Attention is all you need,” Advances in Neural
Information Processing Systems, vol. 30, pp. 5998–6008, 2017.

[10] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
et al., “Exploring the limits of transfer learning with a unified text-
to-text transformer,” The Journal of Machine Learning Research,
vol. 21, no. 1, pp. 5485–5551, 2020.

ГЕОМЕТРИЧЕСКАЯ
ИНТЕРПРЕТАЦИЯ СЕМАНТИЧЕСКИХ

СВЯЗЕЙ: ФИЛЬТРАЦИЯ И
ФОРМИРОВАНИЕ СИГНАТУР ДЛЯ

ИНТЕРОПЕРАБЕЛЬНОСТИ
НЕЙРОСЕТЕЙ

Евдокимов В. Г., Навроцкий А. А.
В данной статье рассматривается метод фильтрации

векторных представлений и формирования универ-
сальных сигнатур на основе геометрической интер-
претации семантического пространства как точек на
гиперсфере. Алгоритм объединяет дифференциально-
геометрические характеристики со статистическими
метриками для создания единого представления, обес-
печивающего совместимость между различными ней-
ронными сетями. Метод уменьшает размерность дан-
ных путем выбора наиболее информативных связей и
формирования компактных сигнатур, инвариантных к
архитектурным особенностям моделей. Эксперимент
подтверждает снижение вычислительной сложности
при одновременном улучшении качества анализа. Та-
кой подход потенциально создает основу для универ-
сального интерфейса обмена знаниями между гетеро-
генными нейронными сетевыми системами.
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