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Abstract—This study explores an approach to deter-
mining the weights and thresholds of a neural network
based on the potential of an electrostatic field, without
the need for additional analytical computations or tra-
ditional training algorithms. The neural network follows
a metric-based recognition method, and the electrostatic
field simulation is implemented in the Builder C++ pro-
gramming environment. The software computes the total
electrostatic potential at designated points in the proposed
model (corresponding to sensor locations—potentiometers).
The same software module also enables the creation of a
neural network based on metric recognition methods, where
the weights of the first-layer neurons are assigned based
on the computed potentials of the simulated electrostatic
field. The effectiveness of the resulting neural network
is evaluated using the MNIST dataset for the task of
handwritten digit classification. Additionally, the possibility
of applying this approach to semantic text understanding
tasks is considered.
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training algorithms, electrostatic field potential, electro-
static field.

1. Introduction

The use of artificial neural networks remains a promis-
ing approach for solving various tasks [1]-[4], including
pattern recognition problems. Although artificial neural
networks were originally designed to mimic biological
neural networks, their capabilities are still significantly
limited compared to their biological counterparts. For
example, biological neural networks possess the ability
to accumulate a large number of recognizable patterns
and can rapidly memorize and recognize new patterns
(classification tasks) without lengthy training procedures
or large training datasets. In contrast, modern artificial
neural networks typically lack these abilities.

Consequently, developing new neural network archi-
tectures that enhance the capabilities of conventional
models—particularly by accelerating network creation
and training—remains an important research objective.
To this end, studies [5]-[8] have proposed and described
neural network architectures based on metric recognition
methods. These architectures exhibit several distinctive
features, including:

« The ability to rapidly construct the network structure
(number of layers, neurons, and connections) based

on the initial problem parameters, such as the num-
ber of reference patterns and recognized classes.

o Transparency, meaning that the function of each
neuron, layer, weight, threshold, and connection is
well-defined and interpretable.

o Easy and flexible expansion of the network through
cascade-based addition of new neurons, enabling
new patterns (new recognized classes) to be incor-
porated into an operational network without modi-
fying previously established weight values.

o The possibility of precomputing neural network
weight values analytically using metric similarity
measures.

o Compatibility with standard neural network training
algorithms for additional fine-tuning.

While precomputing weight values accelerates neural
network creation and training, it also requires compu-
tational time. As the number of recognized patterns
and reference examples increases, the time required
for weight calculations grows, particularly when higher-
dimensional weight matrices are needed for the first or
zeroth layer of the network.

To address this challenge, study [8] demonstrated
that neural network weights can be determined using
electrostatic field parameters. This method enables near-
instantaneous weight assignment without analytical cal-
culations, provided a relatively small reference dataset
is available and each neuron has access to a model for
reading electrostatic field parameters.

The primary objective of this study is to experi-
mentally validate the proposed model) by assessing the
functionality of a neural network whose weight values
are determined based on electrostatic field parameters.
In this approach, the potential of the electrostatic field
serves as the key parameter.

To achieve this goal, a simulation model [8] was
developed in the Builder C++ environment. This model
computes the total electrostatic potential at each poten-
tiometer sensor location (Figure 1). Additionally, a neural
network based on the metric recognition method was
implemented, allowing the first-layer neurons’ weight
values to be assigned according to the computed poten-
tials of the simulated electrostatic field.
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I. The Electrostatic Field Potential as the Weights of a
Neural Network

The developed software module also facilitates perfor-
mance evaluation using the MNIST (Modified National
Institute of Standards and Technology) dataset. MNIST
consists of handwritten digit images (0-9) and comprises
two subsets: a training set (60,000 images) and a test set
(10,000 images). Each image in MNIST is 28:28 pixels
in size, with grayscale values ranging from 0 to 255.

In the experiments presented below, no training dataset
was used, as the neural network did not undergo a
training phase. Instead, only the test dataset (10,000
images) was utilized to assess the performance of the
generated neural networks and compare the results. Here,
the performance of the neural network is defined as the
proportion of correctly classified test images.

The functionality of the generated neural network was
evaluated using the Builder C++ software module.

The distance between two compared images in this
example is set to 8 sm. That is, the plane for the simulated
potentiometer sensors is positioned between two planes
of charged surfaces of the images, at a distance of ds =
4 cm from each image (see Figure 1). Each active pixel
on one image receives a charge of ¢ = —107?, and q =
10~ on the other image, thus creating an electrostatic
field between the image panels. Each sensor on the sensor
panel, located between them, measures the potential of
the electrostatic field between the two images at the
sensor’s position.

Thus, all the obtained potential values on the sen-
sor panel are further used as weights for the first-
layer neurons, whose output separates these two images.
Similarly, other reference images are compared pairwise
in the same manner. The technology for instant weight
determination based on the electrostatic field potential
was described in more detail in [8].

III. Experimental Results

Table I presents the recognition results on the MNIST
test dataset using 30 reference patterns from Figure 2a.
The table shows both the results for each individual digit
(where i; represents the total number of digit j images in
the MNIST test dataset, and s; represents the number of
correctly identified digit j images) and the overall result,
which amounted to 5,047 correctly identified images
(approximately 50%).

Table II presents the recognition results for the MNIST
test set after reducing the distance between the two image
planes to 4 cm and the distance to the sensor plane to
do =2 cm.

Based on the results in Table II, it can be observed
that the final recognition accuracy 53% improved by
3% compared to the previous experiment. This indicates
that changes in the initial physical parameters of the
simulated system—such as the value of the point charge

g, the distance between the weight matrix cells d; (sensor
spacing), and the distance between the image plane and
the potentiometer sensor plane ds —also affect recognition
performance.

Table III shows the recognition results for the MNIST
test set after adding two additional reference patterns
(Figure 2a) to each image, as shown in Figure 2c. After
the new reference patterns were added, new first-layer
neurons were cascaded into the neural network, and their
corresponding weight tables were computed. The weight
tables for the remaining neurons were not altered. Testing
on the MNIST test set with the updated reference patterns
increased the performance to approximately 70%.

In Table IV, the results of recognizing the MNIST test
set after adding 20 new reference patterns, as shown in
Figure 2c, are presented. This increased the total number
of reference patterns to 70 (4 patterns for each class). The
recognition results for the MNIST test set improved, with
7,721 images correctly identified (77%).

From the results in the tables, it can be observed
that increasing the number of reference patterns also
increases the percentage of correctly recognized images.
Adding reference patterns to the neural network based on
metric recognition methods does not change the previous
weight values of the network.

IV. Determining Weights Based on Electrostatic Field
Parameters for Semantic Tasks

This approach can theoretically also be applied to
semantic tasks and natural language understanding tasks.
As is known, there are various ways to encode language,
implemented in different word embedding libraries. For
example, Word2Vec, GloVe, BERT, GPT, and others.
Language elements such as words, syllables, and word
combinations are represented as vectors of numbers
(embeddings). The number of digits in one word vector
can be in the hundreds. To digitally represent a sentence,
the text is broken down into words, syllables, or entire
word combinations. For some word encoding methods,
such as the BERT method, not only words or syllables are
encoded but also the positional number of the word in the
sentence, which allows for a more accurate understanding
of the meaning of the text. For example, if for the
sentence "Cat caught mouse" each word is encoded as
a vector with three numbers, like this:

o "Cat" — [23, -67, 89]

o "Caught" — [12, 45, -34]

e "Mouse" — [34, .78, -23]

We end up with a matrix of size 3x3. If each number
in this matrix is converted into binary code, we get a
matrix with binary codes:

[00010111] [10111111] [01011001]

[00001100] [00101101] [11111110]

[00100010] [00000001] [11101001]

As a result, by analogy with black-and-white images,
we obtain a binary table of the sentence, which is
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Figure 1. A scheme for obtaining neuron weight values based on the potential of an electrostatic field.
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Figure 2. (a) 30 reference patterns, (b) Added reference set for the experiment with 50 reference samples, (c) 20 additional reference patterns
for the experiment with 70 reference patterns.
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Table 1
Test results of the neural network on the MNIST test set with initial conditions: N = 30 reference patterns, q = 1079 C,dy =4 sm, dy =2
sm. The number of recognized symbols for each digit class (s;) The total number of characters in the database for each digit class
(i5).Percentage of correctly recognized symbols (p;)

The number of recognized symbols for each digit class (s;) | The total number of characters in the database for each digit class (z;). | Percentage of correctly recognized symbols (p;)
s0 =701 i0 = 980 p0 =71%
sl =936 il = 1135 pl =82%
52 =296 p2 = 28%
s3 =361 p3 =35%
s4 =434 p4 = 44%

p5 = 40%
p6 = 43%
p7 = 49%
p8 =51%
p9 = 54%
In summary
5047 10000 50%
Table II

Testing Results of the Neural Network on the MNIST Test Set with Initial Conditions: N = 30 References, q = 1079 C, dy =2 sm, dy =2 sm.
The number of recognized characters for each digit class (s;). The total number of characters in the dataset for each digit class (¢;)
Percentage of correctly recognized characters (p;)

The number of recognized characters for each digit class (s;) | The total number of characters in the dataset for each digit class (7;) | Percentage of correctly recognized characters (p;)
s0 = 729 i0 = 980 p0 = 74%
sl = 987 il = 1135 pl = 86%
s2 = 307 i2 =1032 p2 =29%
s3 =387 i3 = 1010 p3 =38%
s4 = 468 i4 =982 p4 =47%
s5 =385 i5 = 892 p5 = 43%
s6 = 484 i6 = 958 p6 = 50%
s7 =532 i7 = 1028 p7 =51%
s8 = 477 i8 = 974 p8 = 48%
s9 = 608 19 = 1009 p9 = 60%

In summary

5364 10000 53%
Table III

Test Results on the MNIST Test Set Using 50 References The number of recognized characters for each digit class (s;) The total number of
characters in the dataset for each digit class (z;) Percentage of correctly recognized characters (p;)

The number of recognized characters for each digit class (s;) | The total number of characters in the dataset for each digit class (7;) | Percentage of correctly recognized characters (p;)
s0 = 852 i0 = 980 p0 = 87%
sl = 1123 il = 1135 pl =99%
s2 =516 i2 = 1032 p2 = 50%
s3 = 585 i3 = 1010 p3 = 58%
s4 =775 i4 = 982 p4 =719%
s5 = 588 i5 = 892 p5 = 66%
s6 = 555 i6 = 958 p6 = 58%
s7 =616 i7 = 1028 p7 = 60%
s8 = 633 i8 =974 p8 = 65%
s9 =726 19 = 1009 P9 = 72%

In summary

6969 10000 70%
Table IV

Testing results on the MNIST test set using 70 reference patterns. The number of recognized characters for each digit class (s;) The total
number of characters in the dataset for each digit class (i;) Percentage of correctly recognized characters (p;).

The number of recognized characters for each digit class (s;) | The total number of characters in the dataset for each digit class (i;) | Percentage of correctly recognized characters (p;)
s0 = 852 i0 = 980 p0 =87%
sl =1123 il = 1135 pl =99%
s2 =516 i2 = 1032 p2 = 50%
s3 = 585 i3 = 1010 p3 =58%
s4 =775 i4 = 982 p4 =719%
s5 = 588 i5 = 892 p5 = 66%
s6 = 555 i6 = 958 p6 = 58%
s7 =616 i7 = 1028 p7 = 60%
s8 = 633 i8 =974 p8 = 65%
s9 = 726 i9 = 1009 P9 = 72%

In summary

7721 10000 7%
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widely used in image recognition with neural networks.
If we change the order of words, for example: "Mouse
caught cat" then in this case, the binary image table also
changes:

[00100010] [00000001] [11101001]

[00010111] [10111111] [01011001]

[00001100] [00101101] [11111110]

Accordingly, the neural network will be able to distin-
guish between these two sentences. The figure 3 shows
the binary images of the two sentences: "Cat caught
mouse" and " Mouse caught cat" constructed from the
two matrices above, where O corresponds to the white
area and 1 corresponds to the black area. Similarly to
Fig. 1, the figure 3 presents the scheme for obtaining the
first layer neuron weights based on the electrostatic field
parameter — potential. The value of each pixel in the first
binary image equal to 1 has a charge q = 10(-9), and the
value of each pixel in the second binary image equal
to 1 has the opposite charge q = -10(-9). As a result, an
electrostatic field is formed between the two images. The
figure 3 also shows that between the two binary images is
a layer of 3*24=72 potentiometer sensors measuring the
potential of the electric field at their location. The values
of the obtained potentials are immediately fed as the
weights of the first-layer neuron. As a result, this neuron
can immediately distinguish between the two sentences
without training. Similarly, for other pairs of images, the
weights for other neurons in the first layer can also be
directly defined.

V. Conclusion

Thus, the experiments conducted above show that a
neural network with weight values determined by the
characteristics of the electrostatic field is feasible. This
indicates that the neural network can instantly determine
weight values with a small reference set.

This means that the neural network can significantly
faster memorize and recognize new patterns compared
to standard neural network architectures. Furthermore,
if needed, the resulting neural networks can be further
trained using conventional training algorithms. As shown
in [7], even in this case, the process of creating a neural
network, calculating its weight and threshold values, and
further training occurs faster than training a neural net-
work using traditional methods with randomly initialized
weight values. The model for determining the weight
and threshold values of the neural network based on the
electrostatic field parameters can further accelerate this
entire process.

The reasoning presented above in this work shows
that the capabilities of neural networks are even broader
and allow not only computation but also instant mem-
orization of patterns without training and calculations,
provided there is a small set of reference patterns. If we
consider the fact that electric charges and electric fields

are omnipresent in the living cells of neurons in living
organisms, as well as in the retinas of living organisms,
etc., it can be hypothesized that living organisms could
likely possess similar abilities.
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Figure 3. Scheme for determining neuron weights based on the electrostatic field potential for a semantic task.

OIIPEJIEJIEHUE BECOB HEMPOHHOM
CETHU C UCIIOJIb30BAHUEM
JIEKTPOCTATHYECKOI'O I10JIA
I'eitnapos I[lonan

B maHHOM McceioBaHMM paccMaTpUBaeTCsl MOAXOHA K
ONPEJEJICHUIO BECOB U IOPOrOB HEMPOHHOI ceTu Ha oc-
HOBE MOTEHLIMAJIa IEKTPOCTATUIECKOro nouist, 6e3 Heob-
XOIMMOCTH B JOIMOJHHUTENBHBIX aHAIUTUYECKUX BBIYMC-
JIEHUSIX WJIM HCTIONB30BAHUN TPAJMIIMOHHBIX alrOPUTMOB
oOyvenust. HeilpoHHast ceTh paboTaeT MO METOy MeT-
PUUYECKOro paclo3HaBaHUs, a MOJEIMPOBAHKE IEKTPO-
CTaTUYECKOTO MOJISl Pean30BaHo B Cpeje MPorpaMMupo-
Banus Builder C++. [IporpamMMHOe obecnieyeHre BbIYMC-
JsieT OOIMIl NEKTPOCTATMYECKUI MOTEHLMAN B 3aJaH-
HBIX TOYKaX MNPeUIOKEHHON Mofen (COOTBETCTBYIOIIMX
PACTIOIOKEHUI0 JATYMKOB — MOTEHIIMOMETPOB). DTOT Ke
MIPOrpaMMHBI MOAYJIb TIO3BOJISET CO3/1aBaTh HEHPOHHYIO
CeTh Ha OCHOBE METOJOB METPUYECKOTO PacHO3HaBaHMUs,
B KOTOPO#i Beca HEIPOHOB MEPBOTO CJI0S1 HA3HAYAIOTCS Ha
OCHOBE BBIUHCJICHHBIX IMOTEHIMATIOB CMOAEINPOBAHHOTO
NEKTPOCTATUYECKOTO MO, D(PPEeKTUBHOCTD MOTyYEH-
HOI HEUpPOHHOW CETH OLICHHMBAETCSA C MCIOJb30BAHUEM
HaOopa namHbix MNIST st 3ajgaum kiaccupukanum
pykonmcHeIX nudp. Takxke paccMOTpeHa BO3MOKHOCTD
MPUMEHEHHe 3TOrO MOAXO0AA B 33a4ax CEMaHTHUECKOTO
IIOHUMAaHUA TEKCTA.
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