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Abstract—Training neural networks often requires very
large amounts of image data. However, sharing images
owned by different institutions can be problematic. One
of the known solutions could be to train neural networks
jointly by way of iterative sharing neural models, but not
the restricted sets of training images. Such an approach is
known as Federated Learning. In this paper, we present
results of an experimental study of the efficiency of Feder-
ated Learning of generative neural networks of the DC-
GAN type. Specifically, the FedAVG approach has been
investigated based on large collection of medical images,
including chest x-ray images, axial slices of 3D computed
tomography images, and Hematoxylin-Eosin stained histol-
ogy images. The results of the FedAVG approach were
found to be highly dependent on the homogeneity of the
image datasets. Among the images being employed, the best
potential for federated training was demonstrated by chest
x-ray images, while the routine histology images were found
to be unsuitable for FedAVG training. The 2D computed to-
mography image slices were situated somewhere in-between
of these two image types and showed characteristically
unstable behavior. The period of aggregation of training
results on the federated server should be reasonably short
and repeated after every 1-3 epochs performed on the local
image datasets of federated clients.

Keywords—federated learning, generative models, Fe-
dAVG

I. Introduction

Training of modern neural networks typically requires
a large amount of data. However, merging and sharing
a sufficient amount of the original images can be prob-
lematic even with collaborating partners . This is due to
factors such as data privacy, limitations applied by the
national law, conditions of past contracts, ethical self-
limitations, etc. In the context of medical applications,
there could be several institutions in possession of the
data necessary for the training of neural networks of
common interest. However, these data may not be shared
by the above reasons. Federated Learning (FL) methods
[1] aim to train large neural network models together,
without sharing image data between participating insti-
tutions. Instead, copies of the same model are trained on
local image datasets of each client, and then, at the every
training round, these copies are iteratively transferred to

a server which aggregates them into a joint model and
sends back.

Depending on the way the training data are generated
and distributed, FL approaches are subdivided into two
different categories. The first is primarily referred to as
the horizontal one, whereas the other is called vertical
[2]. In Horizontal FL participants share the same feature
space but have different local samples. The goal is to train
a global model that can generalize between samples from
different clients. In the scenario of Vertical FL, clients
share the same aligned samples but have different local
features. The goal of Vertical FL is to train a global
model that is capable of making predictions using the
distributed features of shared samples. Thus, this paper is
deals with Horizontal, Centralized, Non-Heterogeneous
(same network architecture) Federated Learning.

There are several approaches exploring the FL setup
including the FedProx [3], SCAFOLD [4], the FedProc
[5], and some others. In this paper, we are considering a
version of the FedAVG algorithm that averages weights
of convolutional filters of the neural networks. Such an
approach is known and commonly abbreviated as the
FedAVG [1]. The family of the FedAVG algorithms are
relatively simple but still under investigation in different
applications. Unlike many other works, we are focusing
on medical image generation rather than on the image
classification.

Despite the basic idea of the FL method is transparent,
implementation schemes of every particular algorithm
could be different. For instance, in their work [1],
McMahan with colleagues have introduced a version of
FedAVG and performed a set of experiments that con-
firmed that the approach is robust to the unbalanced, non-
independent and identically distributed datasets. Among
the options under consideration, FedAVG appears to be
one of the most flexible, with the potential for easy
implementation, adjustment, and modification according
to the specific problem the researchers are dealing with.
Nevertheless, it remains not completely clear how much
it is applicable to the generative neural network models
and what results it would provide for different kinds of
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medical images.
In this paper, we are using the weight-averaging ap-

proach to train Deep Convolutional Generative Adversar-
ial Networks known as DC-GANs [6], [7]. The particular
goal was to assess the impact of various factors on the
quality of the FedAVG-based federated training such as
the type of medical images, the amount of image data, the
balance of different image classes owned by the clients
participating in federated training, the output image sizes,
and the way of integration of training and model aggrega-
tion steps. The relative simplicity of FedAVG algorithm
and low communication cost it convenient to use it as
a baseline for investigation of the technology of FL for
widely used family of generative models of DC-GAN
type (e.g., StyleGAN, CycleGAN, Conditional GAN,
Wasserstain-GAN, Super-Resolution GAN) as compared
to the extensively studied classification networks.

II. Materials
The study was performed based on three different

image datasets. The first radiological dataset consisted of
10,000 chest x-ray images of healthy subjects, whereas
the second one included 10,000 axial slices of 3D Com-
puter Tomography images of lung tuberculosis (TB) pa-
tients. In addition, the third dataset represents histological
images and was composed of 100,000 high-resolution
color microscopy images routinely used for breast cancer
diagnosis. The choice of such diverse medical image
types was motivated by the intention to better understand
the role of specific types of image features used for
federated training.

A. Chest X-ray images
A study group of chest x-ray images was created by

a random sub-sampling of suitable subjects from the
original repository. The age range was chosen to be 50
years spanning from 21 to 70 years. The availability of
the large image repository allowed to create a study group
that was well-balanced by both age and gender. For every
year of life we selected exactly 100 male and 100 female
subjects. Such sub-sampling resulted in the study group
consisting of (100 male + 100 female) subjects * 50
years = 10,000 subjects. Thus, we believe that the use of
such a balanced dataset of healthy subjects allows us to
avoid additional factors caused by the natural variability
of pathological changes in different patients.

Since the primary goal of this study was not the
analysis of chest radiographs as such but comparison
of different ways of medical image generation in the
context of FL, the original x-ray images were prepro-
cessed to avoid unnecessary large intensity range. This
was done by adaptive intensity rescaling of the original
images stored in medical DICOM format with 2 bytes
per pixel down to the commonly used range of 0 –
225. Rescaling was done with the help of well-known
technique of cutting the intensity range by histogram

quantiles of 0.02 and 0.98. The characteristic large area
of dark background was excluded using body masks
which resulted from a preliminary image segmentation.
Taking into account our close links with the manufac-
turers of x-ray machines, we have chosen to crop all
the images by cutting out 25 % of bottom rows of the
original chest scans and by 5% of pixels from the other
three sides. Finally, all the images were resized down
to 256x256 pixels proportionally. Example images are
given in Fig. 1. Additional information related to the x-
ray image properties in the context of classification tasks
can be found in [8].

Figure 1: Examples of chest x-ray images.

B. Computed tomography images
For discovering possible dependencies of results on

the medical image modality, we also used 2D slices
of 3D CT images of tuberculosis patients. The original
CT scans satisfy all the actual regulations, limitations,
and the project agreements they are performed with.
The original images were anonymized in due course
before any steps of their computerized pre-processing
and classifications. Thus, there are no ways to disclose,
share, and disseminate any personal data. The approach
and the sequence of steps of CT image data preparation
are described below.

We started with a large CT image dataset containing
as many as 10,714 3D CT scans. Then we excluded
scans for which the information about Age and Gender of
patients was not available. As a result, we end up with
8,463 CTs including 4,662 Males and 3,801 Females.
The remaining 8,463 3D images were split into 2D axial
slices. This resulted in 1,002,012 2D slice images of
512x512 pixels in size (574,309 in Male and 427,703 in
Female image datasets). Finally, all the 2D images were
exported to lossless PNG format with reduced 8 bit/pixel
intensity resolution.

We started with a large CT image dataset containing
as many as 10,714 3D CT scans. Then we excluded
scans for which the information about Age and Gender of
patients was not available. As a result, we end up with
8,463 CTs including 4,662 Males and 3,801 Females.
The remaining 8,463 3D images were split into 2D axial
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slices. This resulted in 1,002,012 2D slice images of
512x512 pixels in size (574,309 of Male and 427,703 of
Female patients). Finally, they were exported to lossless
PNG format with 8 bit/pixel intensity. In addition, all
slice images were sub-divided into 3 conditional anatom-
ical groups (“classes”) to ease processes of balancing the
semantic content of image datasets (see Fig. ??).

Class c1: The upper part of Liver.
Class c2: The Heart class, which was represented by

a middle heart section plus some limited amount of
adjacent axial slices along with Z vertical axis.

Class c3: The shoulders which include the upper part
of lungs and their close neighboring sections above and
below them by Z axis.

Figure 2: Examples of 2D slices of computed tomogra-
phy images.

It should be noted that we were not able to consider
other distinct anatomical sections such as the ones sit-
uated at the Neck and Kidney levels. This is because
the project the image data came from, was focused on
the lung tuberculosis and therefore patients were scanned
only within the regions of lungs plus few additional upper
and bottom safety image slices.
C. Histology images

Histological images playing the role of a "Gold stan-
dard" in diagnosis of oncological diseases world-wide.
A study group of Hematoxilin-Eosin stained histological
images was sampled from the dataset of whole-slide
images used in an international challenge of breast cancer
diagnosis (see “Minsk Team” in [9]). A total of 100,000
RGB image pieces (image tiles) of 256x256 pixels in size
were sampled and pre-processed from the large original
whole-slide images. The resultant image dataset included
50,000 images representing the norm and 50,000 images
of cancerous tissue. Some distinctive Illustrative exam-
ples that help to imagine the image variability are given
in [9]. Few illustrative examples are given in Fig. 3

Figure 3: Examples of histological images.

III. Methods
The primary objective of the present study was to

conduct a series of computational experiments to eval-
uate the efficacy and productivity of FL collaborative

processes on training medical image generation models,
as well as to identify key factors playing the role. The
experimental conditions are summarized and presented
in an itemized style below.

• We used Deep Convolutional Generative Adversarial Net-
works because they remain very popular despite the
emergence of several other image generators such as
the diffusion models which produce higher-quality image
samples and more easy to scale and control [10], [11].

• Training of generative models was executed with different
number of training epochs before performing the aggre-
gation step on the FL server. The aggregation was carried
out after every 1, 2, and 5 epochs.

• In each experiment we trained generative network during
the total of 100 rounds of federated training.

• The Influence of specific medical image modality, i.e., the
image type was studied by way of running same set of
experiments. Each experiment followed by comparison of
the FL results including the federated training efficiency
as well as the quality of generated images.

• In all the occasions we used the Fréchet Inception Dis-
tance (FID) [12] to evaluate the quality of the generated
images. This metric combines two different and contro-
versial properties. The FID score expresses quantitatively
how similar the generated images to their parental image
dataset and how variable the generated image dataset is.
The smaller FID value, the more similar generated images
to the original ones.

• During the federated training, the FID distance computed
between the generated images produced by each copy
of the local generative model as compared to the local
training image dataset of each client. It should be noted
that the resultant FID value is computed using Inception
v3 neural net which is trained by itself each time it is
called.

• For the research purposes, the FID score was also cal-
culated for an aggregated model on the server relative to
a common fetched dataset, which is the union of local
image datasets.

• Dependence of federated training convergence on the
image size was evaluated using relatively small image
resolution of 64x64 and 128x128 pixels. This is because
of commonly known substantive problems of GANs as-
sociated with generation of high-resolution images. An
additional, purely technical reason was to accelerate the
massive computations necessary for distributed training
of image generators.

• Considering the very high computation expenses caused
by a grid-like set of experiments, the size of generated
images and corresponding number of image generation
experiments was limited to 64x64 and 128x128. All the
experiments were repeated for each image dataset and
each resolution.

• Our FL setup has 2 clients that send all the weights of the
local models to the server every round. Once the weights
of local models are sent to the server, they are aggregated
by weights averaging. Then the new copy of aggregated
model is sent back to the clients to continue training on
local data.

• The number of image data items was the same in each
client and they do not overlap.

• Experiments were performed on a dedicated server
equipped with 4 GPU of NVIDIA V-100 type with 16Gb
of video RAM each.
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IV. Results

The results of the computational experiments are sum-
marized in figures 4 and 5. Fig. 4 reports results of
joint federated training of generative model aimed at
creating images of 64x64 pixels whereas Fig 5 represent
the training of the model for generating artificial images
of 128x128 pixels in size. It is easy to see that the
structure of both figures is identical. The rows of both
figures correspond to 3 different types of medical images
examined in this study including chest x-ray, computed
tomography, and histological images.

The figure columns illustrate dynamics of convergence
of federated training processes with respect to 3 different
ways of aggregation of particular clients’ results by the
federated server. Namely, 3 figure columns depict results
obtained when aggregation (averaging) of neural net
weights performed after 1, 3, and 5 training epochs
accomplished by the clients on their private image data.

The image data sets used in this study are different in
the degree of their heterogeneity. The most homogeneous
dataset among them is the dataset of chest x-ray images
of 10,000 healthy subjects. Typically, for non-specialists
majority of them appear nearly the same except for
subtle visual features associated with age, gender, and
(sometimes) general body constitution. More details can
be found in [13], [14]. As a result, from the 1st row of
Fig 4 representing training of tiny 64x64 x-ray images
we see that the federated training progresses reliable and
consistent for all 3 ways of aggregation of particular
training results obtained by different clients. However,
when it turns out to larger image samples (see the 1st row
of Fig 5), the plot curves expressing the consistency of
results produced by trained generative models measured
with the help of FID scores, become more noisy. In case
the aggregation was done after every 5 epochs (last plot
of the 1st row of Fig 5), the training is not converged at
all.

In general, the training trajectory of computed tomog-
raphy images (see the 2nd rows of figures 4 and 5) is
somewhat similar to the x-ray images discussed above.
However, in all the occasions the training becomes much
more unstable. This is evident from the bahaviour of
curves characteristic for both training processes in clients
(blue and yellow curves) as well as for the results of
aggregation in the server (green curve).

It is easy to note even from the small set of histological
images shown in Fig. 3 that they are highly variable
morphologically. Usually, there is no repetition of the
same cell patterns presented in the very large whole-
slide microscopy image taken from the biopsy sample.
This case, the FedAVG approach behaves similarly for
both image sizes (see the 3rd rows of figures 4 and
5). Namely, in the majority of training loops, the model
that aggregates results obtained by two clients (note the
green line) is always situated above the blue and orange

lines that correspond to the two independent clients.
The aggregated results are notably worse than the ones
obtained when each client trains generative model locally.
This practically means that the Fréchet distance between
the real and generated images is large and the use of
FL technology leads to high dissimilarity of real and
generated images. Thus, under given specific conditions,
it is not worth considering Federated training.

V. Conclusions

Results obtained in this study allow to draw the
following conclusions.

1. It was found that the potential utility of the horizontal
FedAVG FL approach depends strongly on the natural homo-
geneity of the image datasets involved in the federated training.

2. Among the examined images, the best potential for
federated training has been demonstrated by chest x-ray images
whereas the typical Hematoxylin-Eosin stained images were
rendered as not suitable for FedAVG training. The 2D computed
tomography image slices are situated somewhere between the
two aforementioned image types with some unstable behavior
during the training.

3. The period of aggregation of training results on the
federated server should be reasonably short and repeated after
every 1-3 epochs performed on the local image datasets of
clients.

VI. An outline of future research directions

Finally, let us make a sketch of possible future research
for two different directions. The firs direction is related
to the near future of developments in the field of FL
technologies while the second one is more general and
associated with the potential synergy of joining basic
ideas and technologies of General-AI and Large Lan-
guage Models (LLMs) [16].

A. Vertical Federated Learning in medical image analy-
sis

Based on the distributed way of data, FL can be
primarily categorized into three scenarios [15]:

• Horizontal FL, which is dealing with image data with
similar distribution among the clients (e.g., chest x-rays of
Norm and Pathology, MRI tomography images acquired
by different MRI scanners with the strengths of magnetic
field of 1.5 and 3.0 Tesla, etc).

• Vertical FL in which clients share the same samples (e.g.,
patients) but have different local features.

• Federated Transfer Learning [17] in which clients share
both common samples and parts of the feature spaces.

In our view, the main way of further development of
FL technologies in computerized medical diagnosis and
treatment is to jointly use multi-sort image, signal, and
laboratory data and proceed with them by the algorithms
of Federated Transfer Learning technology. In this con-
text, the Federated Transfer technology could be used
without the need to share aforementioned private data
to fulfill the local law and privacy concerns applied in
different places (e.g., hospitals, regions, countries).
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Figure 4: Results of training generative model for images of 64x64 pixels in size (explanations in text).

Figure 5: Results of training generative model for images of 128x128 pixels in size (explanations in text).
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B. Relationships with classical General-AI Methodology
The process of integration of classical AI concepts such as

semantic networks, logical inference, frame-based systems, and
various connectionist approaches (i.e., methods of cognitive
modeling that utilizes large networks of simple computational
units) with modern LLM technologies offers promising ways to
address existing limitations in reasoning, knowledge grounding,
and interpretability. A short list of promising approaches to
bridge these two is given below. There is a large body of
relevant references that can be explored separately according
to the specific area of interests.

• Structured Knowledge Integration by way of using seman-
tic networks as Knowledge Bases in explicit relationships
(e.g., "Paris is capital of France"). Generation of com-
monsense knowledge by fine-tuning LLMs on semantic
graphs.

• Enforcement of frame-based representations including
generation of structured output using frame templates
(e.g., "disease: symptoms, treatments") to guide LLMs in
generating consistent outputs by converting unstructured
LLM outputs into structured formats.

• Improving explainability and debugging by tracing infer-
ence paths and map LLM outputs to paths in a semantic
network to explain decisions (e.g., "The model inferred
X because of relationships Y and Z") and using tools
like AllenNSP to visualize reasoning steps. Using logical
inconsistency detection to identify hallucination patterns
in LLMs. For instance, detecting claims that violate
knowledge graphs.

• Using Hybrid Models that combine symbolic AI (rule-
based systems) with LLMs to improve reasoning and
decision-making.

• Employing few-shot and zero-shot for learning LLMs’
ability to generalize from minimal examples, aligning with
General AI’s goal of adaptability.

• Promoting cross-disciplinary applications by way of using
LLMs in fields like neuroscience and robotics to emulate
human-like learning and adaptability.

Thus, classical AI techniques can mitigate LLM weaknesses
(e.g., hallucination, poor reasoning) by injecting structured
knowledge, enabling hybrid neuro-symbolic architectures, and
improving interpretability. This synergy could lead to systems
that are not only powerful in language tasks but also capable
of broader, more generalized intelligence.
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ОЦЕНКА ЭФФЕКТИВНОСТИ ТЕХНОЛОГИИ
FEDAVG ПРИ ФЕДЕРАТИВНОМ ОБУЧЕНИИ

ГЕНЕРАТИВНЫХ НЕЙРОННЫХ СЕТЕЙ
Ковалев В. А., Карпенко Д. С.

Цель данной статьи – представить результаты экспери-
ментального исследования эффективности федеративного
обучения генеративных нейронных сетей типа DC-GAN.
В качестве основы федеративного обучения был выбран
подход FedAVG, который был исследован на больших на-
борах медицинских изображений, включающем рентгенов-
ские снимки грудной клетки, аксиальные срезы трехмер-
ных компьютерных томограмм, а также гистологические
изображения, окрашенные гематоксилином-эозином. Было
установлено, что результаты подхода FedAVGсильно зависят
от однородности наборов изображений. Среди рассматри-
ваемых изображений наилучший потенциал для федератив-
ного обучения продемонстрировали рентгеновские снимки
грудной клетки, в то время как типичные гистологические
снимки, окрашенные гематоксилиномэозином, оказались
непригодными для обучения методом FedAVG. В этом от-
ношении, 2D слои компьютернотомографических изображе-
ний оказались где-то между указанными двумя классами.
При этом процесс обучения генеративной нейронной сети
на томографических изображениях отличался значительной
нестабильностью при переходе от эпохи к эпохе. Установле-
но, что период агрегирования частных результатов обучения
на стороне федеративного сервера должен быть достаточно
коротким, порядка 1 раз в течении 1-3 эпох тренировки
участниками федеративного обучения их копий нейронных
сетей на локальных наборах изображений.
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