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Abstract—This experiment proposed an intelligent dis-
ease diagnosis method based on gait video analysis. Gait
videos were analyzed using OpenPose for 2D pose estima-
tion, and a Temporal Convolutional Network (TCN) was
employed to predict 3D poses, obtaining 3D gait motion
data of the target. After extracting motion features, a
knowledge base and inference rules for gait abnormalities
and diseases were constructed within the framework of
the Open Semantic Technology Intelligent System (OSTIS).
The gait features were semantically processed accordingly.
Finally, a classification model was used to diagnose potential
diseases and provide interpretable diagnostic recommenda-
tions. Experimental results demonstrated that this method
effectively integrates 3D motion features with semantic
reasoning, achieving accurate disease classification and
diagnosis, thus offering a novel technological approach to
intelligent medical diagnosis.

Keywords—Gait Analysis, OpenPose, 3D Motion Fea-
tures, OSTIS, Intelligent Medical Diagnosis

I. Introduction

Gait analysis, as an important means of studying
human motor functions, has significant value in the early
screening and diagnosis of neurological diseases, skeletal
disorders, and movement-related diseases [3], [12]. Gait
features can reflect human movement patterns and func-
tional states, as different diseases are often accompanied
by specific gait abnormalities, such as shortened stride
length, imbalanced gait cycle, and restricted joint mo-
bility [8], [20]. Therefore, precise analysis and pattern
recognition of gait data provide critical evidence for
disease diagnosis. However, traditional gait analysis often
relies on complex equipment in laboratory environments,
such as motion capture systems or pressure sensor floors
[6]. These methods are not only costly and challeng-
ing to popularize but are also limited by experimental
conditions, resulting in a lack of flexibility in the data
acquisition process.

In recent years, the rapid development of computer
vision and deep learning technologies has provided new
approaches to gait analysis. From Fig 1 video-based
gait analysis methods enable the efficient and low-cost
acquisition of human motion data using standard video
equipment [11]. The emergence of pose estimation tech-
nologies like OpenPose [1] makes it possible to extract
human 2D keypoints from video data, while deep learn-

Figure 1. Gait diagnostic network composition.

ing models such as Temporal Convolutional Networks
(TCN) [2], [19]further allow for high-precision 3D pose
prediction from 2D keypoints. This technical framework
provides powerful tools for gait analysis, enabling the
efficient extraction and analysis of gait data under non-
contact conditions.

At the same time, with advancements in intelligent
medical technologies, semantic reasoning and knowledge
representation are increasingly being applied in the field
of disease diagnosis. The Open Semantic Technology
for Intelligent Systems (OSTIS) provides strong support
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for the structured representation of medical knowledge
and logical reasoning. By constructing a knowledge base
related to gait abnormalities and combining it with infer-
ence rules for semantic processing of gait features, it is
possible to perform logical deduction from gait features
to disease diagnosis, thereby improving the accuracy and
interpretability of diagnostic results [18].

II. Related work
A. Data preparation

The analysis and research of gait data require high-
quality annotated datasets as a foundation. This study
utilized two types of gait data: healthy gait samples and
pathological gait samples. The healthy gait data were
obtained from the publicly available Human3.6 dataset,
which contains rich 3D human motion data and is well-
suited for the extraction and analysis of gait features [7].
The pathological gait data were collected from online
videos of patients with Parkinson’s disease and other
gait abnormalities. Keypoint information was extracted
from these videos using video analysis techniques, and
3D gait data were subsequently generated [?] These data
samples encompass various gait features and abnormal
patterns, providing ample data support for model training
and evaluation. Additionally, to enhance the model’s
generalization capability, the dataset was augmented with
gait data from different patients, ensuring coverage of a
broader range of gait abnormality types [13].

B. Extraction of gait features
Gait features are critical representations of human

movement patterns, as different diseases are often
associated with specific gait abnormalities [4]. This
study extracted 10 key features from 3D gait data,
including stride-related metrics stride_ratio, big_gait,
small_gait, speed speed, gait cycle characteristics
mean_gait_cycle_time, mean_swing_phase_time,
step width mean_step_width, and joint range of motion
right_ankle_angle_range, left_ankle_angle_range,
knee_angle_range. These features provide a
comprehensive description of individual gait patterns
and form a foundation for disease identification. Patients
with Parkinson’s disease often exhibit reduced stride
length, asymmetric gait, and slower movement, while
stroke patients may present with prolonged gait cycles or
abnormal swing phase durations. Limited joint motion,
such as restricted ankle or knee movement, can also
indicate specific gait disorders.

III. Material and Methods
A. openpose predicts 2D sequences

The core of gait analysis lies in extracting key features
of human motion. This paper utilizes the OpenPose
framework to estimate 2D keypoint sequences of human
gait from videos. OpenPose is a deep learning-based

multi-person pose estimation method that can locate 17
keypoints of the human body including the nose, neck,
shoulders, elbows, wrists, hips, knees, and ankles and
outputs the 2D coordinates of each keypoint in the image.

The core optimization objective of OpenPose is to
accurately locate human body keypoints and model the
connections between keypoints by jointly optimizing key-
point heatmaps and part affinity fields . Its optimization
objective is defined by the following loss function:

L =

K∑
k=1

∥∥∥Hk − Ĥk

∥∥∥2 + C∑
c=1

∥∥∥Lc − L̂c

∥∥∥2 (1)

From the formula, the first part represents the loss of
the keypoint heatmaps, while the second part represents
the loss of the part affinity fields. By jointly optimizing,
the loss function L simultaneously constrains the accu-
racy of the keypoints optimized through Hk and Ĥk and
the connections between the keypoints optimized through
Lc and L̂c. This joint modeling enables OpenPose to
achieve high-precision estimation of keypoint detection
and human skeleton connections in complex scenarios.

B. Temporal Convolutional Network module predicts 3D
sequences

This paper utilizes 2D skeleton data extracted by
OpenPose to predict 3D pose sequences from 2D key-
point sequences using a Temporal Convolutional Network
. Convolution is the core module of the Temporal Convo-
lutional Network and is used to preserve contextual infor-
mation in temporal sequence modeling. Its design incor-
porates a temporal causality constraint into the receptive
field of the convolution kernel [15]. To capture long-
term dependencies in the temporal sequence, Temporal
Convolutional Network introduces dilated convolutions
within the convolution layers, enabling deep networks to
extract features across different time scales. To enhance
the training stability of deep networks, residual connec-
tion modules are added. Residual connections allow the
input to be directly passed to the output, alleviating the
problem of vanishing gradients. The formula for dilated
convolution is:

yt =

k−1∑
i=0

Wi · xt−i·d (2)

In the formula, k represents the length of the convolution
kernel, and d is the dilation rate, which controls the
expansion speed of the receptive field. x represents the
input data of the temporal sequence, and W is used to
extract features from the input data and learn the weight
relationships across different time steps. By expanding
the receptive field, the model can better capture con-
textual information from the sequence, enabling more
accurate estimation of 3D pose sequences.

The input 2D gait sequence joint trajectories is fed
into the model as a temporal sequence. The model
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utilizes multiple layers of causal dilated convolutions to
capture both short-term and long-term dependencies in
the temporal sequence, thereby learning the mapping re-
lationship between the input data and the corresponding
3D motion patterns. The network outputs the 3D joint
coordinate sequence for each time step.

Figure 2. 3D Gait Prediction Gait.

The Fig 2 illustrates the workflow of gait sequence
analysis for patients with gait disorders. The left-side
image shows the extraction of 17 2D keypoints of the
human body using OpenPose, which are annotated on
the original image to describe the patient’s gait features.
Subsequently, deep learning models such as Temporal
Convolutional Networks are used to predict these 2D
keypoint sequences into the 3D skeletal gait sequence
on the right. The 3D skeletal diagram demonstrates the
patient’s motion trajectory and posture features in three-
dimensional space, with red and black skeletons repre-
senting dynamic changes at different time steps. This
clearly highlights the characteristic changes associated
with gait disorders, providing a reliable basis for gait
analysis and disease diagnosis.

C. Analysing gait and feature extraction
This graph shows the complete gait cycle phase dy-

namics, and extracting gait characterisation information
from the graph can help diagnose possible gait disorders.

Through the gait analysis shown in the Fig 3, gait
features such as gait cycle time, swing phase duration,
step length, step width, and joint range of motion (ROM)
can be extracted. These features are used to evaluate
gait symmetry, stability, and movement efficiency, aiding
in the diagnosis of gait abnormalities hemiplegic gait
or neurological impairments. This provides a basis for
rehabilitation training and disease screening [16].

Normal gait and pathological gait can be distinguished
through joint motion patterns. The Fig 4 below illustrates
the temporal variation curves of the left knee joints
in three-dimensional space X, Y, Z coordinates across
different gait categories normal, Parkinson’s, stroke, and
other pathological gaits. The curves for each category re-
flect the motion trajectories of the knee joints throughout
the gait cycle.

Green is normal gait, the key characteristics of healthy
gait include left-right symmetry, smoothness of the knee
joint trajectories, and periodic changes.

Purple is Parkinsonian gait is characterized by stiffness
in joint motion, reduced range of motion, and less distinct
trajectory changes. The restricted knee joint motion tra-
jectories can effectively differentiate Parkinson’s disease
from normal gait.

Blue is Stroke The most notable feature of stroke gait
is the asymmetry in the motion trajectories of the left
and right knee joints.

Other pathological gaits is red curve, Other patho-
logical gaits are characterized by irregularity and insta-
bility in knee joint trajectories, which may be caused
by arthritis, spastic gait, or other lower-limb functional
impairments.

To diagnose diseases based on gait characteristics, I
extracted 10 features from the gait cycle. Here, I will use
two representative features as an example. The formula
for the range of motion (ROM) is as follows:

Angle = arccos

(
A ·B

∥A∥ · ∥B∥

)
(3)

Joint angle is an important feature in gait analysis for
assessing joint flexibility and range of motion (ROM). It
plays a significant role in diagnosing and distinguishing
Parkinson’s disease, stroke, and other gait abnormalities.
In Parkinson’s patients, the ROM of the knee and hip
joints is significantly reduced.

Stride ratio is a key quantitative metric in gait analysis,
used to evaluate the relationship between stride length
and body dimensions (typically measured by lower limb
length or other body reference dimensions). It provides
a standardized measure of stride length relative to body
proportions, eliminating the influence of height or body
size differences on the comparison of absolute stride
lengths. The formula is as follows:

Stride Ratio =
Mean Stride Length
Mean Body Size

(4)

255



Figure 3. Illustration of the gait cycle.

By calculating the horizontal displacement of the same
foot making ground contact twice during the gait cycle,
the stride length for each step is determined, and the
average stride length is obtained. The average body size
is then calculated using the anatomical coordinates of
key points hips, knees, and ankles. Dividing the average
stride length by the average body size yields the stride
ratio [17].

The stride ratio standardizes the relationship between
stride length and body size, eliminating the influence
of individual body dimensions. It is a crucial indicator
for assessing gait symmetry, coordination, and disease
screening. By combining the absolute stride length and
the body reference length, a more comprehensive analysis
of gait abnormalities Parkinsonian gait or stroke gait can
be performed.

D. OSTIS-based diagnostic knowledge graph construc-
tion

OSTIS relies on semantic networks, so the first step
is designing an ontology that maps relationships be-
tween gait parameters, diseases, and symptoms. We
define the following class for Gait based on pa-
rameters: step_length, speed, movement_symmetry,
rhythm, knee_flexion_angle, torso_tilt, and met-
rics such as asymmetry > 15%, speed < 0.8m/s.
As a result, it is possible to define classes for dis-
eases, for example: Parkinson′s_Disease, Arthritis,
Multiple_Sclerosis, Ankle_Injury. In this case, there
are properties such as associated_symptoms, and
prevalence_statistics. This allows the definition of
classes for symptoms, for example: resting_tremor,
joint_pain, muscle_weakness.

For OSTIS systems, Gait analysis is based on the
following relationships:

• hasSymptom (Disease → Symptom)
• hasGaitParameter (Disease → Gait)
• correlatesWith (Parameter → Disease)

OSTIS supports rule-based inference using semantic re-
lationships. An example of diagnostic rules is shown in
the following script:

If movement asymmetry > 20% and speed<0.6
m/s → suggest Multiple_Sclerosis
rule:
(gait: movement_asymmetry > 20%) &
(gait: speed < 0.6)

->(diagnosis: Multiple_Sclerosis,
probability: 0.75);

If knee flexion angle < 30°and joint_pain
→ suggest Arthritis
rule:
(gait: knee_flexion_angle < 30) &
(symptom: joint_pain)

->(diagnosis: Arthritis,probability: 0.85)

The advantages of OSTIS technology include Inter-
pretability, Flexibility, and Knowledge Integration. This
results in a common ontology that can be expanded with
new disease parameters and combines data from diverse
sources, such as research and clinical guidelines.

This architecture enables an intelligent system for
automated diagnosis and clinical decision support. Imple-
mentation requires ontology refinement and collaboration
with medical experts. To establish a semantic association
between gait features and disease diagnosis, this study
utilized the OSTIS platform to construct a three-layer
diagnostic knowledge graph, which includes gait features,
gait abnormalities, and disease types. OSTIS is an open
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Figure 4. Four categories of knee coordinate change.

semantic technology intelligent system that can model
and infer complex semantic relationships through the
structured representation and logical reasoning capabili-
ties of its knowledge base [14]. To integrate the semantic
information from the OSTIS knowledge graph into the
diagnostic model, this study employed the Node2Vec
embedding method to represent the nodes in the knowl-
edge graph as low-dimensional vectors. These embedding
vectors preserve the semantic structural information of
the knowledge graph, enabling the model to utilize the
semantic associations of gait features for classification
and reasoning [9].

Random walks were performed on the nodes in the

knowledge graph gait features, gait abnormalities, and
diseases to generate node sequences. Node2Vec was
then used to train these sequences and generate vector
representations 128 dimensions for each node [10]. The
embedding vectors of the gait feature nodes were fused
with the actual extracted gait feature data to form seman-
tically enhanced representations of gait features.

E. MulticlassNN model diagnostics

The MulticlassNN model integrates gait features and
knowledge graph embeddings to construct a neural
network-based classification model for gait-related dis-
eases [5]. The model performs four-class classification,
distinguishing among “No Disease,” “Parkinson’s Dis-
ease,” “Stroke,” and “Other Gait Disorders.”

The input to the model consists of two components: 10
gait features such as stride ratio, speed, joint angle range
and a 128-dimensional embedding vector generated from
the knowledge graph. The knowledge graph embeddings,
created using the Node2Vec algorithm, encode the se-
mantic relationships among gait features, gait abnormal-
ities, and disease nodes into a high-dimensional space,
thereby enhancing the feature representation capability.

From the Fig 5, it can be observed that different
gait features exhibit significant variations in their dis-
tributions across the four classes (Normal, Parkinson’s
Disease, Stroke, and Other Gait Disorders). These dis-
tribution patterns reflect the characteristic differences in
gait abnormalities, providing crucial evidence for disease
classification.

From the Fig. 5, it is evident that the feature distribu-
tions corresponding to different diseases exhibit signifi-
cant differences.

Parkinson’s Disease: Characterized by small stride
lengths, prolonged gait cycles, and reduced ranges of
motion in the ankle and knee joints. Stroke: Features
a dispersed distribution, with manifestations such as
gait asymmetry, prolonged cycle time, and abnormal
swing phase time. Other Gait Disorders: Displays a
broader distribution, potentially exhibiting compensatory
gait characteristics (e.g., increased stride length and
step width). These distribution patterns provide critical
evidence for the classification model. By capturing these
patterns, the model can effectively distinguish between
the gait characteristics of different diseases.

The role of the MulticlassNN model is to combine the
physical significance of gait features with the semantic
relationships in the knowledge graph to achieve efficient
classification of disease-related gaits. Knowledge graph
embeddings compensate for the limitations of standalone
gait features, enhancing the model’s ability to recognize
gait abnormalities such as Parkinson’s disease and stroke.
Ultimately, through quantitative analysis of gait features
and automated classification, the model provides an
accurate tool for early disease screening and diagnosis.
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Figure 5. Distribution of values for gait features.

IV. Experimental Results
From Fig. 6 an intelligent disease diagnosis method

based on gait video in a four-classification task normal,
Parkinson’s disease, stroke, and other gait disorders

The loss curve during training indicates that the model
converges well within 500 iterations, with the validation
loss stabilizing at 0.39 and the training loss decreasing to
0.17. This demonstrates that the model exhibits good fit-
ting performance during both the training and validation
phases.

From the Fig 7 report, it can be observed that the
Macro Average and Weighted Average F1 scores are both
close to 0.93-0.94, further validating the robustness of
the model in the overall classification task.

On the test set, the overall accuracy of the model
reached 91.8%. From the classification report, it can be
observed that the performance metrics across different
categories are excellent. Specifically, the "Normal" and
"Other Gait Disorders" categories achieved a precision,
recall, and F1-score of 1.0.

The recall for Parkinson’s Disease is the highest (1.0),
but the precision is 0.77, indicating a small number
of misclassifications in this category. For the Stroke
category, the precision is 1.0, while the recall is 0.74,
which may be attributed to the complexity of its feature
distribution.

V. Conclusion
This paper proposes an intelligent disease diagnosis

method based on gait videos, integrating 3D gait feature

extraction, knowledge graph construction, and a deep
learning classification model to accurately diagnose four
gait states: “Normal," “Parkinson’s Disease," “Stroke,"
and “Other Gait Disorders." Using OpenPose for 2D
pose estimation on gait video data and a Temporal
Convolutional Network (TCN) to predict 3D poses, ten
gait features were extracted, including stride length, gait
speed, gait cycle, step width, and joint range of motion.
These features comprehensively describe gait patterns
and provide critical data support for disease classifica-
tion.

Additionally, by combining the knowledge graph con-
structed with the Open Semantic Technology Intelligent
System (OSTIS) and the Node2Vec embedding method,
the semantic relationships among gait features, gait ab-
normalities, and diseases were embedded into a high-
dimensional space. This enhanced the feature represen-
tation capability, providing semantically enriched feature
inputs for the model.

The loss curve during training shows that the model
converged well within 500 iterations, with the validation
loss stabilizing at 0.39 and the training loss decreasing
to 0.17. Experimental results indicate that the proposed
method achieved a classification accuracy of 91.8% on
the test set and demonstrated excellent robustness across
multiple classification performance metrics. This indi-
cates that the model effectively captures the characteristic
information of the respective categories. The model
exhibited good fitting performance during both training
and validation phases.
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Figure 6. Model losses and classification results.

Figure 7. Classification Report and Metrics Overview.

By combining the semantic reasoning capability of
the knowledge graph with the precise representation of
3D gait features, this method not only achieves effi-
cient disease classification but also provides semantic
interpretability for the diagnostic process, enhancing the
explainability of diagnostic results.

This study achieves intelligent and efficient diagnosis
of gait abnormalities and diseases through the organic
integration of gait feature extraction, semantic reasoning,
and classification models. It provides a novel technolog-
ical approach to intelligent medical diagnosis based on
gait analysis. This method holds significant application
value in fields such as early disease screening, reha-
bilitation assessment, and intelligent medical auxiliary
diagnosis. Furthermore, it offers theoretical and practical
support for the development of future intelligent and
contactless medical technologies.
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ИНТЕЛЛЕКТУАЛЬНАЯ
ДИАГНОСТИКА ЗАБОЛЕВАНИЙ
ПОХОДКИ С ИСПОЛЬЗОВАНИЕМ
ВИДЕОАНАЛИЗОВ 3D-ДВИЖЕНИЯ
Аоди Дин, Александр Недзьведь, Хунлинь

Цзя, Дзжийдян Го
В данном эксперименте предложен метод интеллек-

туальной диагностики заболеваний на основе анализа
видео походки. Видео походки анализировались с
использованием OpenPose для 2D-оценки позы, а для
предсказания 3D-поз использовалась временная свер-
точная сеть (TCN), что позволило получить 3D-данные
о движении походки целевого объекта. После извле-
чения движенческих признаков была построена база
знаний и правила вывода для нарушений походки и
заболеваний в рамках системы интеллектуальных тех-
нологий Open Semantic Technology Intelligent System
(OSTIS). Признаки походки были соответственно се-
мантически обработаны. В завершение использовалась
модель классификации для диагностики потенциаль-
ных заболеваний и предоставления интерпретируемых
диагностических рекомендаций. Экспериментальные
результаты продемонстрировали, что данный метод
эффективно интегрирует 3D-движенческие признаки
с семантическим выводом, достигая точной классифи-
кации и диагностики заболеваний, тем самым предла-
гая новый технологический подход к интеллектуаль-
ной медицинской диагностике.
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