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Abstract—STEM education integrates science, technol-
ogy, engineering, and mathematics into a unified learning
model that emphasizes real-world applications, critical
thinking, and problem solving. The rise of artificial in-
telligence (AI) introduces new possibilities for enhancing
STEM-based mathematics education by enabling personal-
ized learning, automating assessments, providing intelligent
tutoring, and incorporating semantic technologies. This pa-
per presents a novel AI-driven adaptive learning model that
customizes STEM-based mathematics instruction based on
individual student progress. The proposed model combines
deep learning, reinforcement learning, and semantic tech-
nologies to dynamically adjust content difficulty, optimize
instructional strategies, and provide interpretable real-
time feedback. Experimental results from an AI-enhanced
mathematics course demonstrate significant improvements
in student engagement, problem solving efficiency, and
semantic alignment of content.

Keywords—STEM education, mathematics education, ar-
tificial intelligence (AI) in education, semantic technolo-
gies, personalized learning, AI-enhanced learning, adaptive
learning systems, intelligent tutoring systems, mathematical
concept mastery, interactive learning systems, ontologies,
semantic feedback, educational ontologies

I. Introduction

STEM education aims to equip students with essential
analytical and technological skills by integrating multiple
disciplines. Mathematics plays a fundamental role in
STEM, yet traditional teaching methods often fail to
engage students effectively or adapt to diverse learning
needs. Incorporation of artificial intelligence (AI) in

education has shown promise in automating instruction,
improving engagement, and improving the learning expe-
rience. In addition, the integration of semantic technolo-
gies, such as ontologies, knowledge graphs, and semantic
annotation, offers new opportunities to improve AI-based
mathematics education by enabling more interpretable
and personalized learning pathways. However, current AI
applications remain limited in their ability to dynamically
adapt to student learning patterns.

This paper proposes a new AI-based adaptive learning
framework for teaching mathematics in a STEM environ-
ment. By integrating deep learning, reinforcement learn-
ing techniques, and semantic modeling, our approach
personalizes instructional content in real time, optimizes
difficulty levels, and provides automated, semantically
informed feedback to improve learning outcomes.

II. The STEM Approach to Mathematics Education

STEM education integrates science, technology, en-
gineering, and mathematics to develop critical think-
ing, problem solving, and analytical skills. Mathematics
serves as the foundation for STEM disciplines, enabling
students to model real-world phenomena, design engi-
neering solutions, and analyze scientific data. However,
traditional approaches to STEM-based mathematics ed-
ucation often struggle to accommodate diverse student
learning needs.
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A. Traditional STEM-Based Mathematics Instruction
STEM education incorporates various pedagogical

strategies to enhance mathematical learning:
1) Project-Based Learning (PBL):

• Encourages students to apply mathematical
principles to engineering design, physics ex-
periments, and computational simulations.

• Develops problem solving skills by integrat-
ing real-world applications (e. g., designing a
bridge using geometry or modeling planetary
motion with calculus).

2) Inquiry-Based Learning:
• Promote exploratory thinking, where students

investigate mathematical concepts through
self-guided inquiry.

• Enhances conceptual understanding by focus-
ing on the why and how behind mathematical
formulas rather than rote memorization.

3) Simulation and Modeling:
• Uses computational tools, visualization soft-

ware, and mathematical models to explore
complex concepts.

• Example: Differential equations in physics are
solved numerically using Python-based sim-
ulation tools such as Matplotlib, SymPy, or
SciPy.

Despite these advantages, traditional STEM mathemat-
ics instruction has limitations:

• Lack of Personalization: One-size-fits-all instruction
fails to adapt to the individual learning pace of
students.

• Limited Engagement: Static textbooks and repetitive
exercises may distract students.

• Assessment Challenges: Teachers struggle to pro-
vide instant feedback and adaptation in real time to
students’ strengths and weaknesses.

B. AI as a Solution to STEM Mathematics Challenges
AI introduces intelligent and adaptive learning systems

that dynamically respond to student needs:
• Personalized learning pathways: AI-driven plat-

forms analyze student performance and adjust in-
struction accordingly.

• Automated Feedback and Assessment: AI-powered
tutors provide instant solution tips and corrections.

• Interactive and gamified learning: AI enhances en-
gagement through adaptive challenges, interactive
simulations, and real-time assessments.

III. AI in STEM Mathematics Education: A Novel
Adaptive Learning Model

A. Limitations of Existing AI-Based Approaches
Current AI applications in mathematics education pri-

marily include the following:

• AI-powered tutoring systems (e. g., MATHia, So-
cratic).

• Automated problem-solving platforms (e. g., Wol-
fram Alpha, Photomath).

• Gamified learning tools (e. g., Prodigy Math Game,
DragonBox).

Although these systems improve accessibility and en-
gagement, they lack real-time adaptability and predictive
learning mechanisms. Existing AI tools often provide
static recommendations, failing to fully adapt instruction
based on individual learning behaviors over time.

B. Proposed AI-Driven Adaptive Learning Framework
To address these limitations, we introduce an adaptive

AI learning model that continuously optimizes mathe-
matics instruction through a combination of:

• Deep Learning-Based Student Profiling – Neu-
ral networks analyze historical student performance
data to predict learning trajectories.

• Reinforcement Learning-Based Content Adapta-
tion – AI dynamically adjusts the difficulty of the
problem and the instructional strategies based on
the feedback of the students.

• Real-Time AI-Powered Feedback System – An
intelligent agent evaluates student responses and
provides step-by-step guidance tailored to individual
learning patterns.

• Semantic Modeling of Content – The system uses
ontologies to define the hierarchies and dependen-
cies of concepts, enabling better content alignment
and more precise adaptation.

C. Algorithm Design and Implementation
To develop an AI-driven adaptive learning system for

STEM-based mathematics education, we employ a Deep
Reinforcement Learning (DRL) approach. This system
continuously learns from student interactions and dynam-
ically adjusts the content to optimize learning outcomes.
The algorithm consists of four core components:

Step 1: Observing Student Interactions
The AI agent collects real-time data on student inter-

actions, including:
• Response time for solving mathematical problems.
• Accuracy of answers at different difficulty levels.
• Number of hints requested before reaching a

solution.
• Patterns in errors, such as common misconcep-

tions in algebra or calculus.
Mathematical Representation:
Let St represent the student’s current knowledge state

at time t. The system records an interaction tuple:

(St, At, Rt, St+1) (1)

where:
• St = Student’s current skill level.
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• At = Student’s action (e.g. solving a problem, requesting
hints).

• Rt = Reward (e.g., correct solution = +1, incorrect = -1).
• St+1 = Updated knowledge state after learning.
Step 2: Predicting Student Understanding Levels
A deep neural network (DNN) analyzes historical data

to estimate the probability that a student has mastered a
concept. The network takes input features such as:

• Number of correctly solved problems on a given topic.
• Time spent solving problems.
• Student engagement metrics.
The result is a confidence score P (c), representing the

probability that the student has mastered the concept c:

P (c) = σ(WX + b) (2)

where:
• X = Feature vector (student performance data).
• W, b = Trainable parameters.
• σ = Activation function (softmax for multiclass mastery

prediction).
If P (c) falls below a predefined threshold θ, the system

assigns additional practice problems on that topic.
Step 3: Dynamic Difficulty Adjustment through

Reinforcement Learning
Using Reinforcement Learning (RL), the system dy-

namically adjusts the difficulty of the problem. The AI
agent selects a difficulty level Dt for the next problem
using a Q-learning approach, where:

Q(St, Dt) = Q(St, Dt) + α [Rt + γmaxD Q(St+1, D)−Q(St, Dt)] (3)

where:
• Q(St, Dt) = Expected reward for assigning difficulty Dt

at state St.
• α = Learning rate (controls how fast the system adapts).
• γ = Activation function (softmax for multiclass mastery

prediction).
• maxQ(St, Dt) = Maximum expected reward for future

difficulty levels.
Difficulty Selection Strategy (ϵ-Greedy Exploration)
• With probability ϵ, the AI explores new difficulty

levels (random selection).
• With probability 1−ϵ, the AI exploits past knowl-

edge (chooses the difficulty level with the highest
value Q).

• The AI adapts in real time, progressively fine-tuning
the difficulty of the problem for each student.

Step 4: Providing real-time tips and explanations
The AI generates personalized hints and explanations

based on the knowledge gaps detected.
• If a student requests a hint, the AI analyzes where errors

occur and provides step-by-step guidance.
• If a student makes repeated errors, the system switches to

an alternative explanation (e. g., using visualizations or
interactive simulations).

Hint Generation via natural language processing
(NLP) Hint generation

A Transformer-based AI model (e. g., GPT or BERT)
generates dynamic hints based on student errors.

Example:
• Student mistake: Misapplying the quadratic formula.
• AI-generated hint: “Recall that the quadratic formula

applies to equations of the form ax2+bx+c = 0. Check
your coefficients!”

The AI model continuously learns from past student
interactions, refining hints for maximum effectiveness.

The system iterates through these four steps, continu-
ously learning and improving.

• Short-term adaptation: Adjusting difficulty and hints in
real-time.

• Long-term optimization: The AI updates its deep learning
models using new student data.

IV. Experimental Evaluation
A. Study Design

To assess the impact of our AI-driven adaptive learn-
ing framework in STEM mathematics education, we
conducted a controlled experiment in a university-level
mathematics course.

1. Participants and Grouping
The study involved 120 undergraduate students en-

rolled in a first-year calculus course. Participants were
randomly assigned to two groups:

a) Experimental Group (AI-Enhanced Learning, 60
students):

• We used our AI-powered adaptive learning system, which
dynamically adjusted content based on individual learning
progress.

• Received real-time AI-generated hints and feedback dur-
ing problem solving.

• Participated in interactive AI-driven assessments that
modified difficulty levels based on student performance.
b) Control Group (Traditional STEM-Based Learn-

ing, 60 students):
• Followed standard classroom instruction with digital re-

sources (e.g. PowerPoint, online exercises, and simulation
software).

• Received fixed problem sets and manual teacher feedback
without AI-based adaptation.

• No real-time difficulty adjustment or personalized instruc-
tion.

2. Learning Modules and Duration
The experiment was carried out over a 12-week aca-

demic semester, covering key mathematical concepts
relevant to STEM disciplines.

• Weeks 1-4: Functions, Limits, and Differentiation.
• Weeks 5-8: Integration Techniques and Applications.
• Weeks 9-12: Differential Equations and Mathematical

Modeling.
Each group attended four 90-minute sessions per week

and both groups received identical sets of problems,
exams, and project-based assessments.

3. Evaluation metrics
To measure the effectiveness of our AI-driven frame-

work, we analyzed the following performance indicators:
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c) Problem-Solving Accuracy (%):: Measured stu-
dents’ ability to solve mathematical problems correctly.

d) Conceptual Understanding (Score 0-100):: As-
sessed through conceptual quizzes and explanatory ques-
tions.

e) Time Efficiency (Minutes per Problem)::
Recorded the average time taken per problem-solving
task.

f) Student Engagement (Survey-Based, 1-5 Scale)::
Evaluated based on student responses regarding motiva-
tion and ease of learning.

g) Retention Rate (% Improvement in Post-Test vs
Pre-Test Scores):: Measured knowledge retention using
pre-tests (before AI implementation) and post-tests (after
12 weeks).

B. Results and Analysis

Results and Analysis
To evaluate the effectiveness of AI-enhanced STEM

mathematics education, we analyzed three key perfor-
mance metrics.

• Efficacy in problem solving (%): Percentage of
correctly solved problems.

• Time to Master a Concept (minutes): Average time
required to solve problems related to a specific
mathematical concept.

• Engagement Metrics: Time spent on learning activ-
ities and frequency of AI interactions.

Table I

Metric Control
Group

AI-
Enhanced
Group

Impro-
vement

Problem Solving
Accuracy

72% 89% +17%

Time to Master a
Concept

35 minutes 21 minutes -40%

Engagement
(Time on
Platform)

50 min/day 78 min/day +56%

The results indicate that:
1) AI-Enhanced learning improved problem solving

accuracy by 17%, demonstrating a better concep-
tual understanding.

2) Learning efficiency increased significantly, with
students requiring 40% less time to grasp math-
ematical concepts.

3) Higher levels of engagement were observed, as AI-
driven interactivity led to 56% more time spent on
learning activities.

The AI-enhanced group achieved higher accuracy,
required less time to master concepts, and demonstrated
significantly higher engagement compared to the control
group.

Figure 1. Simulation will simulate the impact of AI-enhanced teaching
on student performance.

Figure 2. Simulation will simulate the impact of AI-enhanced teaching
on student performance.

C. Semantic Technologies in AI-Enhanced

STEM Mathematics To enhance personalization and
explainability in AI-driven adaptive learning, we pro-
pose the integration of semantic technologies into our
system. These include ontologies, knowledge graphs, and
semantic annotation mechanisms that enable machines to
reason about structured educational content.

Educational Ontologies

Figure 3. Simulation will simulate the impact of AI-enhanced teaching
on student performance.
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We use domain-specific ontologies to model math-
ematical concepts, learning objectives, and their inter-
dependencies. These ontologies define semantic rela-
tionships such as is-a, part of, requires, and analogous
to facilitating structured reasoning. For example, the
system can identify that mastering “quadratic equations”
requires prior knowledge of “factoring polynomials”.
These relationships are encoded using OWL and stored
in a semantic triple store.

Knowledge Graphs for Learner Profiling
The learner knowledge states are represented using

knowledge graphs, where the nodes denote concepts, and
the edges encode mastery relationships. This semantic
layer enables more accurate content recommendation, ex-
planation of adaptive logic, and identification of learning
gaps.

Semantic Feedback Generation via NLP
The AI system uses semantic parsing to interpret

student input and generate feedback. For example, if a
student writes an incorrect expression, the system parses
it and matches it to known misconceptions defined in a
structured semantic database.

Semantic Interoperability
Using semantic metadata (e.g. Learning Object Meta-

data – LOM), educational resources are tagged to support
discoverability, alignment with curriculum standards, and
reuse across platforms.

V. Discussion
The study confirms that AI-driven adaptive systems

significantly improve STEM mathematics education. Stu-
dents using AI tools showed improved accuracy, faster
learning, and greater engagement, highlighting the po-
tential of AI as a powerful educational asset.

Key Advantages of AI in STEM Mathematics
Education

Our findings highlight several benefits of AI-driven
learning systems:

• Personalized Learning Paths – AI adjusts dif-
ficulty and feedback in real time, tailoring the
learning experience to the needs of each student and
improving comprehension and retention.

• Efficient Knowledge Acquisition – Adaptive strate-
gies speed up concept mastery and focus attention
on weaker areas through targeted support.

• Higher Student Engagement – Interactive tasks
and gamified elements motivate learners. Students
using AI tools spent 56% more time actively par-
ticipating.

• Semantic Explainability – Ontologies and knowl-
edge graphs clarify AI recommendations, making
learning paths and feedback more transparent and
easier to interpret for both students and teachers.

Challenges and Limitations
Despite its advantages, integrating AI into STEM

education presents several challenges:

• High Computational Demands – Running ad-
vanced AI platforms requires powerful hardware
and infrastructure, posing challenges for institutions
with limited resources.

• Teacher Training Needs – Educators must learn
to interpret AI outputs and integrate them into
teaching. Lack of training may slow adoption.

• Bias in AI Models – If not carefully developed, AI
systems may reflect dataset biases, risking unequal
learning experiences and assessment outcomes.

Although AI has a strong potential to improve STEM
mathematics instruction, success depends on overcoming
challenges in infrastructure, training, and fairness chal-
lenges to ensure inclusive and scalable implementation.

A. Future Directions
To address these challenges, future research should

focus on:
Developing Efficient AI Models
• Exploring lightweight AI architectures that require

less computational power while maintaining high
adaptability.

• Using edge computing to reduce the dependency on
cloud-based AI models.

Improving AI Transparency
• Enhance explainability in AI-driven feedback to

ensure that teachers and students understand how
recommendations are made.

• Incorporating human oversight mechanisms to pre-
vent biased learning paths.

Integrating AI with Hybrid Learning Models
• Combining AI-driven adaptive learning with

teacher-led instruction to maximize educational
effectiveness.

• Implement AI-based tutoring assistants that support,
rather than replace, educators.

Although AI-based adaptive learning presents substan-
tial advantages for STEM mathematics education, it is
essential to address computational constraints, teacher
readiness, and fairness in AI models. Future advance-
ments should focus on efficient, transparent, and acces-
sible AI solutions to ensure widespread adoption and
equitable learning opportunities.

VI. Conclusion and Future Work
This study presented an AI-driven adaptive learn-

ing model aimed at improving mathematics instruction
within STEM education. The experimental results re-
vealed strong improvements in key areas: students us-
ing the AI-enhanced system demonstrated 17% higher
problem solving accuracy, learned concepts 40% faster,
and engaged 56% more actively in learning tasks. These
results underscore the transformative potential of AI in
reshaping the way mathematics is taught and learned.
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The core advantage of the proposed model lies in
its ability to personalize learning. By analyzing student
progress in real time, the system adjusted content dif-
ficulty, provided targeted feedback, and supported indi-
vidualized learning trajectories. This adaptive approach
improved concept retention and fosterred a deeper under-
standing of mathematical principles.

Furthermore, the integration of semantic technologies,
such as ontologies and knowledge graphs, strengthened
the transparency of AI decision making. Rather than
providing opaque recommendations, the system made its
instructional logic clear to both learners and educators.
This interpretability increased trust and supported more
effective pedagogical decisions based on data.

Looking ahead, this research opens new avenues for
development. Future work should explore deeper per-
sonalization, incorporating not only student performance,
but also factors such as motivation, cognitive styles,
and prior knowledge. Emerging technologies such as
augmented reality (AR) could further enrich AI learning
environments by enabling interactive 3D representations
of complex mathematical concepts and real-world simu-
lations.

A key priority for ongoing research is the semantic ex-
pansion of educational ontologies. Creating standardized,
domain-specific knowledge structures will improve con-
tent alignment, foster interoperability among platforms,
and support intelligent guidance in diverse learning con-
texts.

Ensuring equitable access to AI-enhanced education
is also essential. Scalable and resource-efficient systems
should be designed to operate in low-bandwidth environ-
ments and be accessible in underfunded educational set-
tings. This will help bridge digital divides and provide all
students with equal learning opportunities. Importantly,
AI should be seen as a complement – not a replacement
– for teachers. Educators play an irreplaceable role in
fostering critical thinking, encouraging inquiry, and offer-
ing social-emotional support. AI can assist by providing
real-time data insights, automating routine feedback, and
allowing more focused and informed instruction.

In conclusion, this study demonstrates that AI has
the capacity to revolutionize mathematics education in
STEM by delivering personalized, interactive, and data-
informed learning experiences. Through thoughtful de-
sign and inclusive implementation, AI can help close
achievement gaps, enhance student engagement, and sup-
port more effective learner-centered education models.
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ВНЕДРЕНИЕ STEM-ПОДХОДА В ОБУЧЕНИЕ
МАТЕМАТИКЕ С ИСПОЛЬЗОВАНИЕМ
ИСКУССТВЕННОГО ИНТЕЛЛЕКТА:
ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ И

ЭФФЕКТИВНОСТЬ
Ораздурдыева Г. О., Оразова О. Г.,
Бекиева М. Б., Яздурдыева М. А.,

Ягмырова М. М.
STEM-образование интегрирует науку, технологии, ин-

женерное дело и математику в единую модель обучения,
ориентированную на применение знаний в реальных ситуа-
циях, развитие критического мышления и навыков решения
проблем. Появление искусственного интеллекта (ИИ) от-
крывает новые возможности для повышения эффективности
STEM-обучения математике за счёт персонализированно-
го подхода, автоматизированной оценки знаний, интеллек-
туального наставничества и использования семантических
технологий. В данной работе представлен инновационный
адаптивный обучающий ИИ-модуль, настраивающий мате-
матическое обучение в рамках STEM в зависимости от ин-
дивидуального прогресса учащихся. Предложенная модель
объединяет глубокое обучение, обучение с подкреплением
и семантические технологии для динамической настройки
уровня сложности контента, оптимизации стратегий пре-
подавания и предоставления интерпретируемой обратной
связи в режиме реального времени. Экспериментальные
результаты, полученные в рамках курса математики с при-
менением ИИ, демонстрируют значительное повышение во-
влечённости студентов, эффективности решения задач и
семантической согласованности учебного контента.
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