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Abstract—This research proposes a method for clas-
sifying ocular diseases in fundus images using semantic
segmentation as an attention mechanism. Unlike conven-
tional approaches that rely on the entire retinal image,
the proposed framework emphasizes anatomically relevant
regions extracted via segmentation of the optic disc, optic
cup, and retinal vessels. These segmentation masks are
integrated into the classification pipeline to enhance feature
learning. A EfficientNetB6-based classifier is utilized to
evaluate the impact of this strategy. Experimental results
demonstrate improvements in classification performance
across multiple evaluation metrics.
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1. Introduction

Fundus imaging has become a cornerstone in oph-
thalmology, offering non-invasive and high-resolution
visualization of the retina and its associated structures.
These images are integral in diagnosing a broad spectrum
of ocular and systemic diseases. The interpretation of
such images, however, demands a high level of expertise
and can be time-consuming, especially in regions with
limited access to ophthalmic specialists [1]. As the global
burden of ocular diseases continues to rise, there is a
critical need for automated systems that can support
clinical decision-making and screening efforts.

Recent advancements in deep learning have shown
considerable promise in addressing this challenge [2].
Convolutional Neural Networks (CNNs) have demon-
strated strong performance in a variety of medical image
classification tasks, including retinal disease recogni-
tion [3]. Nevertheless, one of the limitations of end-
to-end classification models is their reliance on global
image features, which may dilute the impact of localized,
clinically relevant structures. Consequently, classification
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performance may suffer, particularly in the early stages
of disease when only subtle signs are present.

To improve the focus of deep learning models on
diagnostically relevant regions, attention mechanisms and
region-guided methods have gained popularity. In this
study, we explore the use of semantic segmentation as an
attention strategy in the classification of ocular fundus
images. By segmenting anatomical regions known to
exhibit pathological changes—such as the optic disc, cup,
and retinal vessels—and using these masks to enhance or
filter the input images, we aim to guide the classifier’s
attention to the most informative areas [4].

II. Sympoms of ocular diseases in fundus imaging

Fundus photography enables non-invasive visualiza-
tion of the internal structures of the eye, including the
retina, optic disc, macula, and posterior pole. It plays
a critical role in the identification and monitoring of
numerous ocular diseases. The following section outlines
key pathological signs of common ocular diseases as they
appear in retinal fundus images.

A. Myopia

Pathological myopia is typically associated with axial
elongation of the eyeball, which leads to mechanical
stretching and thinning of the retina. Fundus images
of myopic patients frequently exhibit peripapillary at-
rophy, tessellated fundus appearance, tilted optic discs,
and staphylomas. These features reflect structural de-
formation and progressive degeneration of the posterior
segment, which can predispose the eye to chorioretinal
atrophy and retinal detachment.

B. Hypertension

Hypertensive retinopathy results from chronic elevated
blood pressure and manifests through various microvas-
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cular changes. Common fundus signs include general-
ized and focal arteriolar narrowing, arteriovenous (AV)
nicking, arteriolar wall opacification (copper wiring and
silver wiring), flame-shaped hemorrhages, cotton wool
spots, and hard exudates. In severe cases, swelling of the
optic disc and macular star formation may occur, indicat-
ing malignant hypertension and necessitating immediate
intervention.

C. Diabetes

Diabetic retinopathy (DR) is one of the most preva-
lent causes of blindness globally. Its hallmark features
in fundus images include microaneurysms, intraretinal
hemorrhages (dot and blot types), hard exudates, cotton
wool spots, and retinal edema. Proliferative diabetic
retinopathy (PDR) may present with neovascularization
on the optic disc or elsewhere in the retina, vitreous
hemorrhage, and tractional retinal detachment. Diabetic
macular edema, characterized by retinal thickening in the
macular area, is a leading cause of vision loss in DR [5].

D. Glaucoma

Glaucoma is characterized by progressive optic neu-
ropathy and loss of retinal ganglion cells, with corre-
sponding changes visible in fundus photographs. These
include increased cup-to-disc (C/D) ratio, thinning or
notching of the neuroretinal rim, peripapillary atrophy,
and optic disc hemorrhages (especially in normal-tension
glaucoma). Advanced stages may show “bean-pot” ex-
cavation of the optic nerve head. Evaluation of the
C/D ratio and asymmetry between eyes is essential in
glaucoma detection.

E. Cataract

Although cataract primarily affects the crystalline lens
and is best visualized via slit-lamp biomicroscopy, it can
have indirect effects on fundus photography. Opacifica-
tion of the lens leads to decreased image contrast, blur-
ring, and reduced visibility of retinal structures. In fundus
images, this appears as a generalized haze, particularly in
the red channel, which may complicate retinal assessment
and affect automated analysis accuracy.

F. Age-Related Macular Degeneration (AMD)

AMD is a degenerative disease of the central retina and
is classified into dry (non-exudative) and wet (exudative)
forms. Early signs in fundus images include drusen
(yellowish extracellular deposits beneath the retina), pig-
mentary changes, and geographic atrophy. In neovas-
cular AMD, subretinal hemorrhage, fluid accumulation,
and choroidal neovascular membranes may be observed.
These manifestations often result in central vision loss
and are identifiable through high-resolution fundus imag-
ing.

The specific appearance of these pathologies on fundus
images forms the basis for automated diagnostic algo-
rithms. Accurate segmentation and localization of rele-
vant anatomical structures will later enable our models
to focus on informative regions.

III. Multiclass semantic segmentation methods

To extract the most informative features we segmented
the main objects:

« optic disc;

« optic cup;

« blood vessels.

To form a semantic map of the image’s most informa-
tive objects was chosen a convolutional neural network
of Unet widely used for segmentation of medical images.

A. Optic disc and optic cup segmentation

The segmentation model employed for segmenting
optic disc and optic cup is based on a modified U-
Net architecture implemented in PyTorch. The network
is trained to produce dual-channel output masks corre-
sponding to the optic disc and optic cup regions.

The model follows the classical U-Net design with
symmetric encoder-decoder paths and skip connections
between corresponding layers. Each encoder block per-
forms two convolutions with ReLLU activation, followed
by a downsampling operation (MaxPooling). The decoder
mirrors this process with upsampling via transposed
convolutions and concatenation with features from the
encoder.

o Input: RGB image of shape (3, 256, 256)

o Output: Segmentation mask of shape (2, 256, 256) (chan-

nel 0: disc, channel 1: cup)

Table 1
Semantic interpretation of multi-channel segmentation mask

Channel 0 (Disc) | Channel 1 (Cup) | Semantic Class

0 0 Background

1 0 Disc only

0 1 Cup only

1 1 Cup inside Disc

The training was supervised using a Binary Cross-
Entropy (BCE) loss per class for 30 epochs with early
stopping. The loss during training epochs can be seen on
Figure 1.

Model performance was evaluated during training us-
ing the Dice coefficient (Figure 5), which provides a
measure of spatial overlap between predicted and true
segmentation masks.

The final evaluation on the validation set showed a
high quality of segmentation. The Binary IoU (Jaccard
index) achieved:

« Optic disc: 0.92

« Optic cup: 0.83

These values indicate good spatial agreement between
predictions and ground truth masks, especially for the
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Figure 1. BCELoss during training for optic disc and optic cup.
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Figure 2. Dice coefficient during training for optic disc and optic cup.

optic disc. The optic cup, being smaller and less distinct
in fundus images, showed a lower but still acceptable IoU
score.

The Dice coefficient at convergence was approximately
0.95 for the optic disc and 0.88 for the optic cup, which
reflects the class imbalance and visual complexity in
segmenting the excavation zone.

An analysis of training dynamics shows that the loss
curves are not monotonic and include fluctuations, par-
ticularly for the optic cup, which suggests sensitivity to
anatomical variations and class imbalance.

Further improvement of segmentation accuracy can
be achieved by:

o Incorporating Dice loss or combined BCE + Dice loss
during training to better handle imbalanced regions;

o Using focal loss to reduce the impact of background
pixels;

o Applying data augmentation focused on enhancing vari-
ability in cup morphology.

Overall, the segmentation model is robust and provides

sufficiently accurate anatomical masks for our algorithm.

B. Segmentation of blood vessels

The training of the model extracting the vascular
network of the image was carried out in 2 stages. In

the first stage, the network was trained on an additional
set of 300 labeled data from publicly available datasets
such as DRIVE [6], CHASE DBI1 [7] and HRF [8]. In the
second stage, the network was trained on target images.

Initially, the analyzed three-channel (RGB) image was
compressed to a size of 996 x 996. After that, it was split
into 9 slices with a resolution of 352 x 352 so that each
slice captures a part of the neighboring slices (10 pixels).
This is to eliminate distortion at the boundary between
two tiles. Vessel segmentation by the neural network was
performed for each tile. We chose UNet architecture with
a resnet18 backbone pre-trained on the ImageNet dataset.

The model contains 23 convolutional layers and con-
sists of convolutional (encoder) and up-convolutional
(decoder) parts. To reduce each 64-component vector
to the required number of classes, 1x1 convolutions
are applied on the last layer. The input image size is
determined by the need for even values of height and
width for adequate application of subsampling operation
(2x2 max pooling).

The network is trained by stochastic gradient descent
based on the input images and their corresponding
segmentation maps (masks). Applied function, soft-max
brings the model prediction to the mask view. The loss
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function is a binary cross-entropy + jaccard functions.
The accuracy is calculated by the BinarylOU() [9] func-
tion, which finds the ratio of the correctly predicted mask
to the union of the predicted and true masks. After the
tiles were merged into a single image with the boundary 5
pixels cropped on each of them. They were then merged
into rows. To smooth the transition between two tiles,
their 5-pixel boundaries are overlaid and the resulting
brightness is calculated using alpha blending to obtain a
smooth transition. This process is shown in Fig. 3.

e

TN

Figure 3. left — result of segmentation model on neighboring tiles,
right — tiles merged with alpha blending

The same way the obtained 3 rows of tiles are com-
bined into a vessel mask of the whole image. After that
the obtained mask is stretched to the size of the original
image.

The results of segmentation model for vascular net-
work on training set and validation set are shown in
Fig. 4.

IV. EfficientNetB6 Classifier (without attention mask)

We examined a baseline image classification pipeline
trained to categorize retinal fundus images into one of
seven diagnostic classes. The model was trained on a
curated version of the ODIR-5K dataset. Each fundus
image (left or right eye) was labeled into one of the
following categories:

Pathological Myopia

Hypertensive Retinopathy

Diabetic Retinopathy

Glaucoma

Cataract

Age-related Macular Degeneration (AMD)

o Normal (Healthy)

Each class was sampled with up to 250 left-eye and
250 right-eye images. Images were loaded, resized to
224 x 224, and paired with integer labels.

a) Data Augmentation.: Training images were aug-
mented using the ImageDataGenerator utility with
the following transformations:

« Rotation: £30°

o Width and height shift: 10%
e Zoom: 20%

« Horizontal flipping

These augmentations were applied to improve gener-
alization and reduce the risk of overfitting.

b) Model Architecture.: The core of the model is
EfficientNetB6 [10] with include_top=False.
Pretrained weights were used to initialize the base. A
custom classification head was added:

GlobalAveragePooling2D

Dense (224, activation=’relu’)
Dropout (0. 3)

Dense (7, activation=’softmax’)
prediction

for 7-class
c) Training Configuration:

Optimizer: Adam with a learning rate of 1 x 10™*
Epochs: 30

Batch size: 8

Early stopping: Enabled (patience = 5)

d) Baseline result: Figure X shows the confusion
matrix of the model on the test set, highlighting per-
class prediction accuracy and common misclassification
patterns (Fig. 5). It reveals both the strengths and limita-
tions of the baseline model when distinguishing between
retinal diseases.

Key Metrics:

o Overall test accuracy: 78.3%
« Highest per-class accuracy:

— Myopia: 94%

— Age-related Macular Degeneration (AMD): 90%
« Lowest per-class accuracy:

— Diabetic Retinopathy: 29%
— Healthy: 69%

V. EFFICIENTNETB6 CLASSIFIER using semantic
attention mask

To improve classification performance, we introduced
an attention mechanism that utilizes semantic segmenta-
tion masks generated for each fundus image. The core
idea is to guide the classifier’s focus toward clinically
relevant anatomical regions—namely the optic disc, optic
cup, and retinal vessels—by assigning higher weights
to these structures and attenuating the influence of the
background.

A. Attention Mask Generation

For each image, we applied pretrained segmentation
models to generate binary masks corresponding to:

« Optic disc (channel 0),

o Optic cup (channel 1),

o Retinal vessels (channel 2).

These masks were resized to match the input image
dimensions and normalized to the range [0, 1]. Each re-
gion was assigned a scalar weight based on its diagnostic
relevance:
wdise = 0.9,

Wep = 1.0,
Wyessels — 0.8,
Whackground = 0.2.

The values were selected empirically through abla-
tion studies and reflect the clinical importance of each
anatomical structure.
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Figure 4. IoU score. first — training, second — validation. Blue — disk segmentation, red — excavation zone, orange — blood vessels
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Figure 5. Confusion matrix for the baseline model.

B. Mask-Based Image Enhancement

A composite attention mask M is computed as a
weighted sum of the individual segmentation maps:

M = wgisc - maskgisc + Weup - maSkcup + Wyessels*
masKyessels + Whackground - (1 — combined_mask)

where combined_mask denotes the union of all binary
object masks. The attention-enhanced image [, is then
obtained via element-wise multiplication:

Iattn(xay) = I(xvy) : M(xvy)

This operation suppresses less informative background
regions while amplifying features in diagnostically criti-
cal areas.

C. Classification Pipeline

The modified images I, are fed into the same
EfficientNetB6 classifier described earlier. The training

configuration—loss function, optimizer, learning rate,
and number of epochs—remains unchanged to ensure a
consistent comparison with the baseline model.

This strategy allows the network to concentrate on
regions most likely to contain pathological changes,
and leads to measurable improvements in classification
accuracy, especially in complex or borderline cases.

a) Improved result: After training model with at-
tention masks the confusion matrix of the model shows
optimized classification performance. The updated ma-
trix demonstrates better per-class accuracy and reduced
confusion among visually similar diseases compared to
the baseline model (Fig. 6).
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Figure 6. Confusion matrix for the improved model.

Key Metrics:
o Overall test accuracy: 92.2%
o Highest per-class accuracy:
— Cataract: 96.6%
— Myopia: 96.0%
o Lowest per-class accuracy:

— Diabetic Retinopathy: 84.6%
— Healthy: 84.4%
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VI. Discussion

Within the framework of OSTIS (Open Semantic
Technology for Intelligent Systems), attention masks and
reflexivity become key components for building an intel-
ligent diagnostic system based on the analysis of fundus
images. At the core of the method is the use of semantic
segmentation to highlight key anatomical structures —
the optic disc, optic cup, and blood vessels — which are
then used as attention masks in the EfficientNetB6 neural
network, significantly improving classification accuracy
from 78.3% to 92.2%. This approach is particularly
valuable for diagnosing complex diseases such as diabetic
retinopathy, where precise detail recognition is critically
important. Within OSTIS, attention masks become a tool
that implements the principle of reflexivity: the system
can analyze its own decisions, adjusting the weights
of these masks based on classification errors, which
enhances its adaptability and effectiveness.

Attention masks are weight maps that highlight
anatomically significant areas of the image, such as the
optic disc, optic cup, and blood vessels. They are created
using semantic segmentation and integrated into the
OSTIS system as a tool that directs the classifier’s focus
to critically important zones. This allows the system to
amplify signals from key areas, improving the accuracy
of diagnosing pathologies such as glaucoma or diabetic
retinopathy. For example, by applying attention masks,
the model can more clearly distinguish subtle changes in
eye structures, which is especially important for diseases
with minor visual manifestations.

Representing knowledge about diseases and anatomy
in a universal format ensures their reusability and scal-
ability, allowing for the creation of flexible systems.
This integration not only improves diagnostic accuracy
but also makes the system capable of explaining its
conclusions, which is crucial for medical practice where
the interpretability of decisions plays a key role.

The integration of attention masks and reflexivity
makes the OSTIS system not only more accurate but also
interpretable. Attention masks help explain which areas
of the image the classifier relies on, while reflexivity
ensures transparency in the learning and adjustment
process. This is particularly valuable in medical practice,
where doctors need justification for diagnostic decisions.

VII. Conclusion

This study demonstrates that incorporating semantic
segmentation into the classification pipeline significantly
enhances the performance of retinal disease diagnosis
from fundus images. By generating semantic masks of
the optic disc, optic cup, and retinal vessels, and using
them to guide the classifier’s attention, we were able to
improve both accuracy and robustness of the model.

The proposed attention mechanism allows the network
to prioritize clinically relevant regions while suppressing

less informative background areas. This research shows
that semantic information, when embedded in the form
of weighted attention masks, leads to better feature repre-
sentation and higher classification performance, particu-
larly in cases involving subtle or overlapping pathological
signs.
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VIIVUIIEHUE JTUATHOCTHUKHA
N30BPAKEHNM IVIABHOI'O JHA C
HNCIIOJIB3OBAHUEM MACKH AJITOPUTMA
BHUMAHUSA HA OCHOBE CEMAHTUYECKOWM
CEIrMEHTAIIMA
I'mvoumkas E. B., Ceuctrynora K. U., Kapanetsa I. M.,
Hemseens A. M., Admameiiko C. B.
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(5

B nmanHoit paboTe npearaeTcst MeToA KiiacCupuKanuu og-
TaJIbMOJIOTHYECKUX 3a00JIeBaHUI 10 W300PaKEHUAM IJIA3HOTO
JIHAa C TIPUMEHEHNEeM CEMaHTHYEeCKOW CerMeHTAlluH B KayecTBe
MeXaHH3Ma BHUMaHus. B OT/IMYMe OT TpaJMIMOHHBIX MIOAXO0B,
UCHOJIb3YIOIHX BCIO 00J1aCTh CETYATKH, IPEAJIOKEHHAst CHCTEMa
aKIIEHTHPYeT BHMMaHHE Ha aHATOMHYECKHM 3HAYMMBIX 30HAX,
BBIJICJICHHBIX TOCPEJCTBOM CErMEHTAllMM IMCKa 3PUTEBHOrO
HepBa, ONTUYECKOW 4YallM U COCcymucToil cetd. IToydeHHbie
CerMEeHTALIOHHbIE MaCKU MHTETPUPYIOTCS B QJITOPUTM KJIACCH-
(ukanmu Juis ynydieHns: U3BJICUCHHUs] NPU3HAKOB. B KauecTBe
KJiaccugukaropa ucrons3yercst Moziesb Ha 6ase EfficientNetBo,
HO3BOJISIOIIAS OLEHUTD 3P PEK THBHOCTH MPEJIOKEHHOM CTpaTe-
ruu. Pe3yibraThl SKCIIEPUMEHTOB JEMOHCTPHUPYIOT TOBHIIICHHE
TOYHOCTH KJIACCU(HKALMK IO PSIOy METPUK M YCHEIIHOCTh
JaHHOTO METOJa.
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