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Abstract—An innovative technology for adapting control
signals of the technological production cycle control system
to external control actions and random disturbances is
presented. A new solution for reducing the impact of
destabilizing environmental factors in real time is proposed.
A method for adapting the automated technological cycle
control has been developed, based on constructing control
feedback algorithms to reduce the sensitivity of process
operation parameters to changes in the operating conditions
of process equipment and the environment. A description
of the tools for implementing the means of adapting the
technological cycle control based on constructing control
feedback algorithms and synthesizing neuroregulators us-
ing neural network algorithms is provided. A procedure
for generating a knowledge base in accordance with the
"technological processes with probabilistic characteristics"
ontology is proposed, providing a formal description of the
component classes of the process cycle, their properties and
relationships between classes, coding in the SC code format
and integration with logical inference mechanisms.

Keywords—adaptive control, neural network modeling,
feedback construction algorithms, synthesis of neuroregu-
lators, adaptation technology

I. Introduction
In the process of real operation of complex techni-

cal systems, in particular, the technological production
cycle [1], there is a need to take into account external
destabilizing factors in real time. Therefore, the issue of
developing methods, algorithms and tools that can ensure
a significant reduction in the sensitivity of the parameters
of the technological cycle to the impact of destabilizing
factors, including random external disturbances and con-
trol actions, deserves attention.

Development of new technologies for control adapta-
tion based on modern methods of artificial intelligence
will allow building an ecosystem of solutions for the
automation of modern production systems, improving
product quality and economic efficiency.

The article describes the technology for adapting the
control of the technological process at the level of tech-
nological operations, which ensures the use of intelligent
computer systems of adaptive control in real time. The
process of synthesis of a neuroregulator is described,

including the use of algorithms for automated search for
the optimal architecture of a neural network.

II. Creation of a knowledge base on the subject area
"technological processes with probabilistic

characteristics"

The procedure for generating a knowledge base based
on an ontology involves the sequential formation of struc-
tured data reflecting the entities and relationships of the
subject area. This process is based on the formalization
of knowledge about technological and probabilistic tech-
nological processes, their elements and characteristics.

The relevance of building a knowledge base using OS-
TIS technology [2] is due to the increasing complexity of
modern technical systems and the need for an integrated
approach to their control. The advantages of OSTIS are
to ensure a uniform representation of knowledge through
the use of a formalized SC-code language, which helps
to increase the accuracy and consistency of data, and
also allows for the automation of information update
and adaptation processes. In addition, OSTIS technology
ensures system scalability by supporting the dynamic
integration of heterogeneous data sources, which is es-
pecially important for intelligent systems operating in
a changing environment. Thus, the use of OSTIS for
building a knowledge base contributes to the formation
of effective, adaptive and highly accurate models that
ensure high-quality control of complex technical objects.

The first stage is the extraction of information from
regulatory and technical documentation, scientific pub-
lications and empirical data related to the operation of
complex technical systems. The obtained information is
analyzed and interpreted in the context of the ontology,
which allows identifying key concepts such as techno-
logical processes, technological and microtechnological
operations, as well as probabilistic parameters for their
implementation.

The next stage consists of structuring the data in
accordance with the ontological model. For this pur-
pose, classes and their attributes are formed, connections
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between entities are established, and constraints and
dependencies are defined. For example, a technological
operation is linked to the corresponding microtechnolog-
ical operations, and the probabilistic parameters of the
processes are determined based on statistical analysis of
data on the actual functioning of the systems.

To represent knowledge, SC-code is used – a formal
language used in OSTIS technology [3]. Transformation
of formalized data into SC-code ensures the creation
of machine-processed semantic networks, where each
concept receives an unambiguous description and a clear
connection with other elements of the system is estab-
lished. Knowledge integration is carried out by combin-
ing individual semantic modules into a single model,
which helps ensure the integrity and consistency of the
information presented.

After the coding stage, a comprehensive check of the
correctness and completeness of the integrated knowl-
edge base is carried out. Verification is carried out
using logical analysis methods to identify and eliminate
contradictions in the presented data. Validation, in turn,
is carried out using expert assessments and comparative
analysis with empirical data, which allows confirming
the practical applicability and reliability of the developed
system.

The final stage is the integration of the knowledge
base with reinforcement learning and adaptive control
systems, which provides the ability to conduct intel-
ligent analysis, forecast process parameters and make
management decisions in real time. The use of semantic
technologies allows dynamically updating the knowledge
base and adapting it to changing operating conditions of
technical systems.

As a result, a complex system is formed that is
capable of dynamically updating knowledge and support-
ing decision-making at various levels of technological
process management.

Thus, the application of the developed ontology for
constructing a knowledge base in OSTIS technology is a
multi-stage process, including formalization, structuring,
semantic coding, integration, as well as verification and
validation of the presented knowledge. This approach
contributes to the creation of a flexible and adaptive intel-
ligent system capable of providing effective management
of technological processes due to automated analysis and
updating of information.

Direct loading of data into the knowledge base through
specialized interfaces that provide automated recognition
and integration of ontology elements into the overall
architecture of the system. At the subsequent stage, the
process of indexing and optimization of the loaded in-
formation is implemented to ensure fast semantic search
and correct logical inference, and data synchronization
mechanisms are configured to maintain the relevance of
the knowledge base [3].

III. Algorithms for the synthesis of neuroregulators
Neural networks are parameterized models that can be

used as universal approximators [5], are noise-resistant,
and have applications in complex applied problems. The
developed control adaptation system uses a procedure
for synthesizing a neural regulator using neural network
algorithms. The procedure for synthesizing a neural
regulator can also include the use of algorithms for
searching for the optimal neural network architecture.
The general approach assumes that the user of the system
can specify numerical criteria for assessing the quality
of adaptation (functionality for assessing the quality of
adaptation) and has a simulation model [6] of the process
control system. Alternatively, it is possible to simulate
the known dynamics of a prototype regulator, if available
(Fig. 1).

Figure 1. General schemes for synthesizing neuroregulators in the
presence of an existing prototype (left) and when searching for an
optimal action selection policy using reinforcement learning methods
(right)

IV. Modeling the dynamics of an existing regulator
If an existing prototype regulator of the system is

available, its dynamics can be simulated using supervised
learning [7].

The process of training neural networks (Fig. 2) con-
sists of searching for optimal values of the adjustable
parameters of the model (weight coefficients) in the
context of the problem being solved, which is usually
done by solving some optimization problem, usually by
gradient methods [5]. It should be noted that at the data
collection stage, it is necessary to ensure the storage of
complete and representative statistics of the functioning
of the prototype regulator, adequately reflecting the ex-
isting space of observations and control actions.

V. Search for the optimal neural network architecture
Since the task of selecting the neural network structure

in each case is complex and difficult to formalize, meth-
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Figure 2. Dynamics of change of loss function (training and validation)
in the process of constructing a neuroregulator based on a prototype
regulator

ods for partial automation of its solution are proposed.
Within the framework of the developed technology, 2
approaches to searching for the optimal architecture of
the neuroregulator are implemented: based on the scheme
of enumeration of candidate architectures and based on
the evolutionary algorithm. In the case of the structure of
the observation space of the neuroregulator, which allows
the use of neural network architectures that are not deep,
the enumeration schemes allow obtaining and clearly
displaying the efficiency of the candidate architectures
under consideration (Fig. 3).

Figure 3. Example of a heat map of average values functionality for
assessing the quality of control adaptation in the automated selection
of the architecture of the neuroregulator

When solving the problem of searching for a deep
architecture for a neuroregulator, the criteria for enumer-
ation are not obvious. Genetic algorithms are potentially
universal [10], they allow finding a solution in a situation
where it is unknown how to search for it. There are
examples when genetic algorithms for searching for neu-
ral network architectures have significantly improved the

quality of models [11]. The search for the optimal archi-
tecture of a neuroregulator within the framework of the
described approach is carried out using a modified NEAT
neuroevolution algorithm (Fig. 4), in which a sequential
movement from simple structures to more complex ones
is carried out [11] [12]. Unlike NEAT, the proposed
algorithm does not perform optimization of the weights
of connections in the neural network using evolutionary
methods and operates not with single neurons as nodes,
but with modules that can represent an arbitrary given
set of layers. The use of an evolutionary algorithm allows
constructing a neural network architecture corresponding
to the problem being solved (Fig. 5).

Figure 4. Scheme of evolutionary algorithm for searching for archi-
tecture of neuroregulator

VI. Synthesis of a neuroregulator for optimal control
adaptation

In real conditions, the principles of constructing op-
timal control adaptation may not be obvious. In this
situation, reinforcement learning methods can be used to
solve the problem of synthesizing a neuroregulator [6].

This approach allows taking into account the re-
quirements specified by the technological regulations
for the implementation of a technological operation as
part of the production process and to synthesize control
adaptation to ensure the functioning of the process in
accordance with these requirements. Formalization of
user requirements for the policy of choosing control
adaptation is carried out by defining the function that
assesses the quality of control adaptation.

When solving the problem of finding the optimal strat-
egy for servicing the equipment devices of the techonogi-
cal process (TP), the function of assessing the quality of
control adaptation includes components responsible for
assessing the stabilization of the parameters of the TP
operation, such as the time of continuous operation of the
cycle (Rnop), the total volume of costs for servicing and
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Figure 5. An example of a deep neuroregulator architecture obtained
by applying evolutionary search.

Figure 6. Histograms of distributions of total costs during testing of
the standard system regulator and the trained neuroregulator

Figure 7. Histograms of distributions of total costs during testing of
the standard system regulator and the neuroregulator synthesized with
reinforcement learning algorithms

eliminating failures and equipment accidents (Rcost)),
the total number of equipment failures (Rf ), including
those that led to an accident (Rfe), the total number of
preventive maintenance per cycle (Rrep). The coefficients
(α1−5) are set by user of the system to determine the
weights assigned to the components. In accordance with
the requirements imposed on the process of adaptation
of the TP control, the target function is constructed on
the basis of these components:

R = α1Rnop + α2Rcost + α3Rf + α4Rfe + α5Rrep

The neural regulator is trained using policy gradient
algorithm (the REINFORCE algorithm [2]). As a result
of training, the system with the constructed regulator
shows higher efficiency in minimizing maintenance costs
than the system with the standard regulator (Fig. 7).
At the same time, the cycle downtime associated with
failures does not increase. Testing of models allows to
establish that the use of a neuroregulator in the control
system has reduced the costs of process maintenance by
20-25% according to the specified criteria for the quality
of control adaptation.

A similar approach can also be considered when
solving the problem of stabilizing the parameters of a
technological operation of laser processing of materials
[6]. For example, in the problem of single-beam laser
thermal splitting of brittle non-metallic materials (Fig. 9),
an important issue is maintaining the temperature regime
in order to prevent overheating and melting of the work-
piece. Structure of the technological operation is shown
in Fig. 8 In this problem, the function for assessing the
quality of adaptation has the form:

R = α1RT + α2RP + α3Rσ

where
• RT is the component for assessing temperature
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Figure 8. Fragment of the knowledge base about the technological
operation of laser cutting

maintenance within the permissible range;
• RV is the component for assessing the cutting

speed;
• Rσ is the component for assessing the maximum

tensile stress;
• α1−3 are the coefficients defining the weights of the

components.

Figure 10 shows the dynamics of the change in the
average values of the function for assessing the quality
of control adaptation when training the neural regulator
of the process operation control system using the REIN-
FORCE algorithm.

Table I shows the results of using the neural regulator
of the process operation of laser material processing.
It contains the values of the parameters of speed (V ),
laser radiation power (P ), observed temperature (T ) and
the approximated value of the maximum tensile stress
(σyy). The use of neuroregilator synthesis algorithms for
adaptation of the control of the technological operation
of laser processing made it possible to increase the
processing speed by 21% while maintaining temperature
within the permissible range of values.

Table I
Comparison of the values of the parameters of the technological
operation of laser processing of materials without the use of a
neuroregulator (first line) and with the use of a neuroregulator

(second line)

V,m/s P,Wt T,K σyy , MPa
0.011 24.0 1390 7.04
0.0133 26.5 1395 7.2

Figure 9. An example of visualization of temperature fields (a) and
tensile stress fields (b) on the surface of a glass workpiece during laser
processing technological operation

Figure 10. Dynamics of changes in the function of assessing the quality
of adaptation in the learning process
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VII. Conclusion
Neural networks, having the properties of universal

approximation and resistance to noise, allow one to
effectively solve control problems under conditions of
uncertainty. The article presents the technology of adap-
tive control of automated production systems based on
neural networks, which ensures the use of an intelligent
computer system for adapting control of the technological
cycle in real time.

The use of neural network modeling algorithms in
the implementation of adaptation of the control of the
technological operation of laser processing of materials
made it possible to increase the processing speed by 21%
and reduce the costs of servicing the equipment of the
technological production cycle by 20-25%.
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ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ
АДАПТАЦИИ УПРАВЛЕНИЯ НА

ОСНОВЕ НЕЙРОСЕТЕВОГО
МОДЕЛИРОВАНИЯ

Смородин В.С., Прохоренко В.А.
Представлена инновационная технология адаптации

управляющих сигналов контура управления техно-
логическим циклом производства к внешним управ-
ляющим воздействиям и случайным возмущениям.
Предложено новое решение для снижения влияния
дестабилизирующих факторов окружающей среды в
режиме реального времени.

Разработан метод адаптации управления техноло-
гическим циклом автоматизированного производства,
основанный на построении алгоритмов обратных свя-
зей по управлению для снижения чувствительности
параметров технологических операций к изменениям
условий функционирования технологического обору-
дования и окружающей среды.

Приведено описание инструментария для реализа-
ции средств адаптации управления технологическим
циклом производства, основанного на построении ал-
горитмов обратных связей по управлению и синте-
зе нейрорегуляторов с использованием нейросетевых
алгоритмов. Предложена процедура генерации базы
знаний в соответствии с онтологией «технологические
процессы с вероятностными характеристиками», обес-
печивающая формальное описание классов компонен-
тов технологического цикла, их свойств и взаимосвя-
зей между классами, кодирование в формате SC-кода
и интеграцию с механизмами логического вывода.
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