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Abstract—This article considers how the analysis of
knowledge from subject domain ontology can help discover
the most interesting and well-interpreted patterns in data.
For this research area, the term “Pattern discovery guided
by ontology” is used in the literature, and ontologies are
considered as a means of semantic pruning of the search
space. The analysis of ontologies in the pattern discovering
can significantly reduce the enumeration of alternatives by
pruning the search space, and also allows you to consider
the elements of patterns at various levels of abstraction. The
proposed approach to Data Mining is based on compact
representation of the training sample using specialized
matrix-like structures and the application of original in-
ference procedures in these structures. Research lies at the
intersection of such areas of artificial intelligence as data
mining and semantic technologies for the representation
and processing of information.

Keywords—frequent pattern discovery, data mining, on-
tology, machine learning, constraint satisfaction problem,
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I. Introduction

The presented research continues a series of works
that deal with the application of the author’s approach
to solving Data Mining (DM) problems. Previously, the
author’s methods of clustering, closed pattern discovery,
associative rule discovery were presented [1] as well
as method that accelerates generating JSM-hypotheses
in large databases [2]. The developed methods relate to
methods of explainable Artificial Intelligent.

The article considers how the analysis of knowledge
from subject domain ontology can help discover the most
interesting and well-interpreted patterns in data by the
end user. For this research area, the term “Pattern dis-
covery guided by ontology” is used in the literature [3],
and ontologies are considered as a means of semantic
pruning of the search space. The analysis of ontologies
in the pattern discovery can significantly reduce the
enumeration of alternatives by pruning the search space,
and also allows you to consider the elements of patterns
at various levels of abstraction. Research lies at the
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intersection of such areas of artificial intelligence as
DM and semantic technologies for the representation and
processing of information.

In [2], a method was proposed for searching closed
frequent patterns of the required type based on Constraint
Programming Paradigm using the original representation
of the training sample in the form of table constraints and
the author’s methods of constraint satisfaction. However,
this method involves two stages in its implementation: 1)
the stage of generating candidates for closed patterns and
2) the stage of verification of candidates and selection of
those that satisfy the closeness property.

This publication presents research on the develop-
ment of a method for closed frequent pattern discovery,
taking into account hierarchy of features. The method
is designed to quickly discover and enhance the inter-
pretability of cause-and-effect relationships in multilevel
descriptions of objects. Unlike the author’s previous
developments, the method avoids generating “redundant”
nodes in search tree since it excludes the preliminary
stage of generating candidates for the desired patterns.

II. Statement of the problem under discussion

We will provide information needed for further dis-
cussion [4]-[7].

As the initial information for the frequent pattern dis-
covery problem is a transactional database, each row of
which contains a transaction identifier, as well as a list of
transaction elements. For example, analyzing purchases
of goods in a store, the receipt number can be as a
transaction identifier, and names of the purchased goods
can act as elements. Also, the transactional database can
be presented in the form of binary object-feature table
where transactions are mapped to objects, and transaction
elements are mapped to features. There is a “1” at the
intersection of a row and a column in the table only if the
object has this feature. A part of transactional database
that is analyzed when pattern discovering we will refer
to as a training sample.
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A pattern A is any subset of features (elements). A
frequent pattern is a set of features A that occurs at
least in 6 objects of the training sample. The 6 is called
a frequency threshold. The number of objects in which
pattern A occurs is called an absolute support of pattern
A and denoted freg(A).

It is usually necessary to find not all frequent patterns,
but only those that have interesting features to the end
user. Such patterns we will be refered to as interesting.
Closed patterns are often considered as interesting be-
cause they can be used to express all other patterns. A
closed set of features (pattern) is such that objects that
have all these features at the same time do not have any
other common features.

When generating interesting patterns, sometimes it is
not enough to simply limit ourselves to searching for sets
of features that meet the requirements for frequency and
closeness, since there are too many such patterns and/or
they are not well interpreted by the end user.

In this work, when discovering interesting patterns,
an additional constraint is considered: features can be
arranged in hierarchies. The inclusion of additional in-
formation about the grouping of elements in the form
of hierarchies increases the interpretability of the DM
results by the end user.

There are distinguishes of the representation of
partonomies (based on relation “part—whole”) and tax-
onomies (using relation “class—subclass”) within the
framework of the considered approach. They are ex-
plained below using the following example.

To illustrate the proposed method of pattern discovery
taking into account hierarchy of features let’s consider
simplified example using the Figure 1. Let there be
a set of hierarchically ordered features: the right tree
corresponds to the taxonomy and the left one corresponds
to the partonomy.

Now let’s clarify which elements of hierarchies can
be present in the records of the transactional database,
that is, to form the initial description of transactions, and
which can occur only in the generated patterns.

For a taxonomy, the transaction elements are leaf
elements. In partonomy, each element can be included
in the initial description of the transaction.

Table I shows an example of a fragment of a transac-
tion database.

Table 1
Fragment of the transaction database

Elements
Cisterns, Oil Spill
Pipeline D, Pipe Break
Pipeline B, Pipe Break
Pipelines, Pipe Break
Cisterns, Pipelines, Pipe Break, Oil Spill
Pipeline D, Cisterns, Pipe Break, Oil Spill

Transaction number

QN | B W —

The information contained in a transactional database
and the knowledge contained in hierarchies of features
can be combined and presented as an object-feature table
(Table II).

Each row of the object-feature table corresponds to
a transaction with the same number. The “1”s in the
table mark the transaction elements themselves, as well
as those elements that need to be included in the trans-
action description based on the analysis of hierarchies of
feature.

If an element of a certain taxonomy occurs in a
transaction, then in the corresponding row of the object-
feature table, the “1”’s also mark those elements that are
higher in the hierarchy than the one under consideration.
For example, since elements e (“Oil Spill”) is included
in transaction Nel it automatically includes element b
(“Emergency”) describing a superclass of the concept
“Oil Spill”.

If an element of a certain partonomy occurs in a
transaction, then in the corresponding row of the object-
feature table, the “1”’s also mark those elements that are
lower in the hierarchy than the one under consideration.
For example, since element ¢ (“Pipelines”) is included
in transaction Ne4 elements g (“Pipeline D”) and h
(“Pipeline B”) which are parts of the element “Pipelines”
should also be included in the transaction.

In this case, a pattern will be considered acceptable
if any two elements of which are not connected by
hierarchical relationships (either incomparable or belong
to different hierarchies).

Let’s set a value of minimal support 6=2 (i. e. two
transactions). It is necessary to find all closed frequent
patterns taking into account the given relations of hi-
erarchy of features and a fragment of the transactional
database. The following sections considerates solving
such problems within the framework of the author’s
approach.

II. The proposed approach to Data Mining

Recall that the Constraint Satisfaction Problem
(CSP) is to find solutions for a network of constraint.
The network of constraints is the following triple [8]-
[10]: (X, Dom,C), where X is the set of variables,
Dom are the domains of variables, Y are the constraints
setting the permissible combinations of values of the
variables. It is necessary to find such values of all
variables that all constraints of network are satisfied.

The presented research uses the so-called table con-
straints. In addition to typical tables, table constraints
include compressed tables, smart tables, etc. [11].
These types of constraints differ in what is meant by a tu-
ple of relation. For further explanation, only compressed
tables will be used. Tuples of compressed tables contain
sets as components. Similar structures are described
in [12] and are called finite predicate matrices.
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Fuel Storage

Emergency

Pipelines Cisterns Oil Spilﬁ Pipe Break
L 4 \
Pipeline D Pipeline B

Figure 1. The simplified example of the subject domain ontology

Table II
Object-feature table

Ne a b c d e f g h
Fuel Emer- | Pipe- | Cisterns Oil Pipe Pipe- Pipe-
Storage | gency | lines Spill | Break | line D | line B

1 1 1 1

2 1 1 1

3 1 1 1

4 1 1 1 1 1

5 1 1 1 1 1 1 1

6 1 1 1 1 1

Within the framework of the approach developed in
the work, DM problems are stated and solved as table
constraint satisfaction problems. The approach relies on
the representation of the training sample in the form
of specialized table constraints that allow for compact
expression of n-ary relations, as well as on the use of
author’s procedures for inference on these structures.

As in previous studies [2], [3], compressed tables
of the D — type are used to model the training sample,
which contain two attributes in their schema: attribute X,
which corresponds to the objects of the training sample,
and attribute Y, which describes the features of objects.
So for the object-feature table under consideration (Ta-
ble II) the corresponding compressed table of the D-type
will be as follows:

X Y
{1,2,3,4,5,6} {b,c,d,e, f,g,h}
1]4{1,2,3,4,5,6} {c,de fg,h} [
2 {4,5} {b,d,e, f,g,h}
3 {1,5,6} {b,c,e, f,g,h} )
4 {1,5,6} {b,¢,d, f,g,h}
5 {2,3,4,5,6} {b,c,d,e,g,h}
6 {2,4,5,6} {b,c,d,e, f,h}
7] {345} {b,c,dye, 9} |

Here, the feature a is excluded from consideration in
advance, since it does not occur in any transaction.

Each row of the compressed table can be interpreted
as the following implication (Y = my) — (X € Oy) (f
feature my, is under consideration, the set of objects that
possess it is equal to Op). For example, the following

logical expression corresponds to the third row:

(X €{1,5,6}) V(Y € {b,c,e, f,g,h}) =
=(Y €{b,c,e, f,g,h}) = (X €{1,5,6}) =
=Y e{d}) - (X €{1,5,6}) =
=Y =d) = (X €{1,56}) (2

This expression means the following: “The feature d
is possessed by objects from the set {1, 5, 6}”.

In order to search for closed frequent patterns within
the framework of the proposed approach, the author’s
methods of inference on table constraints and methods
of branching the search tree are used.

The author’s methods of inference on tables of the
D-type are implemented using rules 1-7:

Statement 1 (S1). If at least one row of a compressed
table of the D-type is empty (contains all empty compo-
nents) then the table is empty.

Statement 2 (S2). If all the components of an attribute
are empty then this attribute can be deleted from the
compressed table (all components of the corresponding
columns are deleted).

Statement 3 (S3). If there is a row in the compressed
table that contains single non-empty component then all
values in domain that are not included in this component
are deleted from the corresponding domain.

Statement 4 (S4). If a row of a compressed table of
the D-type contains at least one full component, it is
deleted.

Statement 5 (S5). If a component of a compressed
table of the D-type contains a value that does not belong
to the corresponding domain then this value is deleted
from the component.
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Statement 6 (S6). The components of a compressed
table of the D-type corresponding to a variable X with
cardinality below a certain threshold € are replaced by
empty components.

Statement 7 (S7). If a cardinality of the domain of a
variable X is below defined threshold # then a solution
for the constraint satisfaction problem does not exist.

The statements 1-5 are used for closed pattern dis-
covery. The last two statements are used for pruning
infrequent patterns.

Taking into account the hierarchy relations on a set
of features, in fact, requires the analysis of another
additional type of constraints and, accordingly, the im-
provement of the mechanism of reasoning on constraints.
The following section also discusses the specifics of the
implementation of the search tree branching procedure
for the case under consideration [2].

IV. The developed method and its illustration

The proposed method consists in the implementation
of the following stages:

Stage 1. Representation of the training sample in the
form of a special type of table constraints — compressed
tables of the D-type, with the exception of those elements
that have support below the specified one. Each row of
the compressed table can be mapped to some feature my.

Stage 2. Formation of a binary tree based on a back-
tracking depth first search. The essence of this procedure
is to select at each step of the search a certain feature my
and form two subtrees: a) the left one, which serves to
discover patterns containing this feature (an arc labeled
my inputs to the left descendant node); b) the right one,
to discover patterns that do not contain this feature the
(arc with the label \my is aimed at the right descendant
node). The feature my, is selected among those features
that have not yet participated in the selection and are
included in the current domain of the variable Y. After
selecting the descendant node, reduction procedures are
used to discard obviously unpromising branches of the
search tree, allowing to reduce a compressed table of
the D-type characterizing the ancestor node to a table
of a smaller dimension, excluding the “redundant” rows,
columns, component values, attribute values from the do-
mains of variables X and Y. The feature my, is selected
basing on the following heuristic: in the compressed
table of the D-type obtained after applying the rules
for reducing table constraints in the previous step, the
row with the highest cardinality of the component X
is selected. In addition to the rules (S1-S7) discussed
above, a specialized rule is applied — statement 8, which
analyzes the hierarchy relations on features.

Statement 8 (S8). If it is assumed that some feature
my, must necessarily be included as an element in the
desired pattern p, then all elements m; that are above
and below in hierarchy (taxonomy, partonomy) than

the one under consideration should be excluded from
consideration (from the domain of attribute Y).

Stage 3. Listing patterns based on the analysis of
the nodes of the search tree. To list patterns nodes
are analyzed, the input arcs of which have a label that
does not contain symbol “\”. These nodes correspond
to interesting patterns one by one. Listing patterns can
be carried out during the construction of the search tree,
rather than at the end of this procedure.

Unlike the methods “Apriori” and Eclat [4], [13], the
proposed method implements a search tree traversal not
in width, but in depth. The developed method uses a
training sample representation similar to the TID repre-
sentation in Eclat. As in the method “Close by one” [14],
in the author’s method, the main component is the logical
inference procedure, which makes it possible to calculate
its closure for a given set of features, but the proposed
method reduces calculations by eliminating duplicate
actions. Unlike the FP-Growth algorithm, the considered
method makes it easy to integrate additional constraints
on the required type of pattern and use them to reduce
the search space. This makes it similar to various Apriori
modifications.

Now let’s return to our end-to-end example. The deci-
sion tree in this example built according to heuristic and
constraint propagation rules considered above is shown
below in Figure 2.

Let’s demonstrate how pattern discovery is imple-
mented taking as an example one of the branches of the
search tree. So, initial table of the D-type is described
by formula (1).

Let’s first select feature b («Emergency») since it has
maximum support. This means that component X of the
first row is selected, but since this component matches
the current domain there is no reducing the domain of
X. According to S8, the features e («Qil Spill») and f
(«Pipe Break») are excluded from consideration, since
they are child nodes of the node b in the taxonomy. We
have the following reminder of the initial compressed
table of the D-type:

X Y
{1,2,3,4,5,6} {b,c,d,g,h}
2 (4,5} {b,d,g.h}
3 {1,5,6} {b,c,g,h} &)
6 {2,4,5,6} {b,c,d,h}
7 {3,4,5} {b,c,d, g}

Here and below, the features that form the desired
patterns are highlighted in bold.

In the obtained compressed table of the D-type, the
row 1 is eliminated based on statement S4, and a “tuning”
to a new domain of the variable Y: {b,c,d, g, h} is
performed using S5 and S4, and rows 4 and 5 are
excluded from consideration. At this step, the pattern
[{1,2,3,4,5,6}, {b}] is obtained.
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Now the feature g is selected, and according to S8
the feature c is excluded from consideration. The current
domain of the variable Y becomes equal to the set
{b,d,g,h}, and the domain of the variable X becomes
equal to the set {2,4,5,6}, i.e. to the component X of
the sixth row. After “tuning” to new domains (statements
S5 and S4) we obtain the remainder:

X Y
{2,4,5,6} {b,d,g,h}
31 5.6  {bg.h} )
7 {4,5} {b,d, g}

Here, row 6 is excluded due to reducing the domain of
X, and row 2 is excluded due to narrowing the domain
of Y. At this search step the pattern [{2,4,5,6},{b, g}]
has been discovered.

Next we select the feature d. This leads to narrowing
the domain of the variable X to a set {5,6}. As a
result of “tuning” the compressed table to a new variable
domain using statements S5 and S4, row 3 is excluded
from consideration, and in row 7 the component becomes
equal to a single-element set, while the support threshold
is two. After applying S6 and S3, the domain of the
variable Y is narrowed to a set {b,d, g}, and row 7 is
eliminated according to S4.

At this step we obtain pattern [{5,6}, {b,d, g}]. All
rows of the compressed table have been deleted, which
indicates that the study of the branch of the search tree
has been completed. As a result of traversal of this branch
of the search tree, three patterns were discovered.

Let’s list all the closed frequent patterns discovered as
a result of the application of the developed method:

[{1,2,3,4,5,6},{b}],[{2,3,4,5,6}, { f}],
[{2,4,5,6},{b, g}], [{3,4,5}, {b, n}],
[{1,5,6}, {b,d}], [{4,5},{b, c}],
[{2,4,5,6},{f. g}],[{3,4,5},{/, h}],
[{1,5,6},{d, e}], [{4,5},{c, f}],
[{5,6},{b,d, g}, [{4,5}, {b, g, h}],
{45}, {f,9,h}],[{5,6},{d,e, f,g}] (5)

Conclusion

The constraint programming paradigm is often used
to solve complex combinatorial search problems, which
include most DM problems. Within the framework of the
proposed original approach, DM problems are proposed
to be solved as table constraint satisfaction problems.
To represent the training sample, it is proposed to use
specialized table constraints — compressed tables of the
D-type.

The proposed method of closed frequent pattern dis-
covery taking into account subject domain ontology
relies on the procedure of constructing a binary search
tree, which provides interesting patterns without the

preliminary stage of generating candidates for the de-
sired patterns. Within the framework of the designed
approach, it is quite easy to take into account additional
requirements for type of discovered patterns. For each
type of constraints on the type of pattern, appropriate
rules of reduction of the search space are developed.
In the presented study, an additional constraint is the
requirement for a hierarchical ordering of features.

Constraints of hierarchy of feature are processed by
specialized procedures for search space reduction. The
application of the method makes it possible at each step
of the search to reduce the existing problem to a problem
of significantly smaller dimension, which eventually re-
duces the immediacy of the exponential catastrophe prob-
lem. In comparison with analogs using logical inference,
the method allows to exclude repetitions of actions when
calculating closures on sets of features.
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METO]] YIOBJIETBOPEHU A
OIr'PAHUYEHMM 1151 BBISABJIEHU A
IIATTEPHOB B JAHHBIX C YUETOM
NEPAPXUI [IPU3HAKOB
3yeHko A. A., 3yenko O. H.

B crathe paccMaTpuBaeTCs, KaKMM 0Opa3soM aHAIN3
OHTOJIOTHH TMPEIMETHOH 00JacTH CrocoOeH MOMOYb B
BBISIBJIEHUM MHTEPECHBIX U XOPOIIO MHTEPIPETUPYEMBIX
MaTTEPHOB B JAHHBIX. I 3TON 00JAaCTH MCCIeIOBaHMIA
B JIUTEPATYPE UCIIONb3yeTCs TepMuH “TIOMCK TaTTEPHOB,
YIIPABISEMbIA OHTOJOTHUAMK, & OHTOJIOTHH PaccMaTpu-

BAIOTCSl B KauecTBE CPEACTBAa CEMAHTHUYECKON O0Ope3Ku
MPOCTPAHCTBA TOMCKA. AHAJIN3 OHTOJIOTMII TIPH MOKMCKe
HAaTTEPHOB IO3BOJIAET CYLIECTBEHHO COKPATUTh Nepedbop
BApUAHTOB 33 CYET PEAYKIMU NPOCTPAHCTBA MOWCKA, a
TaKKe pacCMaTpUBaTh IEMEHTHl NATTEPHOB Ha pas3iidy-
HBIX ypoBHsX abcTpakuuu. IIpenyioxeHHBIH moaxon K
MHTEJUIEKTYaJIbHOMY aHAJIU3y [JaHHBIX OCHOBBIBAETCS Ha
KOMIIAKTHOM TIPE/ICTaBJICHIN 00Yy4alomel BHIOOPKH C I10-
MOILBIO CIIEHATU3UPOBAHHBIX MATPUIETIONOOHBIX CTPYK-
TYp W NPUMEHEHWH OPHIMHAJIBHBIX MpOLEIyp BbIBOAA
Ha JIaHHBIX CTPYKTypax. McclienoBaHus JiexkaT Ha CThIKE
TAKUX HaHpaBHeHI/Iﬁ NCKYCCTBEHHOI'O HMHTEJIJIEKTA Kak
VHTEJUISKTYaJIbHbI aHajIu3 JaHHBIX U CeMaHTHUYEeCKHe
TEXHOJIOTUH TMPEJICTABICHHs M 00PaOOTKH MH(MDOPMAIIUH.
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