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Abstract—Imbalanced data is a common challenge in
real-world classification tasks. This study analyzes methods
and algorithms for addressing class imbalance in binary
classification models. Experimental evaluations are con-
ducted on data balancing techniques, including oversam-
pling the minority class and undersampling the majority
class. The experiments cover both tabular data and image
datasets. Based on the results, the impact of these methods
on model performance is assessed, and practical recom-
mendations for effective data balancing are provided.

Keywords—imbalanced data, binary classification, sam-
pling

I. Introduction

In machine learning tasks, both in research and practi-
cal applications, we often encounter imbalanced datasets.
In medical diagnosis, rare diseases like cancer often have
far fewer positive cases than healthy samples, making
early detection difficult. Fraud detection systems face
severe imbalance, as fraudulent transactions may repre-
sent less than 1% of all transactions. Spam filtering also
deals with skewed data, where spam emails are vastly
outnumbered by legitimate ones. Similarly, in manufac-
turing quality control, defective products are typically
rare compared to non-defective ones, requiring special-
ized techniques to identify anomalies. Class imbalance
presents a significant challenge, as traditional classifiers
tend to bias their predictions toward the majority class,
which is often the least important class. This makes them
unsuitable for handling imbalanced learning tasks [1]. A
dataset is considered imbalanced when there is a sub-
stantial disproportion between the number of instances
in different classes. The degree of imbalance can range
from a slight bias to extreme cases where one minority-
class instance corresponds to hundreds, thousands, or
even millions of majority-class instances. To identify
class imbalance, one can visually inspect a histogram
showing the distribution of instances across classes or
visualize the data on a graph when the feature space
has low dimensionality. To quantify class imbalance, the
imbalance ratio (IR) is commonly defined as the ratio
between the number of instances in the minority class
and the majority class.

imbalance ratio (IR) =
len(Yminor)

len(Ymajor)
(1)

It is possible to distinguish datasets with no imbalance,
minor imbalance, major imbalance and huge imbalance.
The Figure 1 shows the synthetic datasets for two classes
with different imbalance levels and the estimated imbal-
ance ratio [2]–[4].

It is particularly important to emphasize the need for
a semantic approach to class imbalance, which focuses
on preserving and utilizing meaningful (semantic) re-
lationships in the data rather than simply mechanically
balancing class distributions. The semantic approach is
especially effective in tasks such as: Natural language
processing (NLP), Computer vision (where semantic
differences matter), Recommender systems, Medical di-
agnosis (where interpretability is crucial). In OSTIS
technology, data is represented through semantic net-
works and ontological models, ensuring flexibility and
interoperability in intelligent systems. Combining clas-
sical approaches to handling imbalanced data with the
advantages of OSTIS technology could be a promising
direction for further research [5].

Figure 1. Scatter Plot of a Binary Classification Dataset with Different
Class Distributions
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The goal of this paper is to examine data balancing al-
gorithms and evaluate their effectiveness for tabular data
and images. Both classical machine learning algorithms
and deep convolutional neural networks are explored in
this work.

II. Related Work
According to [6], [7], methods for handling imbal-

anced data can be categorized as follows, Figure 2.

Figure 2. Approaches for class imbalansed learning

Algorithm-level approaches involve modifying existing
machine learning algorithms to make them more suit-
able for imbalanced datasets by reducing their inherent
bias toward the majority class. These modifications may
include cost-sensitive learning techniques, where algo-
rithms are adjusted to incorporate misclassification costs
that penalize errors on minority class instances more
heavily. Data-level approaches address class imbalance
by directly modifying the dataset distribution prior to
model training. These methods include oversampling
techniques (e.g., SMOTE) that artificially increase mi-
nority class instances, and undersampling strategies that
reduce majority class samples. Advanced variations com-
bine both approaches or incorporate synthetic data gen-
eration through GANs. The hybrid approach combines
the aforementioned methods in varying proportions to
optimize classification performance. Different techniques
can be integrated either across categories (e.g., combin-
ing data-level and algorithm-level methods) or within
the same category (e.g., using multiple data-balancing
techniques simultaneously). The literature presents nu-
merous approaches for addressing class imbalance in ma-
chine learning. While various techniques exist, this study
specifically examines oversampling and undersampling
methods for data balancing.

The fundamental data-level approach for addressing
class imbalance is known as data balancing. Among
these techniques, increasing the minority class size (over-
sampling) is particularly valuable for small datasets,
where reducing the majority class could compromise
classification accuracy. The simplest method, Random
Oversampling, duplicates randomly selected minority-
class instances. These algorithms progressively refine
synthetic data generation to improve model performance

while mitigating overfitting risks. More advanced tech-
niques include:

• SMOTE: Generates synthetic minority-class in-
stances by interpolating between existing examples,
avoiding mere duplication.

• Borderline-SMOTE: Focuses synthetic sample gen-
eration near class boundaries to enhance decision
boundary learning.

• Borderline-SMOTE-SVM: Uses Support Vector
Machines to identify critical boundary regions for
synthetic data generation.

• ADASYN: Adaptively creates synthetic samples
based on local density and class distribution, pri-
oritizing difficult-to-learn areas.

Undersampling methods reduce the majority class size
through three strategic approaches: (1) retaining informa-
tive instances, (2) removing redundant/noisy instances, or
(3) hybrid combinations. Key algorithms include:

• Random Undersampling: Randomly eliminates
majority-class instances (Note: Corrected erroneous
"duplicating" description from original text)

• CNN (Condensed Nearest Neighbor): Preserves a
subset that maintains original decision boundaries

• NearMiss Variants: NearMiss-1: Keeps majority in-
stances with smallest average distance to 3 nearest
minority instances. NearMiss-2: Retains majority
instances farthest from minority clusters. NearMiss-
3: Stores majority instances closest to each minority
instance.

• Tomek Links: Removes overlapping majority-class
instances in boundary pairs

• ENN (Edited Nearest Neighbors): Deletes misclas-
sified majority instances based on 3-NN evaluation

• OSS (One-Sided Selection): Hybrid of Tomek Links
(boundary cleaning) and CNN (redundancy re-
moval)

• NCR (Neighborhood Cleaning Rule): Combines
ENN (noise removal) and CNN (redundancy reduc-
tion)

These methods systematically address imbalance while
preserving critical data patterns. Figure 3 shows the
concept of resampling [6]–[10].

Figure 3. Resampling Methods

III. Experiments with Tabular Data
For our experiments, we evaluated three imbalanced

binary classification datasets (Table 1). The class imbal-
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ance ratios are visually demonstrated through histograms
showing the distribution of instances between classes for:
(1) abalone_19, (2) mammography, and (3) car_eval_34
datasets.

• Abalone_19: Predicts abalone age (marine mol-
lusks), where the "19" class (oldest specimens)
represents the rare minority, creating significant
classification challenges.

• Mammography: A medical imaging dataset for
breast cancer detection with extreme imbalance,
where calcification clusters (minority class) require
specialized detection approaches.

• Car_eval_34: Derived from vehicle evaluations,
with merged "good"/"vgood" acceptability classes
forming the minority, testing boundary-learning ca-
pabilities (Figure 4).

Table I
Dataset Summary

Dataset Samples Features Imbalanced
Ratio

abalone_19 4 177 10 0.0077
mammography 11 183 6 0.0238
car_eval_34 1 728 21 0.0841

Figure 4. Abalone_19, Mammography and Car_eval_34 Datasets

Machine learning algorithms were selected for classi-
fier construction, as detailed in Table II. These algorithms
represent distinct approaches to classification - from
linear separability to non-linear decision boundaries -
while being computationally efficient for comparative
analysis. Their performance metric (Accuracy) will be
evaluated against the same imbalanced datasets to ensure
consistent benchmarking conditions.

Our investigation systematically evaluated two bal-
ancing approaches: (1) undersampling methods, imple-
mented through 13 distinct algorithms including random
undersampling, Tomek Links, and neighborhood clean-
ing rule (Table III), and (2) oversampling techniques,

Table II
Classification Algorithms

Algorithm Abbreviation
Logistic Regression LR
SVC SVC
KNN KNN
DecisionTree DT
Granient Boosting GB
Random Forest RF

comprising 7 algorithms such as SMOTE, Borderline-
SMOTE, and ADASYN (Table IV). Each approach was
rigorously tested under identical experimental conditions
to ensure fair comparison of their effectiveness in han-
dling class imbalance. The undersampling algorithms
were selected to represent diverse strategies from random
reduction to sophisticated instance selection, while the
oversampling methods covered both basic interpolation
and advanced adaptive synthesis techniques. This com-
prehensive framework allows for detailed analysis of
how different balancing methodologies affect classifier
performance across various imbalance scenarios.

All classifiers were implemented and evaluated using
the specified algorithms under consistent experimental
conditions. We employed 3-fold cross-validation to en-
sure robust performance estimation while maintaining
computational efficiency.

Table III
Undersampling Balanced Algorithms

Balanced Approach Designation
Random Undersampling Under1
Condensed Nearest Neighbour Under2
Tomek Links Under3
One Sided Selection Under4
Edited Nearest Neighbours – kind_sel=all Under5
Edited Nearest Neighbours –
kind_sel=mode

Under6

Repeated Edited Nearest Neighbours –
kind_sel=all

Under7

Repeated Edited Nearest Neighbours –
kind_sel=mode

Under8

All KNN – kind_sel=all Under9
All KNN – kind_sel=mode Under10
Neighbourhood Cleaning Rule Under11
Instance Hardness Threshold Under12

Table IV
Oversampling Balanced Algorithms

Balanced Approach Designation
Random Oversampling Over1
SMOTE Over2
Borderline SMOTE-1 Over3
Borderline SMOTE-2 Over4
SVM-SMOTE Over5
KMeans SMOTE Over6
ADASYN Over7

The results of experiments for abalone_19 dataset
with undersampling and oversampling approaches are
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presented in Table V and Table VI. The results of experi-
ments for mammography dataset with undersampling and
oversampling approaches are presented in Table VII and
Table VIII. The results of experiments for car_eval_34
dataset with undersampling and oversampling approaches
are presented in Table IX and Table X.

IV. Experiments With Image Data

The CIFAR-10 dataset was selected for experiments
with imbalanced image classification tasks. As a stan-
dard benchmark in computer vision, it comprises 60,000
32×32 color images evenly distributed across 10 mutually
exclusive categories. The dataset is split into 50,000
training images (5,000 per class) and 10,000 test images
(1,000 per class), featuring objects from ten distinct
classes: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck (Figure 5). This balanced original
distribution was intentionally modified to create con-
trolled imbalance conditions for our study.

Figure 5. CIFAR-10 Dataset

Using the CIFAR-10 dataset, we constructed two spe-
cialized training sets for binary classification: (1) a bal-
anced set containing 5,000 images per class, and (2) an
imbalanced set with 5,000 majority-class images versus
only 50 minority-class images (Figure 6). For evaluation,
we created a separate test set comprising 2,000 images
(1,000 per class) to ensure consistent benchmarking con-
ditions across both balanced and imbalanced scenarios,
(Figure 6).

Figure 6. Balanced and Imbalanced CIFAR for 2 Classes

A convolutional neural network was chosen as a
classifier. The neural network is a CNN with three
convolutional blocks, each followed by ReLU activation
and max-pooling. It processes 32x32x3 input images,
gradually reducing spatial dimensions to 4x4x32 while
increasing depth. A global average pooling layer flat-
tens features into a 32-unit vector, followed by a dense
layer and dropout for regularization. The final dense
layer outputs 2 classes. The model has 15,458 trainable
parameters and avoids overfitting through pooling and
dropout. First, the classifier was trained on balanced and
unbalanced datasets. For each of the two resulting mod-
els, an accuracy (‘Accuracy’) evaluation was performed
on the testing dataset. The results clearly demonstrate
that the imbalance in the training dataset caused the
misclassification of the testing dataset of images, (Figure
7).

Figure 7. Testung Results for Training with Balanced and Imbalanced
Data

We investigated three imbalance mitigation strate-
gies: (1) cost-sensitive learning via class weights, (2)
minority-class oversampling (duplication/SMOTE), and
(3) majority-class undersampling. Each method was im-
plemented through reproducible preprocessing pipelines
while keeping other experimental parameters constant.
This design enabled isolated measurement of how dif-
ferent balancing approaches affect model performance
on our imbalanced image datasets. The evaluation was
conducted using testing dataset comprising 2,000 images
(1,000 per class), with detailed performance metric (Ac-
curacy) reported in Table XI. The confusion matrices for
the three approaches are shown in Figure 8.

V. Discussion
Oversampling increases instances in the minority class

(e.g., SMOTE, ADASYN) to improve rare class repre-
sentation, while undersampling reduces majority class
samples (e.g., random removal, Tomek Links) to balance
distributions. Oversampling preserves data but risks over-
fitting and longer training times, whereas undersampling
speeds up training but may discard valuable patterns.
Oversampling suits small datasets (e.g., medical data),
while undersampling works better for large datasets (e.g.,
credit scoring). Key trade-offs include synthetic data
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Table V
Undersampling For Abalone_19 Dataset

Baseline Under1 Under2 Under3 Under4 Under5 Under6 Under7 Under8 Under9 Under10 Under11 Under12
LR 0,735 0,656 0,406 0,735 0,721 0,736 0,734 0,744 0,734 0,756 0,737 0,753 0,803
SVC 0,768 0,706 0,62 0,763 0,736 0,754 0,712 0,736 0,712 0,748 0,743 0,767 0,853
KNN 0,547 0,662 0,322 0,547 0,546 0,615 0,546 0,664 0,546 0,647 0,563 0,613 0,693
DT 0,527 0,689 0,457 0,528 0,527 0,512 0,528 0,525 0,528 0,51 0,527 0,511 0,59
GB 0,798 0,759 0,369 0,779 0,776 0,806 0,785 0,811 0,785 0,784 0,773 0,808 0,877
RF 0,753 0,758 0,269 0,785 0,737 0,737 0,69 0,798 0,69 0,77 0,752 0,766 0,927

Table VI
Oversampling For Abalone_19 Dataset

Baseline Over1 Over2 Over3 Over4 Over5 Over6 Over7
LR 0,735 0,872 0,885 0,933 0,94 0,933 0,945 0,873
SVC 0,768 0,907 0,919 0,984 0,994 0,983 0,955 0,902
KNN 0,547 0,995 0,975 0,992 0,995 0,991 0,991 0,96
DT 0,527 0,993 0,959 0,988 0,991 0,985 0,991 0,894
GB 0,798 0,999 0,989 0,997 0,997 0,996 0,997 0,975
RF 0,753 1 0,999 0,998 0,997 0,996 0,998 0,987

Table VII
Undersampling For Mammography Dataset

Baseline Under1 Under2 Under3 Under4 Under5 Under6 Under7 Under8 Under9 Under10 Under11 Under12
LR 0,921 0,938 0,814 0,922 0,922 0,924 0,923 0,926 0,923 0,925 0,922 0,923 0,941
SVC 0,881 0,949 0,84 0,893 0,893 0,918 0,9 0,928 0,901 0,925 0,907 0,908 0,978
KNN 0,9 0,942 0,793 0,901 0,901 0,915 0,901 0,917 0,904 0,917 0,902 0,916 0,945
DT 0,748 0,857 0,715 0,762 0,762 0,795 0,758 0,818 0,771 0,813 0,786 0,793 0,904
GB 0,94 0,944 0,846 0,944 0,944 0,951 0,948 0,952 0,952 0,953 0,951 0,952 0,972
RF 0,944 0,957 0,836 0,946 0,942 0,954 0,948 0,852 0,947 0,951 0,95 0,955 0,978

Table VIII
Oversampling For Mammography Dataset

Baseline Over1 Over2 Over3 Over4 Over5 Over6 Over7
LR 0,921 0,924 0,931 0,955 0,954 0,965 0,994 0,862
SVC 0,881 0,965 0,969 0,922 0,991 0,99 0,995 0,93
KNN 0,9 0,981 0,977 0,993 0,993 0,993 0,994 0,933
DT 0,748 0,99 0,968 0,987 0,983 0,951 0,989 0,904
GB 0,94 0,985 0,985 0,994 0,995 0,994 0,997 0,951
RF 0,944 0,994 0,992 0,999 0,999 0,998 0,997 0,968

Table IX
Undersampling For Car_eval_34 Dataset

Baseline Under1 Under2 Under3 Under4 Under5 Under6 Under7 Under8 Under9 Under10 Under11 Under12
LR 0,958 0,947 0,893 0,958 0,954 0,958 0,958 0,958 0,958 0,958 0,958 0,998 0,999
SVC 0,947 0,942 0,838 0,947 0,943 0,947 0,947 0,947 0,947 0,947 0,947 0,995 0,999
KNN 0,657 0,865 0,572 0,657 0,608 0,61 0,61 0,61 0,61 0,61 0,61 0,907 0,994
DT 0,559 0,802 0,47 0,559 0,506 0,559 0,559 0,559 0,559 0,559 0,559 0,532 0,669
GB 0,835 0,973 0,842 0,835 0,863 0,834 0,834 0,834 0,834 0,834 0,834 0,955 0,833
RF 0,899 0,948 0,615 0,899 0,891 0,892 0,892 0,892 0,892 0,892 0,892 0,985 0,992

Table X
Oversampling For Car_eval_34 Dataset

Baseline Over1 Over2 Over3 Over4 Over5 Over6 Over7
LR 0,958 0,954 0,952 0,948 0,905 0,98 0,938 0,975
SVC 0,947 1 1 1 0,994 0,983 0,992 1
KNN 0,657 0,996 0,991 0,986 0,938 0,982 0,917 0,975
DT 0,559 0,798 0,79 0,801 0,772 0,796 0,698 0,729
GB 0,835 0,913 0,925 0,94 0,893 0,986 0,903 0,97
RF 0,899 1 0,999 0,999 0,995 1 0,981 0,984
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Table XI
Evaluation Results for Image Classification on Imbalanced Dataset

Accuracy
Unbalanced 0,5
Class Weights 0,8339
Undersampling 0,8305
Oversampling 0,8230

Figure 8. Training Strategies for Imbalanced Datasets: Class Weighting
vs. Resampling Methods

realism (oversampling) and information loss (undersam-
pling). The choice depends on data size, computational
resources, and domain requirements. In most cases, clas-
sifiers trained on the balanced dataset performed as well
as on the original dataset. In all cases it is possible to
improve classification accuracy by combining a particular
classifier model and data balancing technique.

VI. Conclusion
This paper investigates the effects of class imbal-

ance on machine learning models across diverse data
types. We systematically analyze principal approaches for
handling imbalanced datasets, with particular focus on
data-level techniques including oversampling and under-
sampling methods. The study presents two experimental
frameworks. Through comprehensive comparative anal-
ysis, we demonstrate the quantitative impact of data
balancing techniques on model performance metrics.
Our results provide actionable insights for selecting ap-
propriate imbalance mitigation strategies based on data
characteristics and model architecture.
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ПРОБЛЕМА
НЕСБАЛАНСИРОВАННЫХ ДАННЫХ В

МАШИННОМ ОБУЧЕНИИ
Лукашевич М. М., Байрак С. А.,

Молочко И. П.
Несбалансированные данные являются проблемой

для реальных задач классификации. В работе ана-
лизируются методы и алгоритмы работы с несба-
лансированными данными при построении моделей
машинного обучения для задач бинарной классифи-
кации. Проведены экспериментальные исследования
алгоритмов балансировки данных, основанных на уве-
личении меньшего класса и уменьшении большего
класса. Представлены эксперименты для табличных
данных и изображений. По результатам экспериментов
оценено влияние исследуемых методов и алгоритмов
на качество моделей, получаемых в результате обу-
чения. Даны рекомендации по применению методов
балансировки данных.
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