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Abstract—this article proposes an approach for designing
next-generation intelligent personalized healthcare systems,
emphasizing the synergy between technological innovation
and clinical applicability. The study delineates architectural
frameworks, knowledge integration methodologies, ethical
governance models, and human-intelligent system interac-
tion paradigms essential for developing scalable, secure, and
socially acceptable solutions. By analyzing interdisciplinary
approaches spanning computer science, clinical medicine,
and bioethics, the research aims to bridge the gap between
theoretical advancements and real-world clinical integra-
tion, ensuring that such systems align with both technical
feasibility and patient-centered care imperatives.
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I. Introduction
The contemporary healthcare landscape is undergoing

a paradigm shift driven by the escalating prevalence of
chronic diseases, aging populations, and the growing
demand for personalized, patient-centric care. Traditional
healthcare models, predominantly reactive and episodic,
face significant limitations in addressing the complexities
of preventive medicine, longitudinal health monitoring,
and individualized treatment strategies. Concurrently,
systemic challenges such as resource scarcity, geographic
disparities in access to specialists, and the rising burden
on medical infrastructure underscore the urgent need for
innovative solutions [1].

Intelligent personalized healthcare systems have
emerged as a transformative force, leveraging advance-
ments in artificial intelligence, machine learning, the
Internet of Medical Things, and big data analytics. These
systems enable a transition from fragmented care to
continuous, data-driven health management, integrating
real-time biosensor data, electronic health records, and
multi-omics information to generate actionable insights.
For instance, wearable biosensors facilitate ubiquitous
monitoring of physiological parameters, while artifi-
cial intelligence-driven predictive analytics identify early
biomarkers of conditions such as diabetes mellitus or car-
diovascular disorders, enabling preemptive interventions.

However, the design and deployment of intelligent
personalized healthcare systems entail multifaceted chal-
lenges. A critical issue lies in achieving semantic in-
teroperability across heterogeneous data sources, includ-
ing electronic health records, genomic datasets, and
environmental sensors, which often adhere to disparate
standards and formats. The reliability of artificial intel-
ligence algorithms, particularly in scenarios with imbal-
anced or incomplete data, remains a persistent concern,
necessitating robust validation frameworks to mitigate
risks of diagnostic inaccuracies. Ethical and regulatory
complexities, such as ensuring patient privacy under
regulations like the General Data Protection Regulation
and the Health Insurance Portability and Accountabil-
ity Act, maintaining algorithmic transparency through
explainable artificial intelligence, and addressing biases
in training datasets, further complicate implementation.
Additionally, adaptive learning mechanisms are required
to enable systems to evolve with dynamic patient states
and emerging medical knowledge without catastrophic
forgetting [2].

II. Core requirements for intelligent personalized
healthcare systems

The development of intelligent personalized health-
care systems demands a rigorous framework of require-
ments to ensure their efficacy, safety, and alignment
with clinical and ethical standards. This section outlines
the foundational prerequisites that guide the design and
implementation of such systems, focusing on functional,
operational, and socio-technical dimensions rather than
specific technological implementations.

A primary requirement is the unified integration of
heterogeneous data sources, spanning biometric sen-
sors, electronic health records, genomic repositories, and
environmental datasets. Systems must ensure semantic
consistency across diverse formats and terminologies,
enabling seamless aggregation of structured and un-
structured data. This necessitates adherence to interna-
tionally recognized medical data standards and ontolo-
gies, which facilitate cross-institutional data exchange
and reduce ambiguities in interpretation. For instance,
aligning blood pressure measurements from wearable
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devices with clinical-grade equipment requires standard-
ized metadata annotation and temporal synchronization
protocols [3].

Intelligent personalized healthcare systems must incor-
porate robust analytical frameworks capable of delivering
precise, context-aware insights. Machine learning algo-
rithms should demonstrate resilience to data imbalances,
such as underrepresented patient demographics or rare
disease cohorts, through techniques that mitigate overfit-
ting and bias. Models must dynamically adapt to evolving
patient conditions and emerging medical knowledge,
avoiding performance degradation when confronted with
novel data patterns. This adaptability ensures sustained
relevance in clinical workflows, particularly for chronic
disease management where patient states fluctuate over
time [4].

To foster trust among clinicians and patients, sys-
tems must prioritize interpretability of decision-making
processes. Analytical outputs, such as risk predictions
or treatment recommendations, should be accompanied
by human-understandable rationales that link conclu-
sions to input data and clinical guidelines. Explainabil-
ity mechanisms must clarify how variables like genetic
predispositions, lifestyle factors, or historical health data
influence algorithmic outcomes, ensuring alignment with
evidence-based medicine principles [5].

Compliance with global data protection regulations,
such as the General Data Protection Regulation and
the Health Insurance Portability and Accountability
Act, mandates end-to-end security architectures. Systems
must implement encryption protocols for data transmis-
sion and storage, granular access controls, and audit
trails to prevent unauthorized use. Privacy-preserving
techniques, such as federated learning, should enable
collaborative model training without centralized data
pooling, minimizing exposure of sensitive patient infor-
mation [6].

User-centric design is critical to ensure intuitive in-
teraction for both patients and healthcare providers.
Interfaces must accommodate varying levels of digital
literacy, offering customizable dashboards, multilingual
support, and adaptive feedback mechanisms. For pa-
tients with disabilities, compliance with accessibility
standards—such as screen reader compatibility and voice
navigation—is essential. Clinician-facing tools should
integrate seamlessly into existing workflows, minimizing
cognitive load through automated data synthesis and
prioritized alerting systems [7].

Systems must embed ethical governance frameworks
to address biases in algorithmic decision-making, en-
suring equitable outcomes across diverse populations.
Transparent consent mechanisms are required for data
collection and secondary use, particularly for genomic or
behavioral information. Regulatory compliance extends
beyond data privacy to encompass clinical validation

processes, wherein algorithms undergo rigorous testing
against real-world cohorts to verify safety and efficacy
before deployment [8], [9].

Architectures must support horizontal and vertical
scalability to accommodate growing patient populations
and expanding data volumes. Redundancy mechanisms,
such as distributed data storage and failover proto-
cols, ensure uninterrupted operation during infrastructure
failures or cyberattacks. Systems should also adapt to
resource-constrained environments, such as rural health-
care settings, without compromising core functionali-
ties [10].

III. Ethical and legal aspects

The global deployment of intelligent personalized
healthcare systems necessitates a rigorous examination of
the legal, ethical, and sociotechnical challenges inherent
to their integration within diverse healthcare ecosystems.
This section delineates the multifaceted interplay be-
tween regulatory frameworks, ethical imperatives, and
technological innovation, emphasizing the imperative for
harmonized standards to ensure equitable and secure
healthcare delivery.

Jurisdictional disparities in regulatory approaches un-
derscore the complexity of governing intelligent person-
alized healthcare systems. The European Union’s General
Data Protection Regulation, enacted in 2018, establishes
stringent safeguards for health data processing, man-
dating explicit patient consent for automated decision-
making under Article 22 and prohibiting algorithmic
opacity in clinical diagnostics. In contrast, the United
States employs a decentralized regulatory model, wherein
the Health Insurance Portability and Accountability Act
governs data security, while the 21st Century Cures Act
promotes interoperability through standardized applica-
tion programming interfaces. This fragmented approach
has precipitated regulatory gaps, particularly in address-
ing liability for artificial intelligence-driven diagnostic
errors, a void partially filled by state-level initiatives such
as California’s Consumer Privacy Act [11], [12].

Asian regulatory frameworks reflect divergent pri-
orities. China’s Personal Information Protection Law,
implemented in 2021, emphasizes state access to health
data for public health surveillance, while Japan’s Act
on the Protection of Personal Information prioritizes
anonymization techniques to facilitate secondary data
use for biomedical research. These regional incongruities
complicate the development of transnational intelligent
personal healthcare systems, necessitating adaptive ar-
chitectures capable of complying with conflicting legal
requirements [13].

A paramount ethical consideration within global
healthcare ecosystems pertains to the transparency of
artificial intelligence-driven decision-making processes.
The World Health Organization’s 2021 guidelines on
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ethics and governance of artificial intelligence for health
advocate for explainable artificial intelligence frame-
works to ensure algorithmic outputs are interpretable
by clinicians and patients. For instance, the European
Commission’s proposed Artificial Intelligence Act clas-
sifies intelligent personalized healthcare systems as high-
risk applications, requiring exhaustive documentation of
training datasets, bias mitigation strategies, and perfor-
mance metrics across diverse demographic cohorts [14].

Algorithmic bias, perpetuated by non-representative
training data, remains a pervasive challenge. Studies in
dermatology reveal diagnostic inaccuracies in artificial
intelligence models trained predominantly on lighter skin
tones, disproportionately affecting populations in Sub-
Saharan Africa and South Asia. Similarly, gender dispar-
ities in cardiovascular risk prediction algorithms, docu-
mented across Latin American clinical trials, underscore
the global ramifications of biased model design. The
African Union’s Framework on Artificial Intelligence
Ethics addresses these inequities by mandating inclusive
dataset curation and participatory design methodologies
involving underrepresented communities [15].

The absence of harmonized international standards for
health data exchange poses significant barriers to the
scalability of intelligent personalized healthcare systems.
While the International Organization for Standardiza-
tion’s technical specification ISO/TS 22220 provides
guidelines for patient identification, legal conflicts persist
between data sovereignty laws and cloud-based system
architectures. The European Union’s General Data Pro-
tection Regulation restricts cross-border data transfers to
jurisdictions lacking adequacy agreements, a provision
incompatible with decentralized systems reliant on global
server networks.

Initiatives such as the Global Digital Health Part-
nership, comprising 30 member states, seek to recon-
cile these disparities through policy alignment on data
sharing and artificial intelligence governance. However,
divergent national priorities—such as India’s emphasis
on cost-effective solutions versus Germany’s focus on
precision medicine—hinder consensus. Emerging techni-
cal solutions, including federated learning architectures
and blockchain-based audit trails, offer partial mitigation
by enabling collaborative model training without central-
ized data aggregation, thereby preserving jurisdictional
compliance.

The World Health Organization’s SMART Guide-
lines initiative exemplifies successful transnational co-
operation, providing modular architectures for digital
health systems adaptable to local epidemiological and
infrastructural contexts. In Rwanda, the integration of
these guidelines with intelligent personalized health-
care systems facilitated real-time prediction of malaria
outbreaks while adhering to national data sovereignty
laws. Conversely, the European Health Data Space, pro-

posed in 2022, aims to unify access to electronic health
records across European Union member states, though
implementation challenges persist due to heterogeneous
technical infrastructures and multilingual interoperability
barriers.

The Global Alliance for Genomics and Health fur-
ther illustrates the potential of international collabora-
tion through its Beacon Project, which enables secure
querying of genomic datasets across borders without
transferring raw data. This framework balances scientific
progress with ethical imperatives, ensuring compliance
with regional privacy regulations such as the United
States’ Genetic Information Nondiscrimination Act and
the European Union’s General Data Protection Regula-
tion [16].

The 2021 UNESCO Recommendation on the Ethics of
Artificial Intelligence advocates for human rights-centric
design principles in intelligent personalized healthcare
systems, emphasizing equity, sustainability, and account-
ability. Parallel efforts by industry consortia, such as the
Toronto Declaration on Machine Learning in Healthcare,
promote open-source model sharing and third-party al-
gorithmic audits to enhance transparency [17].

Regulatory bodies are increasingly classifying ad-
vanced intelligent personal healthcare systems as medical
devices, subjecting them to premarket validation proto-
cols. The United Kingdom’s Medicines and Healthcare
products Regulatory Agency, for instance, has proposed
stringent evaluation criteria for artificial intelligence-
driven diagnostic tools, a model adopted by Health
Canada and Australia’s Therapeutic Goods Administra-
tion. These developments signal a global shift toward
risk-based regulation, though disparities in enforcement
capacity between high-income and low-income nations
threaten to exacerbate existing healthcare inequities [18].

IV. Proposed approach

In light of the identified requirements for intelli-
gent personalized healthcare systems, including interop-
erability, semantic consistency, and adaptive knowledge
processing, the Open Semantic Technology for Intel-
ligent Systems (OSTIS) is proposed as a foundational
framework for system design. OSTIS represents a next-
generation semantic technology paradigm centered on
the unified representation and context-aware processing
of knowledge. Unlike conventional approaches reliant
on syntactic data structures, OSTIS prioritizes semantic
harmonization, enabling the integration of heterogeneous
medical data, domain-specific ontologies, and decision-
making algorithms into a cohesive architecture [19].

The core objective of OSTIS is the universal unifi-
cation of knowledge representation through standardized
semantic models. By translating diverse data types rang-
ing from electronic health records and genomic datasets
to clinical guidelines and sensor-generated biomarkers
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Figure 1. Formalized knowledge base fragment for intestinal atony disease.

into a common semantic format, OSTIS eliminates struc-
tural and terminological disparities that hinder interop-
erability. This unification facilitates the creation of a
global OSTIS Ecosystem, a federated network where
healthcare systems, analytical tools, and domain-specific
applications interoperate via shared semantic protocols.

Key advantages include:
1) Semantic interoperability enables seamless data

exchange between legacy systems, AI-driven diag-
nostic modules, and IoT-enabled wearable devices,
addressing fragmentation in current healthcare in-
frastructures

2) OSTIS supports dynamic knowledge inference
through logic-based semantic networks, allowing
systems to adapt recommendations based on evolv-
ing patient states, comorbidities, and epidemiolog-
ical trends.

3) By embedding clinical ontologies (e.g., SNOMED
CT, ICD-11) and causal relationships into its se-
mantic framework, OSTIS ensures traceability of
AI-generated decisions, aligning with regulatory
demands for explainable AI in medicine.

4) The reuse of preconfigured semantic components
and collaborative knowledge engineering within
the OSTIS Ecosystem reduces redundant devel-
opment efforts, enabling rapid prototyping and
deployment.

For personalized medical systems, OSTIS provides a
structured methodology to harmonize patient-centric data
streams with population-level health analytics. Its seman-
tic architecture inherently supports ethical imperatives,
such as bias mitigation through ontology-guided data
sampling and privacy preservation via granular access
control mechanisms defined at the semantic level. An

Figure 2. Gastrointestinal tract’s diseases ontology fragment.

example of ontology fragment is shown in the figure 2
and represents gastrointestinal tract’s diseases subsec-
tion. The adoption of OSTIS is posited to advance
the realization of "4P" medicine (predictive, preventive,
personalized, participatory) by fostering interoperable,
context-sensitive healthcare ecosystems.

The system architecture comprises three core compo-
nents: a knowledge base, a problem solver, and a web-
based user interface. The knowledge base is structured
as a semantic network of disease-specific modules con-
taining granular symptom profiles, laboratory parameter
correlations, and pathophysiological relationships. An
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example of a formalized fragment of a knowledge base is
shown in the figure 5. These modules are interconnected
within a unified semantic memory, enabling rapid and
precise knowledge processing through context-aware rea-
soning. Problem solver integrates logical inference rules
with adaptive algorithms to execute diagnostic opera-
tions. The hematological diagnostic workflow follows a
multi-stage pipeline:

1) Data ingestion, where acquisition of heterogeneous
blood test parameters is made.

2) Data normalization, where conversion of raw val-
ues into ontology-compatible semantic representa-
tions is made.

3) Pattern recognition, where comparison of normal-
ized data against reference ranges and disease-
specific signatures within the knowledge base is
made.

4) Conflict resolution, where reconciliation of am-
biguous findings via probabilistic scoring and
evidence-based decision matrices is made.

5) Output generation, where production of ranked
diagnostic hypotheses annotated with confidence
intervals and supporting biomarkers is made.

This architecture ensures clinician-centric operation,
where the interface presents hypotheses as actionable rec-
ommendations requiring mandatory physician validation
prior to treatment planning.

V. Blood-based biomarkers in disease diagnostics
Modern disease diagnostics are inconceivable without

blood analysis – a method combining the precision of
laboratory science with clinical interpretation. Blood
serves as a universal indicator of health, reflecting organ
dysfunction, metabolic disturbances, and latent patho-
logical processes long before overt symptoms manifest.
Over recent decades, technological advancements have
transformed routine blood tests into robust tools of per-
sonalized medicine, enabling not only disease detection
but also the prediction of disease progression.

Blood tests analyzing white blood cells (WBCs),
platelets, and red blood cells (RBCs) are foundational for
identifying a wide range of conditions, from infections to
blood disorders. Each cell type provides unique insights
into health and disease [20].

WBCs reflect the body’s immune response. Elevated
WBC counts (leukocytosis) often indicate bacterial infec-
tions, such as pneumonia, where neutrophils dominate.
Viral infections, like mononucleosis, typically increase
lymphocytes and may show atypical cells. Low WBC
counts (leukopenia) can signal autoimmune diseases,
chemotherapy effects, or bone marrow disorders. Ab-
normal cells, such as immature blasts, are critical for
diagnosing leukemia. For example, chronic lymphocytic
leukemia is identified by a high lymphocyte count and
specific cell markers.

Platelet levels help assess clotting risks. High platelet
counts (thrombocytosis) may occur in inflammatory dis-
eases (e. g., rheumatoid arthritis) or blood cancers like
essential thrombocythemia, linked to genetic mutations.
Low platelet counts (thrombocytopenia) arise from im-
mune destruction (e. g., immune thrombocytopenia),
liver disease, or bone marrow failure. Severe thrombo-
cytopenia raises bleeding risks.

RBCs and hemoglobin levels diagnose anemia and
polycythemia. Anemia is classified by cell size:

• microcytic anemia (small cells) suggests iron defi-
ciency, confirmed by low ferritin;

• macrocytic anemia (large cells) often stems from
vitamin B12 or folate deficiency, detectable via
blood tests;

• normocytic anemia (normal cell size) may indicate
chronic diseases.

High RBC counts (polycythemia) can result from ge-
netic conditions, lung diseases, or tumors overproducing
erythropoietin. Hemolytic anemia, marked by rapid RBC
breakdown, shows increased young RBCs (reticulocytes)
and low haptoglobin.

Combined analysis of WBCs, platelets, and RBCs
enhances diagnostic accuracy. For instance, low levels
of all cells (pancytopenia) may indicate bone marrow
failure or cancer spread. Elevated platelets with high
RBCs suggest blood cancers, requiring genetic testing
(Tefferi et al., 2020). Blood smear microscopy identifies
cell abnormalities, such as immature cells in leukemia or
fragmented RBCs in hemolysis [21], [22].

Figure 2 illustrates the successful implementation of
a diagnostic rule based on leukocyte, thrombocyte, and
erythrocyte parameters in human blood, designed using
the SCg (Semantic Code graphical) knowledge represen-
tation language.

Blood tests measuring thyroid-stimulating hormone
(TSH), follicle-stimulating hormone (FSH), and luteiniz-
ing hormone (LH) are pivotal for evaluating endocrine
function, particularly in thyroid and reproductive health.
These hormones, produced by the pituitary gland, serve
as biomarkers for disorders ranging from hypothyroidism
to infertility [23].

TSH regulates thyroid hormone production (thyrox-
ine, T4, and triiodothyronine, T3). Elevated TSH (>4.0
mU/L) with low free T4 indicates primary hypothy-
roidism, often caused by autoimmune Hashimoto’s thy-
roiditis or iodine deficiency. This reflects the pituitary’s
attempt to stimulate an underactive thyroid. Conversely,
suppressed TSH (<0.4 mU/L) with high T4/T3 signals
hyperthyroidism, commonly due to Graves’ disease or
toxic nodules. Subclinical hypothyroidism (TSH 4.0–10.0
mU/L with normal T4) may progress to overt disease,
especially with anti-thyroid peroxidase antibodies.

FSH and LH govern reproductive function. In women,
they regulate the menstrual cycle and ovarian activ-

177



Figure 3. Formalized blood test diagnostic rule for intestinal atony disease.

ity. Elevated FSH (>25 IU/L) and LH (>15 IU/L) in
reproductive-aged women suggest primary ovarian in-
sufficiency (POI), marked by follicular depletion. Dur-
ing menopause, sustained high FSH/LH confirms ovar-
ian failure. Conversely, low FSH/LH indicates hypogo-
nadotropic hypogonadism, often due to pituitary tumors,
stress, or excessive exercise, impairing ovulation and
estrogen production [24].

In polycystic ovary syndrome, an LH/FSH ratio >2:1
is common, driven by hypothalamic-pituitary dysregula-
tion. This imbalance promotes androgen overproduction,
contributing to irregular cycles and infertility.

In men, FSH stimulates sperm production, while LH
triggers testosterone synthesis. Elevated FSH/LH with
low testosterone indicates primary testicular failure (e.g.,
Klinefelter syndrome). Low FSH/LH with low testos-
terone points to secondary hypogonadism, often linked
to pituitary disorders [25].

Formalized rules implemented in the SCg language,
as exemplified in this section, are utilized by the devel-
oping intelligent personalized healthcare system, aiding
in preliminary disease identification. Designed algorithm
employs formalized rules to analyze user-provided blood
parameters against reference values, evaluate marginal
thresholds and conflicts, determine possible disease as-
sociations, and return a diagnostic result.

The proposed system is designed to primarily au-
tomate the diagnostic workflow associated with blood
test analysis, thereby significantly alleviating the work-
load of healthcare personnel. It is critical to emphasize

that the system functions as a decision-support tool,
generating probabilistic diagnostic hypotheses based on
algorithmic interpretation of hematological parameters.
Final clinical decisions, particularly those involving life-
critical interventions, remain the exclusive responsibility
of licensed medical professionals. This human-centric
design ensures adherence to ethical obligations in med-
ical practice, preserving clinician oversight as a non-
negotiable component of patient care.

The workflow of the proposed intelligent system is
illustrated in Figure 3. A blood sample undergoes au-
tomated analysis, where key parameters including white
blood cell count, platelet levels and red blood cell mor-
phology are extracted and processed using algorithms.
The system identifies anomalies and correlates them with
knowledge base-stored reference data to generate ranked
diagnostic hypotheses. These hypotheses are presented
to the clinician via an interpretable interface. Crucially,
the physician retains full authority to accept, modify, or
reject the system’s suggestions, ensuring ethical account-
ability.

VI. Conclusion
The convergence of blood-based biomarker diagnos-

tics and intelligent semantic architecture represents a
paradigm shift in modern healthcare systems. Building
upon analysis of leukocyte, thrombocyte, and erythro-
cyte parameter modeling via SCg, this work extends
the framework through Open Semantic Technology for
Intelligent Systems, which unifies diagnostic rule formal-
ization with context-aware reasoning. By harmonizing
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Figure 4. Formalized blood test diagnostic rule for hypogonadotropic hypogonadism disease.

Figure 5. The workflow of the proposed intelligent system.

heterogeneous data streams from hematological indices
to multimodal health records, OSTIS addresses critical
challenges in interoperability, ethical governance, and ex-
plainable AI, while preserving patient-centric priorities.
The proposed architecture synthesizes adaptive seman-
tic interoperability protocols and regulatory-compliant
design to advance 4P (predictive, preventive, personal-
ized, participatory) medicine. Notably, the integration of
domain-specific diagnostic logic (e. g., blood biomarker

thresholds) with OSTIS’s knowledge representation ca-
pabilities demonstrates a scalable pathway for translating
computational innovations into clinical workflows.
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ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ
ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ

ПЕРСОНАЛЬНОГОМЕДИЦИНСКОГО
ОБСЛУЖИВАНИЯ

Сальников Д. А.
Данная статья предлагает подход для проектиро-

вания современных интеллектуальных систем персо-
нального медицинского обслуживания, нацеленный на
синергию технологических инноваций и клинической
применимости. В работе описаны архитектурные ре-
шения, методы интеграции знаний, модели этического
регулирования и парадигмы взаимодействия человека
с интеллектуальной системой, необходимые для созда-
ния масштабируемых, безопасных и социально прием-
лемых систем. Путем изучения междисциплинарных
подходов на стыке компьютерных наук, клинической
медицины и биоэтики исследование направлено на
преодоление разрыва между теоретическими разра-
ботками и практическим внедрением в клинические
процессы.
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