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Abstract—This paper presents YOLO11-LKAConv, an
improved model based on the YOLOv11 framework, to ad-
dress the issue of low detection accuracy for small targets in
UAV aerial images. By replacing standard convolutions with
lightweight large-kernel attention convolution (LKAConv),
the model integrates dynamic large-kernel receptive fields
and channel-spatial attention mechanisms, enhancing its
ability to capture long-range contextual features for small
targets. Experiments on the VisDrone2019 dataset show that
the improved model achieves an mAP50-95 of 0.173, a 1.2%
increase over the baseline YOLOv11n, with improvements
in both P and mAP50 while maintaining almost the same in-
ference time. The results indicate that LKAConv effectively
balances detection accuracy and computational efficiency
through its lightweight large-kernel design, offering a better
solution for real-time UAV target detection tasks.

Keywords—Small target detection; YOLOv11n; UAV de-
tection; LKAConv; Lightweightt

I. Introduction
With the rapid development and popularisation of

UAV technology, UAVs have been widely used in aerial
photography, agriculture, security monitoring, disaster
rescue, environmental monitoring and other fields. UAV
aerial photography can not only provide high-definition
images and videos, but also complete tasks such as
monitoring, surveying and search and rescue of complex
environments, which has become an indispensable tech-
nical means in modern society [1]. However, the flight
safety and effective monitoring of UAVs have become
an urgent problem, especially in complex scenarios, and
the performance of target detection technology directly
determines the intelligence level of UAVs [2], [3].

Traditional UAV target detection methods usually rely
on hand-designed feature extractors and classifiers (e.g.,
HOG, SIFT, etc.), which perform reasonably well in
specific scenarios, but their performance is often limited
under complex backgrounds and variable target mor-
phology [4], [5]. In recent years, the rapid development
of deep learning technology provides new solutions for
UAV target detection. Deep learning-based target detec-

tion methods significantly improve detection accuracy
and robustness by training deep neural networks to au-
tomatically learn the feature representation of the target
[6], [7]. Among them, the YOLO series of algorithms
has become a research hotspot in the field of UAV target
detection due to its fast speed and high accuracy [1],
[4]. However, with the expansion of UAV application
scenarios, the existing YOLO series network still has
deficiencies in dealing with the problems of dense small
targets and complex backgrounds [2], [3].

Aiming at the insufficient performance of the exist-
ing UAV target detection algorithms in the dense and
complex background of small targets, this study aims to
propose a lightweight kernel attention mechanism (LKA-
Conv) in the YOLOv11 framework, which dynamically
adjusts the kernel sensing field and the allocation of the
attention weights, enhances the ability of the model to
capture the features of the small targets, and improves the
detection precision and the recall rate, so as to realise a
lightweight design of the model and ensure that it can
be used in the UAV application scenarios [2], [3]. The
lightweight design ensures its real-time application on
resource-constrained devices such as UAVs.

II. Method

A. YOLOv11
YOLOv11, a new generation of object detection algo-

rithms introduced by Ultralytics in 2023, aims to further
improve the accuracy and efficiency of object detection.
It has made several improvements based on YOLOv8 [8]
to adapt to a wider range of application scenarios and
enhance model performance. YOLOv11 provides mul-
tiple versions of different scales, including YOLOv11n
(ultra-light), YOLOv11s (small), YOLOv11m (medium),
YOLOv11l (standard), and YOLOv11x (extra-large), to
meet different needs. Compared with previous YOLO
versions, YOLOv11 has made the following improve-
ments:
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1) Backbone Network: YOLOv11 introduces the
C3k2 module [9], replacing the C2f module in
YOLOv8. The C3k2 module uses smaller convo-
lution kernels to improve computational efficiency
while maintaining performance. It retains the spa-
tial pyramid pooling fast (SPPF) module [10]
and introduces the cross-stage partial and spatial
attention (C2PSA) module [10], enhancing spatial
attention in feature maps and improving detection
accuracy.

2) Neck Structure: In the neck structure, YOLOv11
replaces the C2f module with the C3k2 module,
improving the speed and performance of feature
aggregation. The C2PSA module enhances spatial
attention, enabling the model to more effectively
focus on key areas in the image and improving
detection accuracy for small and partially occluded
targets.

3) Head Structure: In the head structure, YOLOv11
uses multiple C3k2 modules to process and opti-
mize feature maps, improving the model’s detec-
tion accuracy.

Figure 1. YOLOv11 Network Structure Diagram

Additionally, YOLOv11 adopts multi-scale training
and data augmentation techniques during training to fur-
ther improve the model’s generalization and detection ac-
curacy. Compared with previous generations, YOLOv11
shows significant improvements in inference speed and
accuracy. In summary, YOLOv11 has made significant
progress in the accuracy and efficiency of object de-
tection by introducing innovative technologies such as
the C3k2 module and the C2PSA module. It performs
well in models of different scales and demonstrates
strong adaptability and practicality in various application

scenarios. The network structure of YOLOv11 is shown
in Figure 1.

B. LKAConv
LKAConv (Large Kernel Attention Convolution) is a

key component of the LKA mechanism, used to im-
plement the decomposition of large convolution kernels
[11]. LKAConv captures long-range dependencies by
decomposing a large convolution kernel into multiple
small convolution kernels and dilated convolutions. This
decomposition method not only retains local structural
information but also effectively captures long-range de-
pendencies while maintaining linear complexity. The
principle of the large convolution kernel is shown in
Figure 2:

Figure 2. Decomposition Diagram of Large-Kernel Convolution

The core formula of LKA is as follows:

Attention = Conv1×1(DW − D − Conv(DW − Conv(F ))), (1)

Output = Attention ⊗ F (2)

where: F is the input feature map, DW − Conv repre-
sents depthwise separable convolution, DWD − Conv
represents dilated depthwise separable convolution,
Conv1×1 represents 1× 1 convolution, and 1× 1 rep-
resents element-wise multiplication.

In this study, we introduced the large kernel attention
convolution to enhance the feature extraction capability
of the YOLOv11 model, especially when processing
UAV datasets. LKAConv is a new type of convolution
module that combines the advantages of convolution and
self-attention mechanisms, effectively capturing long-
range dependencies and local structural information. In
our model, the 5th layer adopted LKAConv with param-
eter settings of 512 input channels, a 3x3 convolution
kernel, and a dilation rate of 2. In addition, the down-
sampling process was mainly completed by standard
convolution and LKAConv. The features extracted by
LKAConv were fused with the features of the previous
layers through concatenation and convolution layers to
form rich feature maps. This fusion method effectively
combined multi-scale features, further enhancing the
model’s detection performance.

C. YOLO11-LKAConv
This paper takes YOLOv11n as the baseline and

proposes an improved model, YOLO11-LKAConv, to ad-
dress the problem of detecting small targets in UAV aerial
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images. YOLOv11n still has high rates of missed and
false detections in complex backgrounds, dense targets,
and small target detection. The improved model main-
tains a lightweight design while significantly improving
detection accuracy. The specific improvements are shown
in Figure 3 below:

Figure 3. YOLO11-LKAConv Structure

The 5th layer of Backbone corresponds to the output
of P4, which is in the middle-level feature stage. This
layer is responsible for detecting medium-scale targets.
The purpose of introducing LKAConv is to expand the
receptive field of the middle-level features, suppress
background noise interference, and balance computa-
tional efficiency. In drone aerial images, medium-sized
targets are often mixed with ground or vegetation of
similar colors. The channel attention mechanism of LKA-
Conv can enhance target-related channels and suppress
noise channels such as vegetation texture through fea-
ture recalibration. The 16th layer of Head corresponds
to the feature fusion layer after P3 upsampling. This
layer fuses deep semantic features and shallow detail
features through Concat operation. The design of intro-
ducing LKAConv here is to strengthen cross-scale feature
fusion and resist scale change interference. LKAConv
can introduce multi-scale perception capabilities at this
level. Large kernel convolution covers spatial patterns of
different scales, and the attention mechanism focuses on
the current dominant scale.

The two LKAConvs in the backbone and head form
a "mid-level capture-high-level refinement" synergistic
effect: capturing contextual association features of targets
through large receptive fields and providing high-quality
mid-level semantic information for subsequent FPN. Us-
ing attention mechanisms to screen cross-level features
and reconstruct the complete spatial structure of small
targets. This "coarse-fine" synergistic strategy retains
the speed advantage of the YOLO series while break-

ing through the performance bottleneck of traditional
methods in complex air-to-ground detection scenarios,
providing a new technical paradigm for real-time UAV
target detection.

III. Experiments
A. Dataset

The VisDrone2019 [12] dataset is a large-scale bench-
mark dataset created by the AISKYEYE team of the Ma-
chine Learning and Data Mining Laboratory of Tianjin
University, China. The dataset was collected using vari-
ous drone platforms (i.e., drones with different models) in
various situations and under various weather and lighting
conditions. It contains carefully annotated ground truth
data for various computer vision tasks related to drone-
based image and video analysis.

This experiment uses the static images in this dataset,
which contains 10,209 images. This experiment divides
the dataset into the following: 6,471 training sets, 548
validation sets, and 1,610 test sets. The current dataset
has a total of 471,266 annotated targets, covering 11
categories: 0: pedestrian, 1: people, 2: bicycle, 3: car,
4: van, 5: truck, 6: tricycle, 7: awning-tricycle, 8: bus, 9:
motor, 10: other. Others are non-valid target areas and are
ignored in this project. The validation set contains 38,759
instances, of which small targets (pixel area <32×32)
account for 68.2%, and dense scenes (>100 targets per
image) account for 45%, which fully reflects the detection
challenges from the perspective of drones.

The data annotation is shown in Figure 4 below:

Figure 4. Data annotation

B. Experimental Environment and Configuration
The experimental platform is a 64-bit Windows 11

operating system, with PyTorch 2.4.0 and CUDA 2.4.1
as the deep learning framework. An NVIDIA GeForce
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RTX 4060 GPU is used for training, with Python 3.9
and CUDA version 12.41. Specific experimental envi-
ronment configuration parameters are shown in Table I.
Parameters not provided in this paper adopt the default
parameters of YOLOv11n.

Table I
Table to test captions and labels

epochs batch imgsz device optimizer amp
100 16 640 0 auto true

C. Evaluation indicators
The experiment mainly uses mean average precision

(mAP), accuracy (precision, P), and recall (recall, R)
to evaluate the algorithm’s target detection performance.
At the same time, floating point operations (GFLOPs),
parameter volume (params), model size (volume), and
frames per second (FPS) are used to evaluate the model
complexity and detection efficiency. The calculation for-
mulas for precision, recall, and average accuracy are
shown in equations (3) to (5).

P =
TP

TP + FP
, (3)

R =
TP

TP + FN
, (4)

AP =
∫ 1

0
P (R)dR

mAP =

∑n
i=1APi

n

(5)

In the formula: P is precision; R is recall; TP is the
number of samples predicted to be positive and actually
positive; FP is the number of samples predicted to be
positive but actually negative; FN is the number of
samples predicted to be negative but actually positive;
AP is the precision of each category in the dataset; mAP
is the average accuracy of all categories in the dataset.

D. Cross-Model Comparison Results and Analysis
In order to verify the comprehensive performance of

the YOLO11-LKAConv model proposed in this paper in
the UAV target detection task, a comparative experiment
was designed. We compared it with the mainstream
lightweight versions of the YOLO series, including:
YOLOv5n [13], YOLOv6n [14], YOLOv8n, YOLOv10n
[15], and YOLOv11n. The experimental environment,
configuration, and parameters are the same, and the
experimental results are shown in Table II:

Through experiments, we found that on the Vis-
Drone2019 dataset, each model performed differently in
terms of accuracy and efficiency. The P values of v11n
and v10n were both 0.402, and the R values were 0.308
and 0.299, respectively. They performed well in terms of

Table II
Comparison of Different Models on the VisDrone2019-DET Datase

v11n v10n v8n v6n v5n LKAConv

P 0.402 0.402 0.398 0.363 0.387 0.407

R 0.308 0.299 0.302 0.28 0.279 0.302

mAP50 0.297 0.291 0.291 0.271 0.273 0.301

mAP50-95 0.171 0.163 0.165 0.156 0.154 0.173

time 6.012 5.885 7.193 5.794 5.172 6.015

preprocess 0.1ms 0.2ms 0.2ms 0.2ms 0.2ms 0.2ms

inference 1.7ms 1.4ms 2ms 1.7ms 1.7ms 2ms

parameters 2.46M 2.39M 2.57M 3.96M 4.04M 2.51M

GFLOPs 6.3 7.1 8.2 11.5 11.8 6.7

Figure 5. Comparison of GFLOPs of different models

Figure 6. Comparison of FPS of different models
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precision and recall, but their FPS were relatively not the
highest, at 344.83 and 204.08, respectively, and a trade-
off between accuracy and speed was required; v8n had
the highest FPS, at 357.14, and its mAP50-95 was also
relatively high, at 0.165. It achieved a high processing
speed while ensuring a certain accuracy, and was suitable
for scenarios with high real-time requirements; v5n and
v6n had more parameters, and v5n had a longer post-
processing time of 3.2 seconds. In terms of accuracy, the
mAP50-95 value of yolo11-LKAConv reached 0.173, an
increase of 1.2% over the baseline v11n, and significantly
better than other models. This shows that it has better
performance for complex scenes (such as occlusion and
small targets). The value of yolo11-LKAConv on mAP50
reaches 0.301, indicating that the model is better at
detecting medium-scale targets. The model maintains
the same inference speed as the baseline v11n at the
cost of a slight increase in the number of parameters
and computation, as shown in Figures 5. and 6. The
lightweight design effectively balances efficiency.

E. Comparison Results and Analysis of Different Convo-
lution Layers

To verify the effectiveness of the improved YOLO11-
LKAConv model, it is compared with different convolu-
tion layer variants of the baseline YOLOv11n, including
RepViTblock, GSConv, and ADown. Experimental re-
sults are shown in Table 3. On the VisDrone2019 dataset,

Table III
Comparison of Different Convolution Models on the

VisDrone2019-DET Dataset

v11n RepViTblock GSConv ADown LKAConv

Box(P 0.402 0.395 0.39 0.401 0.407

R 0.308 0.308 0.303 0.304 0.302

mAP50 0.297 0.298 0.295 0.298 0.301

mAP50-95 0.171 0.169 0.166 0.171 0.173

time 6.012 5.982 6.067 6.086 6.015

preprocess 0.1ms 0.2ms 0.2ms 0.2ms 0.2ms

inference 1.7ms 1.9ms 1.7ms 1.7ms 2ms

parameters 2.46M 2.78M 2.45M 2.36M 2.51M

GFLOPs 6.3 6.3 6.1 6 6.7

RepViTblock has a P value of 0.395 and an R value of
0.308, which are close to v11n’s P value of 0.402 and
R value of 0.308, but its FPS is 312.50, which is lower
than v11n’s 344.83; GSConv has a P value of 0.39 and
an R value of 0.303, which are slightly lower than v11n,
and its time consumption is slightly higher than v11n,
which is 6.067 seconds; ADown has a P value of 0.401
and an R value of 0.304, which are close to v11n, but it

has the least number of parameters and may have certain
advantages in model complexity;

In this experiment, YOLO11-LKAConv still achieves
higher mAP50 and mAP50-95 values than other variant
models. This indicates that YOLO11-LKAConv can ef-
fectively improve small target detection accuracy while
maintaining inference efficiency. Although YOLO11-
LKAConv’s recall rate is slightly reduced due to the
feature screening of large-kernel features by LKAConv,
the model maintains a similar inference speed to the
baseline YOLOv11n with a slight increase in parameters
and computational cost, verifying the effectiveness of the
lightweight large-kernel design.

IV. Summary
This study proposes an improved model, YOLO11-

LKAConv, based on the YOLOv11 framework for UAV
target detection tasks. By introducing the lightweight
large-kernel attention module (LKAConv), the model
significantly improves detection performance for small
targets in complex scenes. Experiments on the Vis-
Drone2019 dataset show that the improved model per-
forms excellently in detection accuracy, computational
efficiency, and model complexity. Specifically, YOLO11-
LKAConv achieves an mAP50-95 of 0.173 and an
mAP50 of 0.301, representing improvements of 1.2%
and 1.3% over the baseline model YOLOv11n. The
inference time (6.015 hours) is almost the same as
the baseline model, and the increase in parameters and
computational cost is kept within a small range, verifying
the effectiveness of the lightweight design. Ablation
experiments and visualization analysis further confirm
the key role of the LKAConv module in improving model
performance. This module dynamically adjusts the large-
kernel receptive field and attention weight distribution,
enhancing the model’s ability to capture small target
features and effectively suppressing interference from
complex backgrounds. Additionally, comparative exper-
iments with existing variant models (such as YOLO11-
RepViTblock, YOLO11-GSConv, and YOLO11-ADown)
show that YOLO11-LKAConv achieves better efficiency
and lightweight levels while maintaining high detection
accuracy. This study provides an efficient and accurate
solution for UAV target detection tasks with significant
practical application value. The real-time performance
of the improved model on UAV edge computing devices
makes it widely applicable in scenarios such as public
interest litigation and environmental monitoring. Future
research directions may include further optimizing the
channel pruning strategy of the LKAConv module or in-
troducing dynamic sparse computation to further improve
recall rate and inference speed.
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YOLO11-LKACONV: ОПТИМИЗАЦИЯ
ОБНАРУЖЕНИЯ НЕСКОЛЬКИХ
ЦЕЛЕЙ НА СНИМКАХ БПЛА НА

ОСНОВЕ УЛУЧШЕННОЙ
АРХИТЕКТУРЫ YOLO
Ву Сяньи, Абламейко С. В.

В данной статье представлен YOLO11-LKAConv –
улучшенная модель, построенная на основе фреймвор-
ка YOLOv11, которая направлена на решение пробле-
мы низкой точности обнаружения маленьких целей на
аэрофотоизображениях БПЛА. Заменяя стандартные
сверточные слои на легковесные сверточные слои с
большим ядром и вниманием (LKA-Conv), модель ин-
тегрирует динамические крупные рецептивные поля и
механизмы канално-пространственного внимания, что
усиливает ее способность захватывать долгосрочные
контекстные признаки для маленьких целей. Экспе-
рименты на датасете VisDrone2019 показывают, что
улучшенная модель достигает mAP50-95 в 0,173, что
на 1,2% выше, чем у базовой YOLOv11n, причем
показатели точности (P) и mAP50 также улучшены, а
время вывода осталось почти неизменным. Результаты
указывают на то, что LKAConv благодаря своему
легкому дизайну с большим ядром эффективно ба-
лансирует точность обнаружения и вычислительную
эффективность, предлагая лучшее решение для задач
реального времени по обнаружению целей на БПЛА.
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