УДК 004.421.4

КОМПЬЮТЕРНАЯ ПРОГРАММА ДЛЯ ПРОГНОЗИРОВАНИЯ НАДЁЖНОСТИ ПО ПОСТЕПЕННЫМ ОТКАЗАМ БИПОЛЯРНЫХ ТРАНЗИСТОРОВ МЕТОДОМ ИМИТАЦИОННЫХ ВОЗДЕЙСТВИЙ

Говса М.В.

Белорусский государственный университет информатики и радиоэлектроники, г. Минск, Республика Беларусь

Научный руководитель: Боровиков С.М. – к. т. н., доцент, доцент кафедры ПИКС

Аннотация. Разработана компьютерная программа, предназначенная для получения по результатам обучающего эксперимента имитационной модели наработки биполярных транзисторов. Модель представляет функцию пересчёта заданной (интересующей) наработки на значение имитационного воздействия, в качестве которого рассматривается ток коллектора. Результат измерения электрического функционального параметра транзистора (конкретного экземпляра) при установлении тока коллектора, равного рассчитанному значению по имитационной модели, рассматривается в качестве прогноза электрического параметра для заданной наработки, что позволяет принять решение о возможном постепенном отказе экземпляра из числа, не участвовавших в обучающем эксперименте. Обеспечена возможность запуска компьютерной программы, написанной на языке программирования JavaScript, как обычной прикладной программы с использованием операционной системы Windows.

Ключевые слова: биполярные транзисторы, постепенные отказы, прогнозирование, имитационные воздействия.

Введение. Прикладная компьютерная программа разработана для автоматизации процедуры получения имитационной модели наработки биполярных транзисторов, используя результаты обучающего эксперимента, с сутью которого можно ознакомиться в [1, 2]. Модель представляет функцию пересчёта заданной (интересующей) наработки на значение имитационного воздействия, вызывающего в начальный момент времени у конкретного экземпляра (транзистора) примерно такое же изменение электрического функционального параметра, как и его заданная наработка. Это позволяет в начальный момент времени, используя имитационное воздействие, уровня рассчитанного по функции пересчёта, спрогнозировать значение электрического функционального параметра конкретного экземпляра, используя реакцию (ответ) его электрического параметра на имитационное воздействие и далее принять решение о надёжности экземпляра по постепенному отказу для заданной наработки [3].

Основная часть. В качестве языка программирования для написания программы был выбран *JavaScript*. На стадии проектирования компьютерной программы внедрены следующие библиотеки: библиотека *React*, которая позволяет удобно разрабатывать интерфейсы, благодаря компонентному подходу; библиотека *Redux Toolkit*, использующаяся для управления состоянием приложения и передачи данных между компонентами; библиотека *regression.js* для создания математических моделей; библиотека *chart.js* для создания графиков; библиотека *xlsx* для работы с таблицами *Excel*.

Для запуска JavaScript в виде приложения использована технология Electron.

Программа разделена на 4 функциональные страницы: «Ввод данных»; «Средние значения»; «Функция пересчёта»; «Прогнозирование ошибок».

На первой странице пользователь выбирает способ ввода данных: ручной ввод или импорт из файла Excel. При ручном вводе пользователь может настраивать таблицу (выбирать количество экземпляров для выборок, количество точек воздействующего имитационного фактора и др.). При выборе импорта файла из Excel, открывается проводник, после чего пользователь должен указать файл с расширением .xlsx, в котором содержится таблица с

Направление «Электронные системы и технологии»

исходными данными. Программа обрабатывает Excel-таблицы вида, приведённого в таблице 1, в которой в качестве имитационного воздействия (F) рассматривается ток коллектора (I_K) .

Таблица 1 – Формат таблицы *Excel*

Параметр У для экземпляров	Ток коллектора <i>I</i> , А				Наработка <i>t</i> , ч			
объединённой выборки	I_{K1}	I_{K2}	•••	I_{Kl}	t_1	<i>t</i> ₂	•••	t_k
Экземпляры обучающей выборки								
Параметр У 1-го экземпляра	$Y_1(I_{KI})$	$Y_1(I_{K2})$	•••	$Y_1(I_{Kl})$	$Y_1(t_l)$	$Y_1(t_2)$		$Y_1(t_k)$
Параметр У 2-го экземпляра	$Y_2(I_{KI})$	$Y_2(I_{K2})$		$Y_2(I_{Kl})$	$Y_2(t_1)$	$Y_2(t_2)$		$Y_2(t_k)$
		•••		•••		•••	•••	
Параметр <i>Y n</i> -го экземпляра	$Y_n(I_{KI})$	$Y_n(I_{K2})$		$Y_n(I_{Kl})$	$Y_n(t_1)$	$Y_n(t_2)$		$Y_n(t_k)$
Экземпляры контрольной выборки								
Параметр У 1-го экземпляра	$Y_1(I_{KI})$	$Y_1(I_{K2})$	•••	$Y_1(I_{Kl})$	$Y_1(t_1)$	$Y_1(t_2)$		$Y_1(t_k)$
Параметр У 2-го экземпляра	$Y_2(I_{KI})$	$Y_2(I_{K2})$		$Y_2(I_{Kl})$	$Y_2(t_1)$	$Y_2(t_2)$	•••	$Y_2(t_k)$
		•••	•••	•••			• • •	•••
Параметр <i>Ү т</i> -го экземпляра	$Y_m(I_{Kl})$	$Y_m(I_{K2})$		$Y_m(I_{Kl})$	$Y_m(t_1)$	$Y_m(t_2)$	•••	$Y_m(t_k)$

После ввода данных пользователь переходит на страницу «Средние значения», на которой получает таблицу со средними значениями Y-параметра для экземпляров обучающей выборки. Так же пользователь получает математические модели зависимостей Y = f(F) и Y = f(t), для которых приводятся графики.

При переходе на страницу «Функция пересчёта» пользователь получает математическую модель функции пересчёта F = f(t), а также значения $F_{\text{им}}$ и $Y(F_{\text{им}})$ в виде таблицы с графиком функции пересчёта.

На последней странице «Прогнозирование ошибок» пользователь задаёт, для каких значений наработки t необходимо определить среднюю ошибку прогнозирования:

$$\Delta_{\rm cp}(t) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} \left(\frac{Y_{\rm np} i(t) - Y_{\rm MCT} i(t)}{Y_{\rm MCT} i(t)} \right)^2},$$
 (1)

где m – объём контрольной выборки;

 $Y_{\text{пр }i}$ – прогнозное значение параметра, соответствующее i-му экземпляру контрольной выборки для заданной наработки t;

 $Y_{\text{ист }i}$ — истинное значение параметра i-го экземпляра контрольной выборки для заданной наработки t.

После нажатия кнопки «подсчёт ошибки прогнозирования» пользователь получает таблицу, показанную на рисунке 1.

t, ч	ошибка				
9800	47%				
12800	2%				
17280	2%				

Ввести другие данные

Рисунок 1 – Таблица с рассчитанными средними ошибками прогнозирования

61-я научная конференция аспирантов, магистрантов и студентов

Средняя ошибка прогнозирования, определяемая по (1), удовлетворяет условиям, если $\Delta_{\rm cp} < 10\%$ [1, 2] (в таблице подсвечена зелёным цветом), в противном случае она подсвечивается красным цветом и под таблицей появляется кнопка «Ввести другие данные», при нажатии на которую пользователь попадёт на первую страницу «ввод данных». Блоксхема алгоритма компьютерной программы показана на рисунке 2.

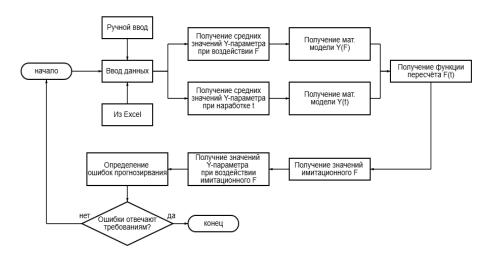


Рисунок 2 – Блок-схема алгоритма компьютерной программы

 $\it 3$ аключение. Разработана прикладная компьютерная программа для получения имитационной модели биполярных транзисторов по результатам обучающего эксперимента. Модель представляет функцию пересчёта заданной наработки на уровень имитационного воздействия $\it F$, в качестве которого рассматривается ток коллектора $\it I_K$.

Список литературы

- 1. Прогнозирование надёжности изделий электронной техники / С.М. Боровиков, И.Н.Цырельчук, Е.Н. Шнейдеров [и др.]. Минск: МГВРК. 2010 308 с.
- 2. Боровиков, С.М. Статистическое прогнозирование для отбраковки потенциально ненадёжных изделий электронной техники: монография / С.М. Боровиков. М.: Новое знание, 2013. 343 с.
- 3. Боровиков, С.М. Методика индивидуального прогнозирования постепенных отказов изделий электронной техники методом имитационных воздействий / С.М. Боровиков // Доклады БГУИР. 2013. —№6(76). С. 12–18.

UDC 004.421.4

COMPUTER PROGRAM FOR PREDICTING GRADUAL FAILURES OF BIPOLAR TRANSISTORS BY THE METHOD OF SIMULATION EFFECTS

Govsa M.V.

Belarusian State University of Informatics and Radioelectronics, Minsk, Republic of Belarus

Borovikov S.M. – Cand. of Sci., associate professor, associate professor of the department of ICSD

Annotation. A computer program has been developed to obtain a simulation model of bipolar transistor operating time based on the results of a training experiment. The model represents a function for recalculating a given operating time by the value of a simulation effect, which is considered to be the collector current. The result of measuring the electrical functional parameter of a transistor when establishing a collector current equal to the value calculated by the simulation model is considered as a forecast of the electrical parameter for a given operating time, which allows making a decision on a possible gradual failure of an instance that did not participate in the training experiment. The ability to run a computer program written in the JavaScript programming language as a regular application program using the Windows operating system is provided.

Keywords: bipolar transistors, gradual failures, prediction, simulation effects.