АУДИО В ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ

Авраменко Ю.А., студент, Семенова В.С., студент

Белорусский государственный университет информатики и радиоэлектроники г. Минск, Республика Беларусь

Рябычина О.П. – канд. техн. наук, доцент каф. ИРТ

Данная работа посвящена исследованию методов пространственного звука и его влияния на погружение игрока в виртуальную реальность. Описаны основные технологии реализации пространственного звука и их применение.

В последние годы виртуальная реальность (VR) быстро развивается и находит применение в самых разных понятиях, от компьютерных игр и киноиндустрии до медицины, архитектуры и образования. Развитие VR напрямую связано с совершенствованием аудиотехнологий, поскольку реалистичный звук является каскадной частью эффекта полного погружения. Именно звуковое сопровождение позволяет пользователю ощущать себя частью виртуального пространства, усиливая глубину, расстояния и движения объектов вокруг него. Без звука даже созданные визуальные миры могут оказаться качественно искусственными и неполноценными.

Технологии аудио виртуальной реальности играют важную роль в создании эффекта присутствия, который является основной целью виртуальной реальности. Современные методы обработки звука позволяют не только создавать трехмерное звуковое окружение, но и модифицировать его в зависимости от движений и действий пользователя. Это происходит благодаря использованию пространственного звука, который кардинально отличается от традиционного объемного звучания. В отличие от классического многоканального аудио (объемного звука), где звук воспроизводится на фиксированных площадках, пространственный звук размещает каждый источник в трехмерном пространстве и позволяет ему свободно перемещаться.

Виртуальная аудиосреда в первую очередь рассчитывает, как должна озвучивать каждый объект в зависимости от расположения слушателя, угла его обзора и даже акустики окружающего пространства. Например, если в VR-приложении рядом с пользователем перемещается объект, звук движения будет плавно изменяться в зависимости от направления и расстояния.

Важно не путать пространственный звук с просто «объемным», который по-английски называют surround sound. Это технологии двух разных поколений, которые различаются не только эффектом, но принципом создания и воспроизведения. Объемный звук окружает слушателя в одной плоскости и не может реалистично передавать движение объектов по вертикали [1]. Однако такой подход создает эффект окружения, но не может точно обеспечить движение объектов сверху вниз или назад. В отличие от него, пространственный звук использует алгоритмы динамической обработки, имитирующие восприятие звука человеком.

Для достижения качественного пространственного звучания в виртуальной реальности применяются различные технологии, которые обладают своими особенностями. Эти технологии включают бинауральную запись, волновую фильтрацию (HRTF), амбисонику и объектно-ориентированное аудио. каждый из них выполняет свою функцию в построении реалистичного аудиопространства, обеспечивая максимальное погружение пользователя в виртуальный мир. Подробное сравнение данных технологий представлено в таблице 1.

Таблица 1 – Технологии аудио виртуальной реальности

Название технологии	Применение	Примеры устройств
3D Audio	Создание пространственного звука для immersion виртуальной реальности	Oculus Rift, HTC Vive
Binaural Audio	Симуляция естественного слухового восприятия	Sony PlayStation VR, Google Cardboard
HRTF (Head-Related Transfer Function)	Моделирование звуков, исходящих из конкретных точек вокруг головы	Samsung Gear VR, Valve Index
Room-scale Audio	Расширение звуковой сцены в соответствии с перемещением пользователя в пространстве	PlayStation VR2, Meta Quest 2
Volumetric Sound	Создание объемного звука для передачи глубокого вовлечения в виртуальной реальности	Microsoft HoloLens, Magic Leap

Одной из самых популярных является бинауральное звучание, которое использует два микрофона для записи звука с двух различных точек, воссоздавая естественную звуковую сцену.

Еще одной инновационной технологией аудио виртуальной реальности является акустическая моделирование. Эта технология позволяет создавать звуковые эффекты, которые адаптируются к изменениям в окружении и позволяют пользователю чувствовать себя в центре событий.

Другой важной технологией аудио виртуальной реальности является реверберация звука. Реверберация позволяет создавать отражения звука от различных поверхностей, что улучшает реалистичность звучания и создает более глубокий эффект присутствия [2].

Разберем реализацию и влияние звукового дизайна на примере VR игры от PlayStation — Ocean Descent. В Ocean Descent аудиодизайна является одним из основных элементов нарратива. Звуки воспроизводится из разных источников, создавая эффект полного погружения: пузырьки поднимаются сверху, рыбы проплывают сбоку, а скрежет металла на камеру доносится со всех сторон.

Особое внимание уделяется физике подводной акустики. Вода значительно искажает звуки, приглушая высокие частоты, поэтому в аудиодвижках игры используется низкочастотная фильтрация [3]. Реверберация также играет решающую роль: чем глубже погружается игрок, тем более «размытым» становится звук, создавая эффект плотной водной среды. В условиях жизни под водой звук распространяется быстрее, чем в воздухе, в игре этот эффект имитируется эквалайзерами и фильтрами, чем физической симуляцией [4].

Звуковая среда Ocean Descent динамична и адаптирована. Игра подстраивает громкость и частотные характеристики в зависимости от ситуации. Например, при появлении акулы приглушаются фоновые шумы, тревожная музыка и звуки агрессивных движений, привлекающие внимание игрока. Важно и то, как звуки сменяются: нет резких переходов между аудиосценами, плавное изменение звукового окружения, сопровождающее движение игрока в воде.

Современные технологии пространственного звука играют решающую роль в создании реалистичного и захватывающего опыта реальности. Использование бинаурального рендеринга, волновой фильтрации и объектно-ориентированного аудиоэффекта обеспечивает высокую степень иммерсивности, делая виртуальные миры не просто визуально-правдоподобными, но и звуково насыщенными. Эти технологии адаптируют звуковое окружение в зависимости от взглядов пользователя, его движений и виртуального пространства, что особенно важно для VR-игр и симуляций.

Анализ звукового сопровождения в PlayStation VR: The Deep показывает, как может быть реализован звук в VR. Пространственный звук в этой игре создает эффект погружения, передавая не только местоположение звуковых источников, но и особенности подводной акустики. Использование реверберации, фильтрации высоких частот и динамической стабилизации внешнего вида реализма помогает игроку ощущать себя внутри капсулы. Бинауральный звук и 3D-аудио играют ключевую роль в создании напряженных моментов, таких как приближение акулы, когда правильное звуковое позиционирование становится крайним условием для восприятия сцены.

Таким образом, звук в реальности реальности – это не просто дополнение к визуальному, а один из основных элементов, формирующих ощущение присутствия. Успешная реализация аудиодизайна, как в The Deep, сегодня важно учитывать акустические особенности виртуального мира и подзвучать звуковые технологии в особых условиях симуляции. Развитие и совершенствование технологии пространственного звука продолжает виртуальную реальность всё более реалистичной, позволяя пользователю погрузиться в цифровые миры.

Список использованных источников:

- 1.Объяснение объемного звука [Электронный ресурс] Режим доступа: https://t-j.ru/surround-sound-explainer/#one. Дата доступа: 13.02.2025.
- 2. Технологии аудио в виртуальной реальности [Электронный ресурс] Режим доступа: https://vr-app.ru/blog/texnologii-audio-virtualnoi-realnosti/. Дата доступа: 13.02.2025.
- 3.Фильтрация звука в Unity [Электронный ресурс] Режим доступа: https://docs.unity3d.com/ru/530/Manual/class-AudioLowPassFilter.html . Дата доступа: 05.03.2025.
- 4. Обработка звука: электрические материалы [Электронный ресурс] Режим доступа: https://portal.tpu.ru/SHARED/a/AD/Education/Materials/MS_sound_processing.pdf . Дата доступа: 05.03.2025.