ТОНКОПЛЕНОЧНЫЙ КОНДЕНСАТОР НА ОСНОВЕ ТИТАНАТА БАРИЯ, СФОРМИРОВАННОГО ЗОЛЬ—ГЕЛЬ МЕТОДОМ НА ТИТАНЕ

Махмутов Р.Т. Малышев А.Д., Лашковская Е.И., Меледин К.И.

Белорусский государственный университет информатики и радиоэлектроники г. Минск, Республика Беларусь

Н. В. Гапоненко – доктор. физ.-мат. наук

Аннотация. На основе многослойной золь-гель пленки титаната бария с использованием титановой подложки изготовлены два образца лабораторного тонкоплёночного конденсатора. Приведены для первого образца результаты измерения емкости и тангенса угла диэлектрических потерь сформированного конденсатора в диапазоне частот 0,2 кГц – 200 кГц. Для данного диапазона частот рассчитана диэлектрическая проницаемость титаната бария, изменяющаяся от 136 до 43. Для второго образца приведены значения пробивного напряжения 14 В.

Ключевые слова. $BaTiO_3$, золь-гель метод, емкость пленочного конденсатора, тангенс угла диэлектрических потерь, пробивное напряжение.

Методика эксперимента.

Были изготовлены два экспериментальных образца с отличием в методике термической обработки после нанесения слоев плёнки. Для изготовления конденсаторной структуры использовалась подложка из титана размером 15 × 15 мм. Золь оксида алюминия получали на основе изопропоксида алюминия, изопропилового спирта, воды и азотной кислоты. Четыре слоя ксерогеля оксида алюминия формировали последовательно центрифугированием золя со скоростью 2000 об/мин, с последующей сушкой каждого слоя при 200 °C в течение 10 минут и отжигом на воздухе при 450 °C в течение 30 минут. Затем наносили золь титаната бария. Золь титаната бария синтезировали на основе изопропоксида титана Ті(ОС3H7)4, ацетата бария (Ва(СН3СОО)2), ацетилацетона (CH₃-CO-CH₂-CO-CH₃) и уксусной кислоты (CH₃COOH) [1]. Пять слоёв ксерогеля ВаТіО₃ было сформировано центрифугированием со скоростью 2900 об/мин с последующей сушкой каждого слоя при 200 °C в течение 10 мин и отжигом на воздухе при 450 °C в течение 30 мин после сушки последнего слоя для первого образца. Для второго образца отжиг производился после нанесения всех слоев. Окончательная термообработка проводилась при температуре 700 °C. Затем методом ионнолучевого распыления на первый образец было произведено напыление через маску контактов из никеля квадратной формы размером около 1.165 мм [2]. Схема конденсаторной структуры с никелевыми контактами представлена на рисунке 1.

Результаты и обсуждение.

Значения Емкости (С) и тангенса угла диэлектрических потерь (tgδ) получены для первого образца с использованием измерителя иммитанса E7-20 в диапазоне частот 200 Гц - 200 кГц. Рассчитана среднеквадратичная погрешность по формуле (1) и приведены результаты в виде таблицы 1.

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\mathbf{X}_i - \widetilde{\mathbf{X}})^2}$$
 (1)

где x_i – i-й элемент выборки измеренной величины, n–объем выборки, \tilde{x} –среднее арифметическое выборки.

При переходе от низкочастотного диапазона к высокочастотному значение тангенса угла диэлектрических потерь уменьшается на порядок и составляет 0.03 – 0.04 для диапазона частот от 50 кГц до 200 кГц (рис. 1, таблица 1).

Рисунок 1 – Распределение емкости (а) и тангенса угла диэлектрических потерь (б) для измерений при 100 Гц в 32 точках конденсаторной структуры

Таблица 1 – Характеристики полученных конденсаторных структур

Частота, f, кГц	Среднее	Среднеквадратичное	Среднее	Среднеквадратичное
1001010, 1, 10 4	значение	отклонение емкости,	значение	отклонение тангенса
	ёмкости, пФ	πΦ, σ _C	тангенса угла	угла диэлектрических
	,	, , , ,	диэлектрических	потерь, $\sigma_{\mathrm{tg}\delta}$
			потерь, tgδ	ı / tgo
0.2	748	177	0,37	0.19
2	633	148	0.10	0.041
20	589	142	0.05	0.02
100	570	140	0.03	0.012
200	563	138	0.04	0.032

Для исследования пробивных напряжений использовался источник постоянного напряжения. Напряжение подавалось между медным контактом, прижатым к пленке, и титановой подложкой в качестве второго контакта. Напряжение пробоя фиксировалось при появлении тока через пленку. При толщине пленки титанта бария с 330 нм пробивная напряжённость достигает 42 В/мкм. Удельная емкость 41-55 Ф/см 2 в диапазоне частот 200 Гц - 200 кГц.

Приведенные результаты измерения емкости относятся к двум последовательно соединенным конденсаторам из ксерогеля оксида алюминия и ксерогеля титаната бария. Диэлектрическая проницаемость оксида алюминия, полученного золь-гель методом, составляет около 8 при удельной емкости тонкопленочного конденсатора на его основе от 80 до 60 нФ/см² для диапазона частот от 100 Гц до 1 МГц [3]. С учетом этих данных и результатов измерений, используя формулу для расчета эквивалентной емкости для последовательного соединения двух конденсаторов (2) и формулу для емкости плоского конденсатора (3), было определено, что диэлектрическая проницаемость пленки ксерогеля титаната бария в полученном нами конденсаторе изменяется от 136 для 0,2 кГц до 43 для 200 кГц при значении диэлектрической проницаемости оксида алюминия ϵ = 8:

$$C_{BatlO_3} = \frac{C_{Al_2O_3} * C}{C_{Al_2O_3} - C}$$
 (2)

$$C_{A_{\underline{b}}O_{3}} = \frac{\varepsilon_{0}\varepsilon S}{d}$$
 (3)

где С –измеренная эквивалентная емкость для двух последовательных конденсаторов из оксида алюминия и титаната бария, $C_{Al_2O_3}$ – рассчитанное значение емкости для пленки оксида алюминия со значением ε = 8, ε 0 = 8.85×10-12 Ф/м – электрическая постоянная, – диэлектрическая проницаемость оксида алюминия, S – площадь контакта, d – толщина пленки оксида алюминия.

Заключение

Разработана лабораторная технология получения золей для формирования пленок ксерогелей оксида алюминия и титаната бария общей толщиной около 440 нм и изготовления конденсаторных структур на их основе на подложке титана. В полученной структуре роль нижнего электрода играет сама подложка из титана и таким образом, в отличие от структур на кремнии, устраняется дополнительная операция напыления нижнего металлического контакта. Сформированная конденсаторная структура в диапазоне частот 200 Γ ц – 200 к Γ ц имеет емкость 560-750 п Φ и удельную емкость 41-55 н Φ /см². Пробивная напряжённость достигает 42 В/мкм.

Кроме того, было установлено, что титанат бария легко травится при комнатной температуре в буферном травителе на основе плавиковой кислоты и фтористого аммония, что даёт возможность формировать структуры желаемой формы и морфологии.

Полученные результаты свидетельствуют о перспективе предложенного нами метода формирования тонкопленочного на титане, принимая во внимание низкую себестоимость изготовления структур, а также высокую прочность и теплопроводность подложек из титана.

Список использованных источников:

1.Enhanced Luminescence of Europium in Sol-Gel Derived BaTiO3/SiO2 Multilayer Cavity Structure / N.V. Gaponenko, P.A. Kholov, T.F. Raichenok, S.Ya. Prislopski. // Optical Materials. – 2019. – Vol. 96C. – P. 109265 (5 pages).

2.Тонкопленочный конденсатор на основе титаната бария, сформированного золь—гель методом на титане / Н. В. Гапоненко, Р.Т. Махмутов, Е.И. Лашковская, Е.В. Телеш, К.В. Шустикова, В.А. Ковалев, Ю. В. Радюш, Д.В.Жигулин3, В.А.Пилипенко, А.В.Семченко// ПФМТ. — 2024. — №3 (60). — Р. 7—12.

3. Sol-Gel Processed High-k Aluminum Oxide Dielectric Films for Fully Solution-Processed Low- Voltage Thin-Film Transistors / Wenwen Xia, Guodong Xia, Guangsheng Tu, Xin, Dong, Sumei Wang, Rui Liu // Ceramics International. — 2018. — V. 44(8). — P. 9125-9131