ИССЛЕДОВАНИЕ ФНФ КОЛЬЦЕВОГО ОСЦИЛЛЯТОРА КАК ИСТОЧНИКА СЛУЧАЙНОСТИ

Бурко Л.А.

Белорусский государственный университет информатики и радиоэлектроники г. Минск, Республика Беларусь

Иванюк А.А. – д-р техн. наук, профессор

Данная работа описывает как физически неклонируемая функция (ФНФ) на базе кольцевого осциллятора (КО) может быть источником случайных чисел, а также манипуляции с дискретным нормальным распределением для выявления зависимостей между характеристиками распределения, и оценки некоторых параметров. Использовалась библиотека numpy языка Python.

Одним из способом получения как случайных чисел, так и уникального идентификатора является реализация физически неклонируемой функции на базе кольцевого осциллятора (ФНФ КО) [1]. Одно из достоинств этого метода – простота реализуемой схемы, рисунок 1. Идея данного метода уже была описана в предыдущем исследовании [2]. Каждый ФНФ КО, расположенный в различных местах ПЛИС, генерирует сигнал с уникальной частотой (периодом). В качестве количественной меры используется число тактовых сигналов, регистрируемых счетчиком в фиксированном временном окне. R_i — значение

двоичного счетчика в i-ом измерении. При переводе значений R_i в бинарный вид, где $i \in [0,m-1]$, m количество проведенных измерений, предполагается разделение между стабильной (сигнал) и нестабильной (шум) частями. Наша задача — оценить предполагаемые границы шума (на рисунке 1 — биты n) и найти зависимости между характеристиками собранных с ФНФ КО данных.

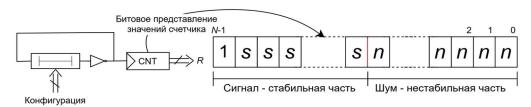


Рисунок 1 – Схема ФНФ КО и получаемые значения

Пусть $M_{\phi^{n\phi}} = \{R_0, R_1, R_2, ..., R_{m-1}\}$, опытным путем было выяснено, что при переводе значений R_i в бинарный вид, каждый разряд $R_i^j \in \{0,1\}, j \in [0,N-1]$, где $N = \left\lceil \log_2(\max(M_{\phi^{n\phi}})) \right\rceil$, будет иметь определенную вероятность искажения P_j на наборе из m элементов:

$$p_{j} = \max\{p_{j0}, p_{j1}\}, \tag{1}$$

$$p_{j0} = rac{1}{m} \sum_{i=0}^{m-1} R_i^j$$
 , $p_{j1} = 1 - p_{j0}$.

Как было установлено экспериментальным путем, значения R_i представляют собой статистические шаблоны. R_i^j можно условно поделить на три группы $A(p_j=1)$, $B(0,5+\varepsilon < p_j < 1)$, где $\varepsilon < 0,01$, и $C(p_j=0,5+\varepsilon)$, размерами соответственно a,b,c , где a+b+c=N , $R_i=[A_i,B_i,C_i]$. По мажоритарному принципу группу B можно привести к группе A .

Была выдвинута гипотеза, что при достаточно больших m множество $^{M_{\phi n \phi}}$ будет образовывать дискретное нормальное распределение. Для подтверждения данной гипотезы была построена программная математическая модель схемы ФНФ КО со счетчиком на базе библиотеки питру языка Python, которая генерирует дискретную выборку $^{M_{\text{мод}}}$ заданного размера с фиксированными значениями математического ожидания $^{\mu}$ и дисперсии $^{\sigma}$. При сравнении p между счетчиком и математической моделью, была получена погрешность $^{\gamma}$ < 0,001 , что говорит о схожести полученных значений счетчика с нормальным распределением.

Была сформирована гипотеза об оценке размерности нестабильной группы $\,^{C}\,$, которая основана на разнице значений min и max:

$$c_{meop_1} = \lceil \log_2(\max(M_{MOO}) - \min(M_{MOO})) \rceil$$
(2)

Несмотря на сходство между теоретическими и эксперементальными p_j , $\max(M_{_{MO\partial}}) - \min(M_{_{MO\partial}}) < \max(M_{_{\phi n \phi}}) - \min(M_{_{\phi n \phi}})$, поэтому данная характеристика для значений ФНФ будет менее точной, чем на основании σ .

В теоретическом нормальном распределении 99,7% значений принадлежат диапазону $(-3\sigma;3\sigma)$ [3]. Была выдвинута другая гипотеза, что шум можно оценить значением $^{\mathcal{C}_{meop}}_{-2}$, основываясь на среднеквадратичном отклонении:

$$c_{meop_2} = \lceil \log_2(6\sigma) \rceil \tag{3}$$

При проведении различных экспериментов с заданными μ и σ^2 , было показано, что $c < c_{{\it meop}_2} < c_{{\it meop}_1}$.

Тем самым, можно оценить размер стабильной части значением $(a+b)_{meop}$. И, как следствие, количество бит $(a+b)_{meop}$ можно считать уникальным идентификатором, который длиннее, чем a:

$$a+b > (a+b)_{meop} = N - \lceil \log_2(6\sigma) \rceil > a$$
(4)

Параметры μ и σ^2 влияют на размерности a,b,c . Для исследования границ группы $p_j=0,5+\varepsilon$, было взято $\mu=2^{K+1}+2^K$, $1<3\sigma^2<2^{K-2}$, где $\mu^2,\sigma^2,K\in\square$. В таком случае, $p_{K-1}=1$, $p_k=0,5$, $k\in[0,K-2]$. Это объясняется симметричностью нормального распределения.

Для приведения группы $B_{{\scriptscriptstyle MO}{\scriptscriptstyle \partial}}$ к сильно нестабильной части, необходимо $\mu_{{\scriptscriptstyle MO}{\scriptscriptstyle \partial}}=[A_{{\scriptscriptstyle MO}{\scriptscriptstyle \partial}},B_{{\scriptscriptstyle MO}{\scriptscriptstyle \partial}},C_{{\scriptscriptstyle MO}{\scriptscriptstyle \partial}}]\in \square$ преобразовать в значение $\mu^*=[A_{{\scriptscriptstyle MO}{\scriptscriptstyle \partial}},[10...0]_{b_{{\scriptscriptstyle MO}{\scriptscriptstyle \partial}}},[0...0]_{c_{{\scriptscriptstyle MO}{\scriptscriptstyle \partial}}}]\in \square$. Для этого, от каждого $R_i\in M_{{\scriptscriptstyle MO}{\scriptscriptstyle \partial}}$ необходимо вычесть $\Delta=\mu_{{\scriptscriptstyle MO}{\scriptscriptstyle \partial}}-\mu^*$. Тем самым будут получены b+c равномерно распределенных разрядов. Как показано на рисунке 2, слева — отображены значения p_{j1} , справа — p_{j} .

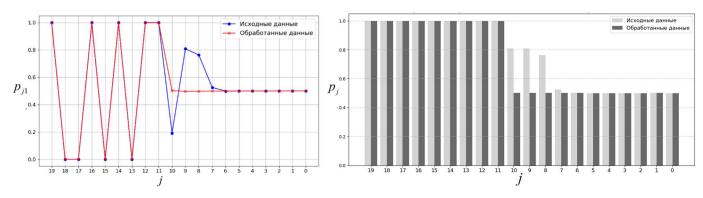


Рисунок 2 – Преобразование распределения

В результате, в зависимости от имеющейся задачи, можно получить как источник случайных чисел с b+c равномерно распределенными каналами, так и уникальный идентификатор с длиной больше, чем полная стабильная группа A. Для обеспечения большей случайности к сильно нестабильной части можно применить различные алгоритмы и методы постобработки. Данное исследование показывает, что

61-я научная конференция аспирантов, магистрантов и студентов БГУИР

природа ФНФ КО действительно случайна, и значения счетчика, изменяемые из-за случайных шумов во время работы КО, образуют нормальное распределение.

Список использованных источников:

- 1. Иванюк, А. А. Применение конфигурируемых генераторов импульсов для идентификации ПЛИС / А. А. Иванюк // Информатика.№4(32), 2011. С. 113–123.
- 2. Бурко, Л. А. Исследование поведения кольцевого осциллятора / Л. А. Бурко, А. А. Иванюк // Информационные технологии и системы 2024 (ИТС 2024) = Information Technologies and Systems 2024 (ITS 2024) : материалы международной научной конференции, Минск, 20 ноября 2024 г. / Белорусский государственный университет информатики и радиоэлектроники; редкол. : Л. Ю. Шилин [и др.]. – Минск, 2024. – С. 81–82.

 3. Справочник по теории вероятностей и математической статистике / Королюк В. С. [и др.]. – Москва : Наука, 1985.