52. ВЫБОР ИНВЕСТИЦИОННОГО ПОРТФЕЛЯ ЦЕННЫХ БУМАГ НА РЫНКЕ ІТ-КОМПАНИЙ С ПОМОЩЬЮ ЭКОНОМЕТРИЧЕСКОГО МОДЕЛИРОВАНИЯ

Панизник А.С., студент гр. 272303

Белорусский государственный университет информатики и радиоэлектроники г. Минск, Республика Беларусь

Хацкевич Г.А. – доктор экономических наук, профессоркаф каф. ЭИ

Аннотация. Данная научная работа представляет собой исследование процесса выбора инвестиционного портфеля ценных бумаг IT-компаний с использованием методов эконометрического моделирования. Для оценки зависимости доходностей активов применен корреляционный анализ, а оптимизация портфеля выполнена с использованием модели Марковица, минимизирующей риск при заданном уровне доходности. Полученные результаты позволяют инвесторам принимать обоснованные решения, основанные на статистических данных и математических моделях.

Ключевые слова. Инвестиционный портфель, эконометрическое моделирование, оптимизация портфеля, модель Марковица, IT-компании, регрессионный анализ, корреляционный анализ, ковариационная матрица, риск и доходность.

Объектом и целью данного научного исследования является выбор инвестиционного портфеля ценных бумаг на рынке IT-компаний с помощью эконометрического моделирования.

Для достижения поставленной цели необходимо решить перечень определённых задач. Они включают в себя сбор и подготовку данных для исследования, анализ зависимости между активами, построение и оценку регрессионной модели, оптимизацию инвестиционного портфеля и оценку его эффективности.

Основные положения портфельной теории были сформулированы Гарри Марковицем при подготовке им докторской диссертации в 1950—1951 годах. Рождением же портфельной теории Марковица считается опубликованная в «Финансовом журнале» в 1952 году статья «Выбор портфеля». В ней он впервые предложил математическую модель формирования оптимального портфеля и привёл методы построения портфелей при определённых условиях. Модель Марковица предполагает, что имеются исторические данные по активу, позволяющие высчитать показатели доходности и риска, инвестор заинтересован в том, чтобы максимизировать доходность и минимизировать риск, а сравнение портфелей основывается исключительно на соотношении параметров доходности и риска.

Уильям Шарп вошёл в историю в первую очередь как создатель модели ценообразования активов (Capital Asset Pricing Model — CAPM). Это способ оценки доходности и рисков финансового актива, который инвестор собирается добавить к уже сбалансированному и диверсифицированному портфелю. Ещё его называют «модель оценки долгосрочных активов. CAPM построена на теории портфельного выбора Гарри Марковица.

Существуют различные методы выбора портфеля ценных бумаг. Первый из них гласит: «Никогда не клади все яйца в одну корзину». Эта стратегия рекомендует инвестору не приобретать ценные бумаги только одного вида. Необходимо соблюдать диверсификацию вклада. Различают горизонтальную (между компаниями одной отрасли) и вертикальную (между разными отраслями) диверсификацию. Если данный принцип нарушается, вклад может иметь низкую эффективность либо высокий риск. Ещё одним примером является метод балансировки портфеля. В этом случае инвестор периодически пересматривает состав портфеля и корректирует доли активов, чтобы поддержать оптимальный уровень риска и доходности. Метод пассивного инвестирования подразумевает покупку инвестором активов и владение ими в течение длительного времени, несмотря на краткосрочные колебания.

Доходность — это процентное изменение стоимости инвестиции за определенный период. Она показывает, насколько выгодным было вложение:

$$R_{i}(t) = \frac{P_{i}(t+1) - P_{i}(t) + D_{i}(t)}{P_{i}(t)}$$
(1),

где $P_i(t)$ – цена і-й ЦБ в начале периода t; $D_i(t)$ – дивиденды по і-ой ЦБ за период t [1]. Риск – это степень неопределенности доходности, измеряемая через волатильность:

$$S_i = \sqrt{\frac{1}{T-1} \sum_{t=1}^{T} (R_i(t) - m_i)^2}$$
 (2),

где T – количество периодов; m_i – ожидаемая эффективность [6].

Инвестору целесообразно вложить свои деньги не в один вид ценных бумаг, а в несколько, образуя при этом портфель ЦБ. Каждая ценная бумага имеет свою долю в портфеле (x_i) , тогда ожидаемая эффективность портфеля m_n :

$$m_p = \sum_{i=1}^n x_i m_i \tag{3},$$

Существенный вывод Д. Тобина гласит: оптимальная структура комбинированного портфеля не зависит от склонности инвестора к риску. Это следует из того факта, что невзирая на склонность инвесторов к риску, все они будут диверсифицировать рисковую часть их портфелей. В классической экономике предполагается, что инвестор – рациональный агент, который стремится максимизировать доходность при минимальном риске, оценивает ожидаемую доходность и волатильность активов, использует портфельную теорию Марковица для диверсификации м предпочитает более ликвидные и надёжные активы.

Поведение инвестора зависит от его толерантности к риску. Некоторые инвесторы предпочитают минимальный риск (безрисковые стратегии), другие готовы принимать более высокий риск ради потенциально высокой доходности (рисковые стратегии), а третьи стремятся к сбалансированным решениям. Для достижения оптимальных результатов важно понять, какой риск готов принять инвестор, и построить стратегию, соответствующую его финансовым целям, срокам инвестирования и предпочтениям по ликвидности.

В данном исследовании рассматриваются акции четырёх крупных IT-компаний — Microsoft, Apple, Tesla и Adobe. для выбора инвестиционного портфеля ценных бумаг с учётом максимизации доходности на определённом уровне риска. В рамках данного исследования используется эконометрическое моделирование для оценки различных рисков и доходностей, связанных с инвестированием в акции [2][3].

Используются данные о стоимости акций за последние пятнадцать лет на международном ITрынке. Рассмотрим пример за последние пять лет (таблица 1).

Таблица 1 – Обзор исходных данных

	Microsoft Price	Apple Price	Tesla Price	Adobe Price
01.01.2025	415.06	236.00	404.60	437.45
12.01.2024	421.50	250.42	403.84	444.68
12.01.2023	376.04	192.53	248.48	596.60
12.01.2022	239.82	129.93	123.18	336.53
12.01.2021	336.32	177.57	352.26	567.06

На рисунке 1 представлен график, по которому можно сделать вывод о том, что акции Tesla имеют более резкие колебания во времени. Линии Microsoft и Apple демонстрируют умеренные и схожие колебания. Они не так сильно реагируют на внешние события, как Tesla, что делает их более надёжными с точки зрения стабильности доходности.

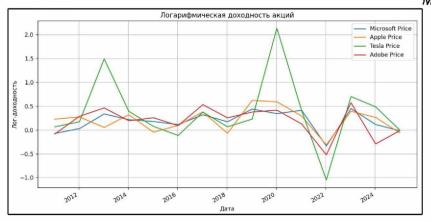


Рисунок 1 – График логарифмической доходности акций

При построении матрицы корреляции между акциями, значения варьируются от 0,56 до 0,82. Эти значения получены ввиду того, что акции компаний находятся в одной сфере, следовательно, их изменение имеет схожее поведение. На данном этапе можно сделать вывод о том, что портфель с данными акциями будет иметь высокий риск, так как при росте или падении одной акции, с высокой вероятностью аналогичную динамику покажут и остальные. Это снижает уровень диверсификации и усиливает общий риск портфеля [4].

При проведении регрессионного анализа, где зависимой переменной была цена акции Microsoft, было получено значение R-squared = 0.767, что означает, что модель объясняет 76,7% дисперсии цен Microsoft, что является хорошим результатом. Однако, скорректированное R- squared (Adj. R-squared = 0.704) указывает на то, что значимость некоторых предикторов может быть ограничена. Например, переменные, связанные с ценами акций Apple (p = 0.131) и Tesla (p = 0.510), имеют высокие р-значения, что свидетельствует о том, что их влияние на цену акции Microsoft не является статистически значимым при данном уровне значимости. В то же время, цена акции Adobe показала статистическую значимость (p = 0.015), что указывает на её более важную роль в объяснении динамики цен Microsoft. Эти результаты подтверждают вывод о том, что корреляции между акциями компаний в одной сфере могут быть высокими, однако некоторые активы оказывают слабое влияние на изменения цен других активов, что подчёркивает важность диверсификации и включения в портфель менее коррелированных активов для повышения его устойчивости и уменьшения риска. Чем больше ожидаемая эффективность, тем больше риск.

Оптимизационная задача - максимизация доходности:

$$max \mu^T x$$
 (4),

где n — число акций, x_i — доли акций, x — вектор весов активов, μ — вектор ожидаемых доходностей, {x: x≥0, $\sum_{i=1}^{n} x_i$ = 1} [5].

Исходя из этого оптимальные доли акций в инвестиционном портфеле составляют: Microsoft 53.92%, Apple 45.53%, Tesla 0.54%, Adobe 0%.

Текущий портфель – концентрированная инвестиция в акции Microsoft и Apple, что может быть оправдано высокой ожидаемой доходностью этих активов. Однако из-за малой диверсификации и почти нулевых долей в Tesla и Adobe, такой портфель может быть подвержен большему риску, если динамика этих двух основных акций изменится. Для оценки риска акций в выбранном в сравнении с рынком ценных бумаг рассмотрим три биржи в IT-секторе.

$$R_i = \alpha + \beta * R_m + \varepsilon \tag{5},$$

где R_i – доходность акции, R_m – доходность рыночного индекса, α – доходность, не связанная с движением рынка, β – бета-коэффициент, измеряющий рыночный риск, ε – случайная ошибка [6].

Коэффициент бета (β) – коэффициент пропорциональности. Он измеряет систематический риск акции или портфеля относительно всего рынка. Он показывает, как актив будет двигаться в зависимости от изменений на рынке в целом. Если бета больше 1, это означает, что актив обладает большей волатильностью, чем рынок; если бета меньше 1, актив обладает меньшей волатильностью, чем рынок.

Для оценки риска акций в выбранном в сравнении с рынком ценных бумаг рассмотрим три биржи в IT-секторе.

61-я Научная Конференция Аспирантов, Магистрантов и Студентов БГУИР, Минск 2025

Проведённый анализ бета-коэффициентов показал, что акции Tesla обладают наибольшей волатильностью в портфеле (β =1.79–1.87), что свидетельствует о высокой чувствительности к колебаниям рынка. Microsoft демонстрирует наименьшую волатильность (β =1.05–1.12), а Apple (β =1.15–1.23) и Adobe (β =1.39–1.45) занимают промежуточные позиции, что типично для IT-сектора. Различия β при сравнении с индексами NASDAQ, NYSE, S&P 500 и Russell 2000 оказались минимальными (до 0.1), что подтверждает надёжность полученных оценок. Средневзвешенная β портфеля около 1.38, что указывает на повышенный риск.

На основании анализа можно сделать вывод, что выбранный инвестиционный портфель ориентирован на максимизацию доходности. Это подтверждается высоким средневзвешенным бета, наличием в составе акций компаний с высокой волатильностью, таких как Tesla и Adobe, и фокусом на IT-сектор, который исторически демонстрирует высокую доходность при повышенной чувствительности к рыночным колебаниям. Такой портфель подойдёт инвесторам с агрессивной стратегией, готовым принимать повышенные риски ради потенциально более высокой прибыли.

Список использованных источников:

- 1. Хацкевич, Г.А. Селекция и управление портфелем ценных бумаг / Г.А. Хацкевич // Капитал-Эксперт. 1996. №2(3). — 12 февраля. — С. 31—35.
- 2. Investing.com. Анализ рынка акций IT-сектора [Электронный ресурс]. Режим доступа: https://www.investing.com (дата обращения: 11.03.2025).
- 3. Yahoo Finance. Технологический сектор [Электронный ресурс]. Режим доступа: https://finance.yahoo.com (дата обращения: 25.03.2025).
- 4. Марковиц. Г. Выбор портфеля: эффективная диверсификация инвестиций / Г. Марковиц; пер. с англ. М.: Альпина Паблишер, 2020. 352 с.
 - 5. Малюгин, В.И. Рынок ценных бумаг. Количественные методы анализа / В.И. Малюгин, М., 2003. 112 с.
 - 6. Магнус, Я.Р. Эконометрика / Я.Р. Магнус, П.К. Катышев, А.А. Пересецкий. М., 2004. 320 с.