АВТОМАТИЧЕСКОЕ РАСПОЗНАВАНИЕ АВТОМОБИЛЬНЫХ НОМЕРОВ

Рассматривается задача автоматического распознавания автомобильных номеров. Сравнивается различное ПО для их выделения и распознавания. Оценивается влияние аугментации данных и предобработки изображений.

Введение

Автоматическое распознавание номерных знаков транспортных средств (Automatic License Plate Recognition, ALPR) представляет собой важное направление компьютерного зрения с широким спектром практических применений. Процесс ALPR включает несколько этапов обработки изображения: точная локализация номерной пластины, сегментация символов, распознавание текстовой информации [1].

I. Выделение области номера при помощи YOLO

Для эффективного решения задачи необходимо учитывать, поддерживает ли используемое ПО автоматическую локализацию номерной пластины. Для данной подзадачи была обучена YOLOv8 — нейросетевая модель објест detection. Модель была обучена на датасете, включающем 141 изображение автомобилей с белорусскими номерами. Во втором эксперименте модель была обучена на аугментированном датасете из 987 синтетических изображений с имитацией погодных условий: дождь, снег, изменение освещенности. Обе версии модели продемонстрировали высокую эффективность в локализации номерных пластин - до 98 и 100% соответственно.

II. Сравнение программного обеспечения для распознавания текста номеров

Для задачи оптического распознавания текста (ОСR) были выбраны три open-source решения для Windows 11: EasyOCR 1.6.2 (нейросетевая библиотека на PyTorch), Tesseract 5.5.0 (ОСR-ПО от Google) и OpenALPR 2.3.0.(ALPR-система, включающая ОСR и локализацию пластин). На данном этапе все системы использовались без дообучения на пользовательских данных. Попытка дообучить Tesseract завершилась неудачно из-за некорректной генерации .box-файлов — сегментация символов автоматически выполнялась с искажениями. Примеры распознавания демонстрируются на рис.1. Было проведено сравнение эффективности ОСR-систем на исходных и предобработанных изображениях.

YOLO+EasyOCR	YOLO+Tesseract	OpenALPR
BY 0402 BC-1 ✓ — оригинальный 0402 BC-1 ✓ — обработанный	0402ВС1 ✓ — оригинальный Не распознано Х — обработанный	O4O2BC1 X — оригинальный Не распознано X — обработанный
BY О518НВ-5 — оригинальный ВҮ 0518Н8-5 — обработанный	0518НВ5 ✓ – оригинальный F0518НВ5 X – обработанный	0518Н Х – оригинальный 0518НВ5 ☑ – обработанный
Не распознано X – оригинальный 81 000 X – обработанный	90017 X – оригинальный He распознано X – обработанный	Не распознано X − оригинальный ОО010Р5 X − обработанный
6165НА-4 ✓ – оригинальный 6165НА-4 ✓ – обработанный	6165НА4 ✓ – оригинальный 6165НА4 ✓ – обработанный	Не распознано X − оригинальный 65HA4 X − обработанный

Рис. 1 – Примеры результата работы ПО

В подвыборках с наиболее чёткими номерами доля **полностью** правильно распознанных номеров у OpenALPR (open-source версии) достигала 40%, в то время как у EasyOCR и Tesseract — около 30%. При этом предобработка (контрастная бинаризация) не оказала однозначно положительного или отрицательного влияния на качество распознавания. Эффект варьировался в зависимости от конкретной модели и изображения.

III. Выводы

Полученные результаты демонстрируют, что ALPR-задачи могут быть решены исключительно с использованием open-source инструментов. Аугментация изображений не оказывает большого эффекта на итоговые результаты распознавания. Эффект от предобработки изображения остаётся ограниченным и требует дальнейшей оптимизации, равно как и устойчивость подобных подходов в целом, особенно при наличии каких-либо искажений изображения

1. ResearchGate [Электронный ресурс]. Режим доступа: https://www.researchgate.net/publication/387137009_Primenenie_komputernogo_zrenia_dla_raspoznavania_avtomobilnyh_nomerov — Дата доступа: 13.04.2025.

 Γ рабовский Aлексей Kириллович, студент кафедры информационных технологий автоматизированных систем БГУИР, aleshamayg@gmail.com.

Научный руководитель: Навроцкий Анатолий Александрович, заведующий кафедрой информационных технологий автоматизированных систем БГУИР, доцент, navrotsky@bsuir.by.