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Annotation. This paper investigates the applicability of the ORB-SLAM2 across diverse scenarios based on 51 sequences from 

three public datasets: TUM RGB-D, EuRoC, and KITTI. Experimental results reveal that while ORB-SLAM2 demonstrates strong 

robustness in dynamic environments, its performance significantly deteriorates when encountering textureless regions, intense 

camera rotation, or extensive planar areas. In most cases within the same scenario, the stereo configuration achieves higher 

localization accuracy than the monocular mode. This study provides practical references for scene-specific adaptability 

considerations in SLAM technology applications. 
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I. Introduction 

Simultaneous Localization and Mapping (SLAM), proposed by Smith R.C. and Cheeseman P. in 1986 [1], 

is a technology that enables an agent equipped with specific sensors to construct environmental models and 

estimate its own motion in real time without prior environmental knowledge [2]. Based on sensor types, SLAM 

can be categorized into Visual SLAM (VSLAM) [3] using cameras and LiDAR-based SLAM [4] using light 

detection and ranging sensors. This study focuses on monocular and stereo camera-based VSLAM systems. 

The evolution of VSLAM has witnessed significant algorithmic advancements. Early monocular SLAM 

systems primarily relied on filter-based methods [5],[6],[7],[8], which faced challenges such as high 

computational complexity and error accumulation. A milestone was the Parallel Tracking and Mapping (PTAM) 

[9] algorithm, which pioneered a keyframe-based architecture by decoupling feature tracking and map 

construction into parallel threads. Subsequent improvements to PTAM included the integration of edge features 

and enhanced relocalization techniques [10]. Among feature-based SLAM systems [5], ORB-SLAM2 [11] 

emerged as a representative solution due to its rapid ORB [12] feature extraction and rotation invariance, 

achieving high operational efficiency and stability. 

However, existing research lacks systematic validation of ORB-SLAM2's applicability in complex 

scenarios, such as dynamic environments, weakly textured regions, and large-scale planar surfaces. This study 

aims to address these gaps through multi-scenario experiments, specifically: 

1) Robustness analysis in dynamic environments; 

2) Comparative evaluation of localization accuracy between monocular and stereo modes across diverse 

environments; 

3) Identification of limitations in textureless areas, rapid rotational motion, and expansive planar scenes. 

Ⅱ. System Overview 

The ORB-SLAM2 system comprises three parallel threads: Tracking, Local Mapping, and Loop Closing, 

as illustrated in Figure 1. 

The Tracking thread is responsible for searching feature correspondences between each frame and the 

local map to compute the corresponding camera pose. Based on this computation, it determines whether to 
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appropriately insert a new keyframe into the keyframe buffer queue of the Local Mapping thread. In monocular 

mode, the system initializes the map through parallel computation of both the homography matrix suitable for 

planar scenes and the fundamental matrix applicable to non-planar scenes [13], selecting the optimal solution 

via RANSAC [14].Within the tracking thread, preliminary feature matching is first performed between the 

received current frame and its preceding frame. Subsequently, a motion-only Bundle Adjustment (BA) [15] 

algorithm is employed to optimize and refine the pose estimation of the current frame. 

The Local Mapping thread manages the construction process of the local map and executes all BA 

optimizations related to the local map. This thread processes newly inserted keyframes from the Tracking 

Thread. Its core task is to perform local BA optimization to achieve optimal  reconstruction of the surrounding 

environment under the current camera pose constraints. 

The Loop Closing Thread detects large-scale loops and corrects accumulated drift through pose graph 

optimization. For each newly inserted keyframe from the Local Mapping Thread, this thread performs loop 

detection to verify loop formation. It constructs a place recognition database based on the DBoW2 [16] 

vocabulary model, while enhancing loop detection accuracy through covisibility graph-optimized candidate 

keyframe selection strategy. When a loop closure is detected, the system computes the relative geometric 

transformation (similarity transformation [17]) between the current keyframe and the identified loop-closing 

keyframe. 

 

Figure 1 – ORB-SLAM2 system overview  

III. Experimental Design and Analysis 

The experiments were conducted on an Intel(R) Core(TM) i9-14900HX processor (2.20 GHz, x64-based) 

within an Ubuntu 18.04 virtual environment hosted by VMware Workstation Pro 17 on Windows 11. 

Three public datasets – TUM RGB-D [18], EuRoC [19], and KITTI Ошибка! Источник ссылки не 
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найден. – were utilized to evaluate system performance. Key evaluation metrics include: 

Absolute Trajectory Error (ATE), as shown in Equation (1). 
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where 𝑁 is the total number of trajectory points, 𝐹𝑖 is the absolute error at 𝑖-th trajectory point, expressed as 𝐹𝑖 =

Q𝑖
−1𝑆P𝑖 (with Q𝑖 being the ground-truth pose at the 𝑖-th point, P𝑖 being the estimated pose at the 𝑖-th point, and 𝑆 

being the rigid transformation aligning estimated and ground-truth trajectories), 𝑡𝑟𝑎𝑛𝑠(𝐹𝑖) denotes the 

translational component of 𝐹𝑖.  

Relative Pose Error (RPE), as shown in Equation (2). 
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where 𝑚 = 𝑁 − ∆ is the number of available relative pose error samples, 𝐸𝑖 is the relative pose error at the 𝑖-th 

point, expressed as 𝐸𝑖 = (Q𝑖
−1𝑄𝑖+∆)

−1(P𝑖
−1𝑃𝑖+∆) (with Q𝑖 and 𝑄𝑖+∆ being the ground-truth poses at points 𝑖 and 

𝑖 + ∆, and P𝑖 and 𝑃𝑖+∆ being the estimated poses at points 𝑖 and 𝑖 + ∆), 𝑡𝑟𝑎𝑛𝑠(𝐸𝑖) denotes the translational 

component of 𝐸𝑖.  

To ensure the reliability of the results, each sequence in all datasets was run five times, and the median 

of the five results was taken as the error value. 

A. TUM RGB-D Dataset 

This paper uses 29 sequences from the TUM RGB-D dataset, including Handheld SLAM, Dynamic 

Objects, Structure vs. Texture, and Robot SLAM sequences, to conduct a detailed analysis of the monocular 

mode of ORB-SLAM2. The evaluation metric is the ATE. 

The validation results for the Handheld SLAM sequences are presented in Table 1. 

Table 1 – Handheld SLAM Sequences of the TUM RGB-D Dataset 

Sequence 
Description RMSE(cm

) Avg. translational velocity (m/s) Avg. angular velocity (deg/s) with loop 

fr1_floor 0.258 15.071 No 1.737 
fr1_desk 0.413 23.327 No 1.360 
fr1_room 0.334 29.882 Yes 6.085 

fr2_360_kidnap 0.304 13.425 No 4.154 
fr2_desk 0.193 6.338 Yes 0.860 

fr3_long_office 0.249 10.188 Yes 1.098 
fr1_360 0.210 41.600 No 5.791 

fr2_360_hemispher
e 

0.163 20.569 No 9.335 

As shown in Table 1, the monocular mode of ORB-SLAM2 achieved an absolute trajectory error of 

approximately 1 cm in most Handheld SLAM sequences, except in scenarios with strong camera rotation 

(fr1_room, fr2_360_kidnap, fr1_360, and fr2_360_hemisphere). 

The results for the Dynamic Objects sequence (an office scenario) are shown in Table 2. 
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Table 2 – Dynamic Objects Sequences of the TUM RGB-D Dataset 

Sequence Description RMSE(cm) 

fr2_desk_person Interaction 0.743 
fr3_sit_static Two people sitting at a desk interacting, Asus Xtion fixed \ 
fr3_sit_xyz Two people sitting at a desk interacting, Asus Xtion moving along xyz 0.932 

fr3_sit_halfsph 
Two people sitting at a desk interacting, Asus Xtion moving along a half-sphere 

trajectory 
1.693 

fr3_sit_rpy 
Two people sitting at a desk interacting, Asus Xtion moving along rpy with strong 

rotation 
\ 

fr3_walk_static Two people walking, Asus Xtion fixed \ 
fr3_walk_xyz Two people walking, Asus Xtion moving along xyz \ 

fr3_walk_halfsph Two people walking, Asus Xtion moving along a half-sphere trajectory 1.675 
fr3_walk_rpy Two people walking, Asus Xtion moving along rpy with strong rotation 7.300 

From the results in Table 2, the monocular mode of ORB-SLAM2 achieved an absolute trajectory error of 

less than 2 cm in most Dynamic Object sequences, except in scenarios with strong camera rotation (fr3_sit_rpy 

and fr3_walk_rpy) and camera stationary (fr3_sit_static and fr3_walk_static). This indicates that the system is 

robust to dynamic objects in monocular mode, except when the camera undergoes strong rotation and 

stationary. 

The validation results for the Structure vs. Texture sequences are presented in Table 3. 

Table 3 – Structure vs. Texture Sequences of the TUM RGB-D Dataset 

Sequence Description RMSE(cm) 

fr3_nstr_tex_far planar, texture 9.249 
fr3_nstr_tex_near planar, texture, with loop 1.363 

fr3_str_tex_far non-planar, texture 0.922 
fr3_str_tex_near non-planar, texture 1.358 
fr3_nstr_ntex_far planar, textureless \ 

fr3_nstr_ntex_near planar, textureless, with loop \ 
fr3_str_ntex_far non-planar, textureless \ 

fr3_str_ntex_near non-planar, textureless, with loop \ 

From the results in Table 3, the monocular mode of ORB-SLAM2 failed to complete initialization in 

textureless scenes (fr3_nstr_ntex_far, fr3_nstr_ntex_near, fr3_str_ntex_far and fr3_str_ntex_near). 

However, in the Robot SLAM sequences, although the camera was not in a state of strong rotation, most 

sequences failed to initialize. The validation results are shown in Table 4. 

Table 4 – Robot SLAM Sequences of the TUM RGB-D Dataset 

Sequence Description RMSE(cm) 

fr2_pioneer_360 warehouse, large-scale planar \ 
fr2_pioneer_slam warehouse, large-scale planar, with loop 5.038 
fr2_pioneer_slam2 warehouse, large-scale planar \ 
fr2_pioneer_slam3 warehouse, large-scale planar \ 

By analyzing the commonalities of the Robot SLAM sequences, it is evident that such sequences often 

involve large-scale planar environments. Additionally, in sequences with loops (fr1_room, fr2_desk, 

fr3_long_office, and fr3_nstr_tex_near), the system achieved a trajectory error of approximately 1 cm, indicating 

strong loop closure handling capabilities. 

ORB-SLAM2 demonstrated a trajectory error of less than 10 cm across all 29 sequences of the TUM 

RGB-D dataset. The validation results from the TUM RGB-D dataset confirm that ORB-SLAM2 is robust in 

dynamic scenes and effective in handling loop closures. However, it is not suitable for textureless scenes, 

scenarios with significant camera rotation, or scenes containing extensive planar structures. 

B. EuRoC Dataset 

This paper analyzed 11 sequences of the EuRoC dataset, categorized into easy, medium, and difficult 
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levels. The ATE of the trajectory for each sequence is presented in Table 5. 

Table 5 – Results of the EuRoC Dataset 

Sequence 
RMSE(cm) 

Monocular Stereo 

MH_01_easy 4.510 3.759 
MH_02_easy 3.423 3.754 

MH_03_medium 3.958 3.733 
MH_04_difficult 7.228 12.496 
MH_05_difficult 6.986 5.730 

V1_01_easy 9.551 8.638 
V1_02_medium 5.094 6.040 
V1_03_difficult 9.787 9.753 
V2_01_easy 6.080 7.097 

V2_02_medium 6.048 5.920 
V2_03_difficult 22.309 19.299 

As shown in Table 5, in the indoor EuRoC dataset, ORB-SLAM2 showed comparable performance in 

both monocular and stereo modes, with most sequences achieving a trajectory error of less than 10 cm, except 

for the V2_03_difficult sequence. This level of positioning accuracy is sufficient for small drones used in 

environmental exploration. 

C. KITTI Dataset  

This paper analyzed 11 sequences (00 to 10) of the KITTI dataset. In addition to calculating the ATE 

(𝑡𝑎𝑏𝑠) and RPE (𝑡𝑟𝑒𝑙), the relative rotational error (𝑟𝑟𝑒𝑙) was also computed. Table 6 presents the specific results 

for the 11 sequences of the KITTI dataset. 

Table 6 – Results of the KITTI Dataset 

Sequence 𝑚 ×𝑚 
Monocular Stereo 

𝑡𝑟𝑒𝑙(%) 𝑟𝑟𝑒𝑙(𝑑𝑒𝑔/100𝑚) 𝑡𝑎𝑏𝑠(𝑚) 𝑡𝑟𝑒𝑙(%) 𝑟𝑟𝑒𝑙(𝑑𝑒𝑔/100𝑚) 𝑡𝑎𝑏𝑠(𝑚) 
00 564 × 496 5.230 0.946 7.542 1.094 0.689 1.288 
01 1157 × 1827 153.859 0.929 533.562 1.698 0.359 9.623 

02 599 × 946 14.228 0.647 33.502 1.116 0.495 5.841 

03 471 × 199 1.277 0.302 0.967 0.950 0.365 0.755 
04 0.5 × 394 0.588 0.308 0.989 0.445 0.310 0.187 

05 479 × 426 5.165 0.506 5.367 0.632 0.352 0.720 

06 23 × 457 9.799 0.418 13.413 0.699 0.300 0.784 
07 191 × 209 3.809 0.603 2.127 0.567 0.392 0.526 

08 808 × 391 32.224 0.674 52.889 1.301 0.659 3.721 

09 465 × 568 4.949 0.719 4.858 0.916 0.484 3.291 
10 671 × 177 7.446 0.509 8.444 0.881 0.474 0.100 

As shown in Table 6, in monocular mode, the trajectory error of ORB-SLAM2 is typically around 1% of the 

map size (sequences 00, 05, 07, 09, and 10), sometimes lower—such as 0.21% for sequence 03 and 0.25% for 

sequence 04—or higher, like 3.54% for sequence 02, 2.94% for sequence 06, and 6.55% for sequence 08. In 

stereo mode, the trajectory error is consistently less than 1% of the map size. This indicates that, in most cases, 

stereo mode provides higher localization accuracy than monocular mode in the same scenario. 

IV. Conclusion 

This paper provides an extensive experimental evaluation of the ORB-SLAM2 algorithm to determine its 

applicability across different environments. The results show that the ORB-SLAM2 system operates effectively in 

both indoor and outdoor settings, demonstrates robustness in dynamic scenes, and handles loop closures well. 

However, it performs poorly in textureless environments, scenarios with strong camera rotation, and scenes 

featuring large-scale planar surfaces. In most cases, the stereo mode achieves higher localization accuracy than 

the monocular mode in the same scenario. This study offers practical insights into the environmental adaptability 
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of SLAM technology. 
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