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Annotation. This paper investigates the applicability of the ORB-SLAM2 across diverse scenarios based on 51 sequences from
three public datasets: TUM RGB-D, EuRoC, and KITTI. Experimental results reveal that while ORB-SLAM2 demonstrates strong
robustness in dynamic environments, its performance significantly deteriorates when encountering textureless regions, intense
camera rotation, or extensive planar areas. In most cases within the same scenario, the stereo configuration achieves higher
localization accuracy than the monocular mode. This study provides practical references for scene-specific adaptability

considerations in SLAM technology applications.
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I. Introduction

Simultaneous Localization and Mapping (SLAM), proposed by Smith R.C. and Cheeseman P. in 1986 [1],
is a technology that enables an agent equipped with specific sensors to construct environmental models and
estimate its own motion in real time without prior environmental knowledge [2]. Based on sensor types, SLAM
can be categorized into Visual SLAM (VSLAM) [3] using cameras and LiDAR-based SLAM [4] using light
detection and ranging sensors. This study focuses on monocular and stereo camera-based VSLAM systems.

The evolution of VSLAM has witnessed significant algorithmic advancements. Early monocular SLAM
systems primarily relied on filter-based methods [5],[6],[7],[8], which faced challenges such as high
computational complexity and error accumulation. A milestone was the Parallel Tracking and Mapping (PTAM)
[9] algorithm, which pioneered a keyframe-based architecture by decoupling feature tracking and map
construction into parallel threads. Subsequent improvements to PTAM included the integration of edge features
and enhanced relocalization techniques [10]. Among feature-based SLAM systems [5], ORB-SLAM2 [11]
emerged as a representative solution due to its rapid ORB [12] feature extraction and rotation invariance,
achieving high operational efficiency and stability.

However, existing research lacks systematic validation of ORB-SLAM2's applicability in complex
scenarios, such as dynamic environments, weakly textured regions, and large-scale planar surfaces. This study
aims to address these gaps through multi-scenario experiments, specifically:

1) Robustness analysis in dynamic environments;

2) Comparative evaluation of localization accuracy between monocular and stereo modes across diverse
environments;

3) Identification of limitations in textureless areas, rapid rotational motion, and expansive planar scenes.

II. System Overview

The ORB-SLAM?2 system comprises three parallel threads: Tracking, Local Mapping, and Loop Closing,
as illustrated in Figure 1.

The Tracking thread is responsible for searching feature correspondences between each frame and the
local map to compute the corresponding camera pose. Based on this computation, it determines whether to
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appropriately insert a new keyframe into the keyframe buffer queue of the Local Mapping thread. In monocular

mode, the system initializes the map through parallel computation of both the homography matrix suitable for
planar scenes and the fundamental matrix applicable to non-planar scenes [13], selecting the optimal solution
via RANSAC [14].Within the tracking thread, preliminary feature matching is first performed between the
received current frame and its preceding frame. Subsequently, a motion-only Bundle Adjustment (BA) [15]
algorithm is employed to optimize and refine the pose estimation of the current frame.

The Local Mapping thread manages the construction process of the local map and executes all BA
optimizations related to the local map. This thread processes newly inserted keyframes from the Tracking
Thread. Its core task is to perform local BA optimization to achieve optimal reconstruction of the surrounding
environment under the current camera pose constraints.

The Loop Closing Thread detects large-scale loops and corrects accumulated drift through pose graph
optimization. For each newly inserted keyframe from the Local Mapping Thread, this thread performs loop
detection to verify loop formation. It constructs a place recognition database based on the DBoW2 [16]
vocabulary model, while enhancing loop detection accuracy through covisibility graph-optimized candidate
keyframe selection strategy. When a loop closure is detected, the system computes the relative geometric
transformation (similarity transformation [17]) between the current keyframe and the identified loop-closing
keyframe.
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Figure 1 — ORB-SLAM2 system overview

Ill. Experimental Design and Analysis

The experiments were conducted on an Intel(R) Core(TM) i9-14900HX processor (2.20 GHz, x64-based)
within an Ubuntu 18.04 virtual environment hosted by VMware Workstation Pro 17 on Windows 11.

Three public datasets — TUM RGB-D [18], EuRoC [19], and KITTI Owwubka! UcTo4YHUK cCbinikn He
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HamaeH. — were utilized to evaluate system performance. Key evaluation metrics include:

Absolute Trajectory Error (ATE), as shown in Equation (1).

N
1
ATE = NZlItrans(Fi)llz (1)
i=1

where N is the total number of trajectory points, F; is the absolute error at i-th trajectory point, expressed as F; =
Q; 'SP, (with Q; being the ground-truth pose at the i-th point, P; being the estimated pose at the i-th point, and S
being the rigid transformation aligning estimated and ground-truth trajectories), trans(F;) denotes the
translational component of F;.

Relative Pose Error (RPE), as shown in Equation (2).

m
1
RPE = EZutmns(}a)uz @)
i=1

where m = N — A is the number of available relative pose error samples, E; is the relative pose error at the i-th
point, expressed as E; = (Q;*Q;+4) *(P*P,,,) (with Q; and Q;,» being the ground-truth poses at points i and
i+ A, and P, and P;,, being the estimated poses at points i and i + A), trans(E;) denotes the translational
component of E;.

To ensure the reliability of the results, each sequence in all datasets was run five times, and the median
of the five results was taken as the error value.

A. TUM RGB-D Dataset

This paper uses 29 sequences from the TUM RGB-D dataset, including Handheld SLAM, Dynamic
Objects, Structure vs. Texture, and Robot SLAM sequences, to conduct a detailed analysis of the monocular
mode of ORB-SLAM2. The evaluation metric is the ATE.

The validation results for the Handheld SLAM sequences are presented in Table 1.

Table 1 — Handheld SLAM Sequences of the TUM RGB-D Dataset

Sequence Description RMSE(cm
Avg. translational velocity (m/s)  Avg. angular velocity (deg/s)  with loop )

fr1_floor 0.258 15.071 No 1.737
frl_desk 0.413 23.327 No 1.360
fr1_room 0.334 29.882 Yes 6.085
fr2_360_kidnap 0.304 13.425 No 4.154
fr2_desk 0.193 6.338 Yes 0.860
fr3_long_office 0.249 10.188 Yes 1.098
fr1_360 0.210 41.600 No 5.791
fr2_360_hemispher 0.163 20.569 No 9.335

e

As shown in Table 1, the monocular mode of ORB-SLAMZ2 achieved an absolute trajectory error of
approximately 1 cm in most Handheld SLAM sequences, except in scenarios with strong camera rotation
(frl_room, fr2_360_kidnap, fr1l_360, and fr2_360_hemisphere).

The results for the Dynamic Objects sequence (an office scenario) are shown in Table 2.
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Table 2 — Dynamic Objects Sequences of the TUM RGB-D Dataset

Sequence Description RMSE(cm)
fr2_desk_person Interaction 0.743
fr3_sit_static Two people sitting at a desk interacting, Asus Xtion fixed \

fr3_sit xyz Two people sitting at a desk interacting, Asus Xtion moving along xyz 0.932
13_sit_halfsph Two people sitting at a desk |nteracttr|z|;j%,c,§)srl;s Xtion moving along a half-sphere 1693
. Two people sitting at a desk interacting, Asus Xtion moving along rpy with strong
fr3_sit_rpy rotation \
fr3_walk_static Two people walking, Asus Xtion fixed \
fr3_walk xyz Two people walking, Asus Xtion moving along xyz \
fr3_walk_halfsph Two people walking, Asus Xtion moving along a half-sphere trajectory 1.675
fr3_walk rpy Two people walking, Asus Xtion moving along rpy with strong rotation 7.300

From the results in Table 2, the monocular mode of ORB-SLAM2 achieved an absolute trajectory error of
less than 2 cm in most Dynamic Object sequences, except in scenarios with strong camera rotation (fr3_sit_rpy
and fr3_walk_rpy) and camera stationary (fr3_sit_static and fr3_walk_static). This indicates that the system is
robust to dynamic objects in monocular mode, except when the camera undergoes strong rotation and
stationary.

The validation results for the Structure vs. Texture sequences are presented in Table 3.

Table 3 — Structure vs. Texture Sequences of the TUM RGB-D Dataset

Sequence Description RMSE(cm)
fr3_nstr_tex_far planar, texture 9.249
fr3_nstr_tex_near planar, texture, with loop 1.363
fr3_str_tex far non-planar, texture 0.922
fr3_str_tex_near non-planar, texture 1.358
fr3_nstr_ntex_far planar, textureless \
fr3_nstr_ntex_near planar, textureless, with loop \
fr3_str_ntex_far non-planar, textureless \
fr3_str_ntex_near non-planar, textureless, with loop \

From the results in Table 3, the monocular mode of ORB-SLAM2 failed to complete initialization in
textureless scenes (fr3_nstr_ntex_far, fr3_nstr_ntex_near, fr3_str_ntex_far and fr3_str_ntex_near).

However, in the Robot SLAM sequences, although the camera was not in a state of strong rotation, most
sequences failed to initialize. The validation results are shown in Table 4.
Table 4 — Robot SLAM Sequences of the TUM RGB-D Dataset

Sequence Description RMSE(cm)
fr2_pioneer_360 warehouse, large-scale planar \
fr2_pioneer_slam warehouse, large-scale planar, with loop 5.038

fr2_pioneer_slam?2 warehouse, large-scale planar \
fr2_pioneer slam3 warehouse, large-scale planar \

By analyzing the commonalities of the Robot SLAM sequences, it is evident that such sequences often
involve large-scale planar environments. Additionally, in sequences with loops (fr1_room, fr2_desk,
fr3_long_office, and fr3_nstr_tex_near), the system achieved a trajectory error of approximately 1 cm, indicating
strong loop closure handling capabilities.

ORB-SLAM2 demonstrated a trajectory error of less than 10 cm across all 29 sequences of the TUM
RGB-D dataset. The validation results from the TUM RGB-D dataset confirm that ORB-SLAM2 is robust in
dynamic scenes and effective in handling loop closures. However, it is not suitable for textureless scenes,
scenarios with significant camera rotation, or scenes containing extensive planar structures.

B. EuRoC Dataset

This paper analyzed 11 sequences of the EUR0C dataset, categorized into easy, medium, and difficult
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levels. The ATE of the trajectory for each sequence is presented in Table 5.

Table 5 — Results of the EuRoC Dataset

Sequence RMSE(cm)

Monocular Stereo

MH_01_easy 4.510 3.759
MH_02_easy 3.423 3.754
MH_03_medium 3.958 3.733
MH_04_difficult 7.228 12.496
MH_05_difficult 6.986 5.730
V1 01 easy 9.551 8.638
V1 02 _medium 5.094 6.040
V1 03 difficult 9.787 9.753
V2 01 easy 6.080 7.097
V2_02_medium 6.048 5.920
V2 03 difficult 22.309 19.299

As shown in Table 5, in the indoor EUROC dataset, ORB-SLAM2 showed comparable performance in
both monocular and stereo modes, with most sequences achieving a trajectory error of less than 10 cm, except
for the V2_03_difficult sequence. This level of positioning accuracy is sufficient for small drones used in
environmental exploration.

C. KITTI Dataset

This paper analyzed 11 sequences (00 to 10) of the KITTI dataset. In addition to calculating the ATE
(taps) and RPE (t,;), the relative rotational error (r;..;) was also computed. Table 6 presents the specific results
for the 11 sequences of the KITTI dataset.
Table 6 — Results of the KITTI Dataset

Sequence mxm Monocular Stereo

tre1 (%) Tyre1(deg/100m) taps(Mm) tre1 (%) Trei(deg/100m)  tg,(m)
00 564 x 496 5.230 0.946 7.542 1.094 0.689 1.288
01 1157 x 1827  153.859 0.929 533.562 1.698 0.359 9.623
02 599 x 946 14.228 0.647 33.502 1.116 0.495 5.841
03 471 %199 1.277 0.302 0.967 0.950 0.365 0.755
04 0.5 x 394 0.588 0.308 0.989 0.445 0.310 0.187
05 479 X 426 5.165 0.506 5.367 0.632 0.352 0.720
06 23 X 457 9.799 0.418 13.413 0.699 0.300 0.784
07 191 x 209 3.809 0.603 2.127 0.567 0.392 0.526
08 808 x 391 32.224 0.674 52.889 1.301 0.659 3.721
09 465 x 568 4.949 0.719 4.858 0.916 0.484 3.291
10 671 x 177 7.446 0.509 8.444 0.881 0.474 0.100

As shown in Table 6, in monocular mode, the trajectory error of ORB-SLAM?2 is typically around 1% of the
map size (sequences 00, 05, 07, 09, and 10), sometimes lower—such as 0.21% for sequence 03 and 0.25% for
sequence 04—or higher, like 3.54% for sequence 02, 2.94% for sequence 06, and 6.55% for sequence 08. In
stereo mode, the trajectory error is consistently less than 1% of the map size. This indicates that, in most cases,
stereo mode provides higher localization accuracy than monocular mode in the same scenario.

IV. Conclusion

This paper provides an extensive experimental evaluation of the ORB-SLAM2 algorithm to determine its
applicability across different environments. The results show that the ORB-SLAM?2 system operates effectively in
both indoor and outdoor settings, demonstrates robustness in dynamic scenes, and handles loop closures well.
However, it performs poorly in textureless environments, scenarios with strong camera rotation, and scenes
featuring large-scale planar surfaces. In most cases, the stereo mode achieves higher localization accuracy than
the monocular mode in the same scenario. This study offers practical insights into the environmental adaptability
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of SLAM technology.
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