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Annotation. Deep learning-based single image dehazing has advanced significantly, yet models trained on synthetic data struggle in real-world 

scenarios. Tо address this cross-domain gap, we propose a Synthetic-to-Real Dehazing framework comprising two key components: 1) A domain 

adaptation network that generates Synthetic-to-Real hazy images by learning real haze characteristics through depth-transmission map 

correlations, and 2) A physics-guided dehazing network based on the atmospheric scattering model. Crucially, our framework requires no real 

hazy data during dehazing training. Experiments demonstrate our framework's superior cross-domain dehazing generalization.
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Haze, caused by atmospheric water droplets, degrades computer vision tasks (e.g., object detection, 
image segmentation) through light attenuation and scattering. This drives the importance of single image 
dehazing research. The atmospheric scattering model [1] formalizes this phenomenon as:

l(x) = J(x)t(x) + A(1-t(x)), (1)
where I is observed hazy image, J is scene radiance, t is transmission map, and A is atmospheric light.

Deep learning has advanced single image dehazing, yet most methods rely on paired hazy/clear images 
that are impractical to acquire in real settings. While synthetic datasets circumvent this need, their simplified 
haze simulations lack real-world complexity, resulting in domain gaps that degrade performance on natural hazy 
images. Based on this problem, we propose the cross-domain dehazing framework. The framework is divided 
into two parts: data synthesis more in line with real haze characteristics and haze removal.
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Figure 1 - Framework flow chart. The framework consists of two parts: 1. cross-domain data synthesis and single 

image dehazing.

The proposed dehazing framework, as illustrated in Figure 1, comprises two core components: a domain- 
adaptive data synthesis module and a dual-stage dehazing network. In the data synthesis phase, we establish a 
novel physical correlation model among the scattering coefficient transmission map t, and scene depth map 
d, where f=e '5c'. A pretrained depth-conditioned transmission map estimation network dynamically adjusts the 
scattering coefficient P through adaptive optimization algorithms. This process integrates scene depth 
information d [2] to generate physically accurate transmission maps that faithfully replicate real-world haze 
dispersion characteristics. By substituting the synthesized transmission map t and haze-free images J into the 
atmospheric scattering model (Equation 1), we efficiently construct the cross-domain datasets, providing robust 
training data for subsequent network optimization.
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Figure 2 - The 4 regions demonstrate the superiority of our synthetic data through comparative analysis (across four

The 4th region

depth regions) against real haze data and baseline methods [5], validating that our results naturally reflect haze concentration

attenuation with scene depth.

The dehazing network architecture adopts a two-stage progressive processing pipeline. Initially, hazy 
images are processed through a physical based dehazing network to obtain initial transmission estimates t and 
atmospheric light estimates A Subsequently, a refinement module optimizes these parameters, yielding precise 
transmission map t and atmospheric light A The optimized physical parameters are then incorporated into the 
equation (inverse form of Equation 1) to reconstruct high-quality haze-free images.

(a) Hazy (b) C2P Net [3] (c) DCP [4] (d) Ours

Figure 3 - Visual comparison of dehazing results of different methods.

Extensive experimental validation confirms the effectiveness of our proposed dehazing framework 
(detailed presentation is omitted here due to space constraints). The cross-domain synthesis method efficiently 
constructs domain-adaptive training data to enhance model robustness, while the dual-stage network accurately 
estimates transmission map t and atmospheric light A, achieving high-quality restoration.
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