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DOMAIN ADAPTIVE DEHAING BASED ON PHYSICAL PROPERTIES
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Annotation. Deep learning-based single image dehazing has advanced significantly, yet models trained on synthetic data struggle in real-
world scenarios. To address this cross-domain gap, we propose a Synthetic-to-Real Dehazing framework comprising two key components: 1)
A domain adaptation network that generates Synthetic-to-Real hazy images by learning real haze characteristics through depth-transmission
map correlations, and 2) A physics-guided dehazing network based on the atmospheric scattering model. Crucially, our framework requires no

real hazy data during dehazing training. Experiments demonstrate our framework's superior cross-domain dehazing generalization.
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Haze, caused by atmospheric water droplets, degrades computer vision tasks (e.g., object detection,
image segmentation) through light attenuation and scattering. This drives the importance of single image
dehazing research. The atmospheric scattering model [1] formalizes this phenomenon as:

I(x) = IX)t(x) + A(1-1(x)), @

where | is observed hazy image, J is scene radiance, t is transmission map, and A is atmospheric light.

Deep learning has advanced single image dehazing, yet most methods rely on paired hazy/clear images
that are impractical to acquire in real settings. While synthetic datasets circumvent this need, their simplified
haze simulations lack real-world complexity, resulting in domain gaps that degrade performance on natural hazy
images. Based on this problem, we propose the cross-domain dehazing framework. The framework is divided
into two parts: data synthesis more in line with real haze characteristics and haze removal.
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Figure 1 — Framework flow chart. The framework consists of two parts: 1. cross-domain data synthesis and single image dehazing.

The proposed dehazing framework, as illustrated in Figure 1, comprises two core components: a domain-
adaptive data synthesis module and a dual-stage dehazing network. In the data synthesis phase, we establish a
novel physical correlation model among the scattering coefficient 8, transmission map t, and scene depth map d,
where t=e#d. A pretrained depth-conditioned transmission map estimation network dynamically adjusts the
scattering coefficient B through adaptive optimization algorithms. This process integrates scene depth
information d [2] to generate physically accurate transmission maps that faithfully replicate real-world haze
dispersion characteristics. By substituting the synthesized transmission map t and haze-free images J into the
atmospheric scattering model (Equation 1), we efficiently construct the cross-domain datasets, providing robust
training data for subsequent network optimization.
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Figure 2 — The 4 regions demonstrate the superiority of our synthetic data through comparative analysis (across four depth regions)
against real haze data and baseline methods [5], validating that our results naturally reflect haze concentration attenuation with scene depth.

The dehazing network architecture adopts a two-stage progressive processing pipeline. Initially, hazy
images are processed through a physical based dehazing network to obtain initial transmission estimates t and
atmospheric light estimates A. Subsequently, a refinement module optimizes these parameters, yielding precise
transmission map t and atmospheric light A. The optimized physical parameters are then incorporated into the
equation (inverse form of Equation 1) to reconstruct high-quality haze-free images.
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Figure 3 — Visual comparison of dehazing results of different methods.

Extensive experimental validation confirms the effectiveness of our proposed dehazing framework
(detailed presentation is omitted here due to space constraints). The cross-domain synthesis method efficiently
constructs domain-adaptive training data to enhance model robustness, while the dual-stage network accurately
estimates transmission map t and atmospheric light A, achieving high-quality restoration.
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