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Abstract. The paper describes approaches to unified 

knowledge representation, providing the formation of 
semantic space models. On the basis of previously 
proposed models for the representation of non-numeric 
structures with denotational and operational semantics, 
quantitative attributes and approaches to their 
calculation are proposed. They allow to reveal additional 
topological and metric properties of semantic space 
structures. A model of multiversal (protomultiversal) 
numbers is proposed. This model is a formal basis for 
clarifying the meaning and revealing semantic properties 
of network structures and models such as artificial neural 
networks, Kolmogorov-Arnold networks and other 
models with operational semantics and using numerical 
features to solve problems within the semantic space.  
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I. INTRODUCTION 
One of the attributes of knowledge is the presence 

of a semantic metric [1]. Thus, if “metric” is 
understood in the mathematical sense then knowledge-
based systems are closely related to the concepts of 
metric space [2, 3] and topological space [4]. The 
presence of an additional spatial signature on the 

knowledge set of an intelligent system is closely related 
to such another feature of knowledge as scaling [1]. 

Generalized formal languages [5] are used to 
represent knowledge in knowledge-based systems. 

When representing knowledge, (formal) concepts [6] 
are formed, which form the basis of ontologies [5, 6]. 
Each concept can have a communicative designation 
(name) and a meaning (value) [5]. 

The approach to modeling the semantic space [7] 
can be referred to theoretical-synthetic (interior) 
approaches based on unification [5]. Unification 
assumes that for a set of designations N C I= ∪  (signs 
S C⊆ , concepts C  and names (terms) I ), there is a set 
of meanings (senses) E  (Fig. 1). Correspondence 
between designations and their meanings are defined: 
 Nv N E⊆ × . (1) 

Tolerance of meanings (values) is similarity 
relation  Nt : 

 ( )1
def

N N Nt v v −= 

. (2) 

Projection Nt  onto the set of concepts C  is a 
relation of equivalence of meanings (values): 

 ( )~
def

C Nt C C= ∩ × . (3) 

names  
(terms) 

notions 
(concepts) 

meanings 
(denotations) 

area of synonymy of 
designations 

homonym 

synonymy of 
concepts 

unified concept 
non-unified concept 

Fig. 1. Unification in the semantic space 
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The equivalence relation ~C  forms equivalence 
classes. There is a bijection between them and signs  
S : ~ | |

C
C S↔  with (denotation) ( )

def

N Nd v C E= ×
 

being an injection |S E↔ . 

Unification consists in the transition in the relation 
of similarity ( )( )~N Ct C S∩ × from designations N 
to signs S. Semantic normalization in the languages of 
the knowledge representation model used assumes that 
primary meanings F E⊆  are distinguished among the 
meanings 2N FE ∪⊆ . 

II. SEMANTIC SPACE FEATURES AND MODELS 

A. Static ontological structures 
For ontological structures of knowledge bases with 

denotational semantics, the set-theoretic representation 
(using the membership relation as a basic one) and its 
generalization [5] are used to represent various (finite) 
classical and non-classical mathematical substructures [5] 
and to investigate their spatial properties including 
topology discrete structures (Fig. 2–4). 

 
Fig. 2. Ontological structure 

In this case, when modeling the semantic space, 
canonical representations of ontological structures are 
used. These allow us to identify their canonical spatial 
features and talk about canonical models of the 
meaning space. This works in cases when the 
structures are represented completely. 

 
Fig. 3. Ontological structure and extensional  

closures of its elements 

 
Fig. 4. Closed non-empty sets of the corresponding  

topological space 

 

The algorithm consists of the following steps: 
1. Form closed sets of ontology structure elements 

based on extensional closure. 
2. Order the closures and their elements according 

to the order relation of the closed subsets, constructing 
a (topologically sorted) canonical form of the orgraph 
of this relation, obtaining a directed acyclic metagraph. 

3. Starting from the lower vertices (from which 
there are no paths to other vertices) of the metagraph 
and up to the upper ones, in the order given by its 
canonical form, construct and complete the canonical 
forms of ontological structures included in the 
corresponding vertices of the metagraph. 

In accordance with the canonical forms of 
ontological structures, canonical matrices and their 
embeddings can be constructed: adjacency, semantic 
distances, semantically bounded stable distances (due to 
the property of knowledge connectivity, the values 
cannot exceed 8), distance matrices of ontological 
structure elements in the minimum dimensionality basis.  

The embedding of canonical adjacency matrices: 

( )
( )

( )

0 0 0 0 0 0 0 00 0 0 0 0
0 0 0 0 0 0 0 00 0 0 0 0
0 0 0 0 0 0 0 01 0 0 0 3
0 0 0 0 0 0 0 00 1 0 0 3
0 0 0 0 0 0 0 00 0 3 3 0

0 0 0 0 00 0 0 0 0 0 0 0
1 0 3 0 00 0 0 0 0 0 0 0
0 3 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 00 1 0 0 3
0 0 0 0 0 0 0 00 0 0 3 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 

  
  
  
    
 
 
 

0 0 3
0 0 3

0 0 3 3 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
The embedding of canonical distance matrices: 

( )
( )

( )

17 16 19 15 12 5 11 80 8 1 7 4
17 16 19 15 12 5 11 88 0 7 1 4
16 15 18 14 11 4 10 71 7 0 6 3
16 15 18 14 11 4 10 77 1 6 3
13 12 15 11 8 1 7 44 4 3 3 0

0 1 4 2 517 17 16 16 13
1 0 3 1 416 16 15 15 12
4 3 0 4 719 19 18 18 15

15 15 14 14 11 2 1 4 0 3
12 12 11 11 8 5 4 7 3

0

0

 
 
 
 
 
 
 
 

 
 
 
  




12 6 9
11 5 8
14 8 11
10 4 7
7 1 4

5 5 4 4 1 12 11 14 10 7 6 3
11 11 10 10 7 6 5 8 4 1 6 0 3
8 8 7 7 4 9 8 11 7 4 3 3 0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
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The embedding of distance matrices of ontological 
structure elements in the basis (bold on the diagonal) 
of minimal dimensionality:  

 
The previously formulated theorem [5] allows us to 

pass from an existing metric space to a new metric 
space by taking into account pseudometrics that can 
specify a dimension.  

This is not enough to analyze topological properties 
of reflexive ontological structures. In order to highlight 
the topology of these structures, we propose to 
consider additional numerical features for a sign σ  of 
the tuple µ : 

 ( )
( )

1( )
def

incidensity ι σ

υ σ
σ += ; ( )

( )

( )

def C

C
weight ε µλ

ε µλ

ε

λ
ε

µ ∈

∈

∑=


, (4) 

where ( )υ σ  is a set of signs in the proximity of σ , 
( )ι σ  is a set of their incidences, ( )C ε  is a proximity 

of λ -type ε .  

On the basis of the introduced features and similar 
ones, it is possible to specify the weight of connectives 
which can be the basis of metric properties of the 
semantic space. These properties allow us to form a 
system of closed sets of the topological subspace which 
is formed by means of ascending hierarchical clustering. 

B. Dynamic ontological structures 
For ontological structures of knowledge bases with 

operational semantics, we use models of transition-
state diagrams (graphs) (using the becoming relation 
as a basic one), as well as the proposed model of 
operational-information space [5] which allow us to 
represent different (finite) formal submodels (pseudo-
orgraphs) of knowledge processing and investigate 
their spatial properties including topology of discrete 
structures.  

Previously [5, 8], we considered the time-averaged 
entropy of wavefronts of the equilibrium state of a 
knowledge processing model (system) with a pseudo-

orgraph structure of returnable operations. 
Returnability are one of the three key features for 
constructing a general classification of operations and 
problems solved with their help [5]. 

If a pseudo-orgraph is not strongly connected or 
does not correspond to non-redundant operations, i.e. it 
contains some features, vertices in which the total flow 
is not conserved (final or initial) then we can apply to it 
some meta-operation (surgery) which completes it to a 
connected one. The simplest of the operations 
augments such a pseudo-orgraph with a bipartite 
complete orgraph, the first partition of which is the set 
of all final vertices and the second partition is the set of 
all initial vertices. After that, one can compute the 
flows for such augmented pseudo-orgraph and the 
corresponding flows for the original pseudo-orgraph. 
As for the calculation of wave fronts, lengths and 
periods of such a pseudo-orgraph, it is more 
complicated. A theorem was formulated earlier that this 
entropy is a monotone measure [5] for the separability 
relation on equivalence classes of isomorphic strongly 
connected pseudoormultigraphs. In addition to this, the 
following theorem holds true. 

Theorem 1: The entropy is an additive measure 
with respect to the tensor product operation of 
equivalence classes of isomorphic strongly connected 
pseudoormultigraphs. 

The introduced entropy is an invariant of 
knowledge processing operations and it is also the 
basis for the formation of pseudometrics on elements 
of ontological structures and in accordance with the 
mentioned theorem is the basis for the transition from 
one metric space to another. 

C. Network problem solving models 
Due to the prevalence of neural network models 

that compute numerical feature values of input image 
data in linear vector space, the question arises about 
the relationship between input data, object images, 
and their secondary image features. To what extent the 
computed feature values correspond to some formal 
context and ontological structure of the corresponding 
formal concepts. Whether the corresponding images 
and concepts have an extensional, what are their 
denotates and designates. A separate difficulty is that 
the description of features uses models of continuous 
mathematics (including real numbers, the power of the 
set of which is uncountable), and the program 
implementation is discrete. However, only a countable 
subset of real numbers is computable. To overcome 
computational difficulties, such models as interval 
arithmetic [9], quasivector spaces [10] and others  
have been proposed, but they do not remove all the 
issues [9, 11]. 

( )
( )

( )

3 4 1 5 8 9 9 50 6 1 7 8
9 10 7 11 14 3 15 116 0 7 1 2
4 5 2 6 9 10 10 61 7 0 6 7

10 11 8 12 15 4 16 127 1 6 4
6 7 6 8 11 6 12 88 2 7 4 0

0 1 2 2 53 9 4 10 6 4 6 4
1 0 3 1 44 10 5 11 7 5 5 3
2 3 0 4 71 7 2 8 6 6 8 6

5 11 6 12 8 6 4 22 1 4 3
8 14 9 15 11 9 1 35 4 7 3 0
9 3 1

0

0 4

 
 
 
 
 
 
 
 

  
  
  
    
 
 
 

0

6 4 5 6 6 9 0 10 6
9 15 10 16 12 6 5 8 4 1 10 4
5 11 6 12 8 4 3 6 2 3 6 4 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0



111 

III. PROTOMULTIVERSAL NUMBERS 
A model of protomultiversal numbers is proposed  

to decide the above inconsistencies and provide 
answers to the questions posed. 

The model of protomultiversal numbers is given by: 

 , , , , ,N L R F M A , (5) 

where N  is the set of (canonical forms of) 
computable numbers, L  is the set of places, R  and F  
are the sets of measurement and re-generalization 
steps ( s̀  is the next step after s ), M  is the set of 
protomultiversal numbers, A  is the set of conjugacy 
constraints that is satisfied: 

 ( )( ) ( )2
2

M

FRL

A N
∗

+

     ⊆         

. (6) 

Each constraint 2,t ta a N∈  for x  has the form:  

 
1

1

10 0 1 1 mod
1

0
i

i j
kq

in q

qi j k qj
q

a x
−

−

 −  = = = ++    −  

∗ ≤∑ ∑ ∏ ,  

 
1

1

10 0 1 1 mod
1

0
i

i j
kq

in q

qi j k qj
q

a x
−

−

 −  = = = ++    −  

∗ ≥∑ ∑ ∏ . (7) 

Each number m ( . , .m bottom x m top≤ ≤ ) of M : 

 , , , , , ,m locations low hi down up bottom top= , (8) 

where  
  

  (9) 

{ } { } { }( ),bottom top N∪ ⊆ ⊥ × .
 

Other properties are also performed: 

( )( )( ) ( )( )( )( )
( )( )( ) ( )( )( )( )

`

;`

p q lo f r p lo f r q

hi f r p hi f r q

∀ ∃ ≥ ∧

∧ ≤

 
( )( )( ) ( )( )( )( )

( )( )( ) ( )( )( )( )
,` `

, ;

x lo f r p x hi f r p

q lo f r q x hi f r q

∀ ≤ ≤ →

→ ∃ ≤ ≤





 
( )( )( ) ( )( )( )( )

( )( )( ) ( )( )( )( )
`

;`

p q lo f r p lo f r q

hi f r p hi f r q

∀ ∃ ≥ ∧

∧ ≤
 (10)

( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )

;

;

lo h r p lo f s p lo f r p

hi h r p hi f s p hi f r p

= =

= =

( )( ) ( )( )( ) ( )( )( )bottom down f r low f r p hi f r p≤ ≤ ≤  

( )( )( ) ( )( )( )( ) ( )( )( )( )1low f r p hi f r p low f r p≥ →

( )( )( ) ( )( )hi f r p up f r top≤ ≤ , 

where 

 
( ) ( )
( ) ( )

, , , ,

, , , ,

α χ β γ β γ α χ

α χ β γ β γ α χ

≥ ⇔ ≤

> ⇔ <
 (11) 

( ) ( ) ( ) ( )( )( )( ), ,α χ β γ χ γ χ γ α β< ⇔ < ∨ = ∧ ¬ ∧  

( ) ( ) ( ) ( )( )( ), ,α χ β γ χ γ χ γ α β≤ ⇔ < ∨ = ∧ →  

( ) ( ) ( )( ), , , , , ,α χ β γ α χ β γ α χ β γ= ⇔ ≤ ∧ ≥ . 

The operation max (and similarly min) is defined: 

 { } { }( )
( )( ) ( )( )( ) { } { }( )

max , ,

,max .

def

α χ β γ

α χ γ β χ γ χ γ

∪ =

= ∧ ≥ ∨ ∧ ≤ ∪
 (12) 

Also: 

 ( ) . .
def

expanse m m top m bottom= − ;            (13)

( )( )( )( ) ( )( )( ) ( )( )( ). . .
def

latitude m f r p m hi f r p m low f r p= −  

The regular protomultiversal numbers are satisfied: 

( )( ){ }( )
( )( ){ }( )

( )( )( ) ( )( ){ }( )
( )( )( ) ( )( ){ }( )

. min . ,

. max . ,

. min . .

. max . .

def

def

def

def

m bottom m down f r f r F R

m top m up f r f r F R

m down m low f r p p m locations f r

m up m hi f r p p m locations f r

= ∈ ×

= ∈ ×

= ∈

= ∈

( )( ) ( )( ). . .`m locations f r m locations f r⊆                    (14) 

There exist three cases to define relations expand, 
extend, lapse and operations on the numbers from M: 
partially defined ( ),Q O= = ∃  an unary completely  
defined ( , , )Q O = ∀ ∃  and a completely defined  
( )Q O= = ∀  operations. For example, for the sum 
operations: 

 
( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

. , .

. , .

m low h s q m hi h s p

n low f r p n hi f r p

+

+
 (15) 

where ] [ ] [, , ,low hi low hi low low hi hiα α β β α β α β   + = + +    ; 

 1 1 2 2, ;α β α β α β+ = + +  (16) 

( ) ( )( ) ( )( )1 1 1 1 2 1 2 1α β α β α α β β+ = ∧ ∨ = +∞ ∧ ∨ = +∞ ∧ , 

and ] [x    with ] [x    are rounding down and up on N  
{ } { }( ).N−∞ ∪ +∞ ⊆  Other operations such as 

multiplication, subtraction and division can be 
specified similarly and according to the operations of 
interval arithmetic [10]. 

{ } { } { }( )( ),
FRL

low hi N ∪ ⊆ ⊥ × 
 



{ } { } { }( )( ),
FR

down up N∪ ⊆ ⊥ ×

( )( )( ) ( )( )( )( )
( )( )( ) ( )( )( )( )

,

, ;` `

x lo f r p x hi f r p

q lo f r q x hi f r q

∀ ≤ ≤ →

→ ∃ ≤ ≤





( )( )( ) ( )( )( ). , .
def

g t oQhQsQqOfOrOp l low g t o l hi g t o∀ ∀ ∀ =
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Depending on N, the algebraic systems of 
protomultiversal numbers can extend fields or linear 
vector spaces, exhibiting properties of rings or modules. 

For each operation or function expressed by their 
superposition, as well as for the sum operation, we can 
define at least three variants: partially, unary 
completely and completely defined functions. 

Then we can treat a concept as an image (feature 
value) of a name (sign), i.e. an image of the initial 
pattern (a set of protomultiversal numbers). Denotation 
(referent) is the image (value of the sign) of the concept 
and the image of the name (set of protomultiversal 
numbers). Designate is the set of all protomultiversal 
numbers partially or completely defined by operations 
(functions) between them. 

IV. CONCLUSION 
On the basis of previously proposed models for 

representing non-numeric structures possessing 
denotational and operational semantics, the steps of the 
algorithm and examples of identifying topological and 
metric features of static structures of the semantic space 
are considered. Semantically stable features are 
considered. These features allow analyzing topological 
and metric properties of strongly connected ontological 
structures. The measure of information entropy additive 
on the set of strongly connected pseudo-orgraphs of 
operations is considered for dynamic structures of the 
semantic space. The theorem on its additivity is 
formulated. On the basis of this measure as an invariant, 
an approach to the construction of pseudometrics 
specifying the metric properties of the semantic space is 
proposed. The model of protomultiversal numbers, 
which is a formal basis for the specification of meaning 
and revealing semantic properties of network structures 
and models, such as artificial neural networks, etc., is 

proposed. This model suggests additional studies of its 
practical capabilities.  
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