ИНТЕГРАЦИЯ ЦИФРОВЫХ ТЕХНОЛОГИЙ В ПРЕПОДАВАНИЕ МАТЕМАТИКИ В СИСТЕМЕ ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

М.Б.БЕКИЕВА, Г.О.ОРАЗДУРДЫЕВА

Инженерно-технологический университет Туркменистана имени Огуз хана

статье рассматриваются Аннотация: В современные подходы интеграции цифровых образовательных технологий в процесс преподавания математики в системе профессионального образования. Особое внимание уделяется платформам GeoGebra, Desmos и WolframAlpha. Приводятся конкретные примеры использования, рассматриваются методические аспекты, трудности внедрения. выделяются преимущества и Выполнен эффективности использования указанных цифровых инструментов, представлены количественные и качественные показатели усвоения материала студентами.

Современное профессиональное образование переживает этап активной цифровой трансформации. Особенно актуальной становится проблема повышения качества преподавания дисциплин естественно-научного цикла, в том числе математики. Традиционные подходы к обучению часто оказываются недостаточно эффективными для студентов с различными уровнями подготовки и мотивации. В этой связи растёт интерес к цифровым образовательным платформам, которые позволяют сделать обучение более интерактивным, наглядным и персонализированным [1].

Интеграция цифровых технологий в обучение математике предоставляет преподавателям инструменты для визуализации, автоматизации расчётов и формирования индивидуальных траекторий обучения. Однако успешное внедрение требует методической подготовки и анализа реальных результатов применения этих средств [2].

Обоснование выбора и примеры использования цифровых платформ.

Три платформы — GeoGebra, Desmos и WolframAlpha — выбраны как универсальные, бесплатные или условно-бесплатные средства с широким спектром применения в математике. Их функционал позволяет эффективно работать как с базовыми, так и с углублёнными темами, что делает их актуальными для СПО [3-5].

Таблица 1. Функциональность и интерфейс популярных математических платформ

Платформа	Возможности	Интерфейс
GeoGebra	Графики, системы	Русский,
	уравнений, построения вектора,	английский
	матрицы, анимации	
Desmos	Интерактивные графики,	Английский
	моделирование, простота ввода	
	математических выражений	
WolframAlpha	Символические	Английский
	вычисления, разложения,	
	интегралы, пошаговые	
	объяснения	

Примеры использования платформ:

1) GeoGebra в курсе алгебры и начала анализа.

Рассмотрим функцию:

$$f(x) = x^2 - 4x + 3$$

С помощью GeoGebra студенты:

- строят график функции;
- определяют координаты вершины параболы: $x = \frac{-b}{2a} = 2$;
- находят корни по формуле:

$$- \qquad x_{1,2} = \frac{4 \pm \sqrt{16 - 12}}{2} = 1,3$$

– проводят сравнительный анализ графиков f(x) и f(x-2), изучая параллельный перенос [6].

Код для построения в GeoGebra:

$$f(x)=x^2-4x+3$$

$$f_1(x)=(x-2)^2-4(x-2)+3$$

После ввода этих выражений GeoGebra автоматически построит графики исходной и смещённой параболы.

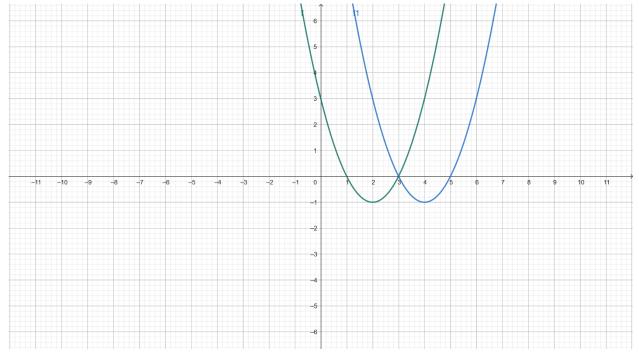


Рисунок 1. – Пример графика параболы и её смещённого варианта в GeoGebra

- 2) Desmos при изучении геометрии и тригонометрии. Desmos позволяет визуализировать:
- окружности и эллипсы:

$$(x-2)^2 + (y+1)^2 = 9$$

– синусоиду:

$$y = A\sin(Bx + C) + D$$

Студенты изменяют параметры и наблюдают влияние на форму графика, осваивая понятия амплитуды, фазы и вертикального смещения [4].

Код для построения в Desmos: $y=2 \sin(3x-\pi)+1$

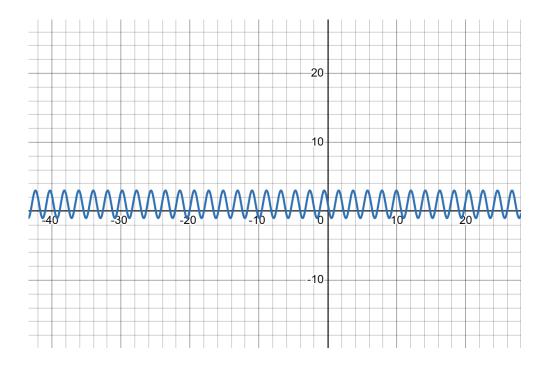
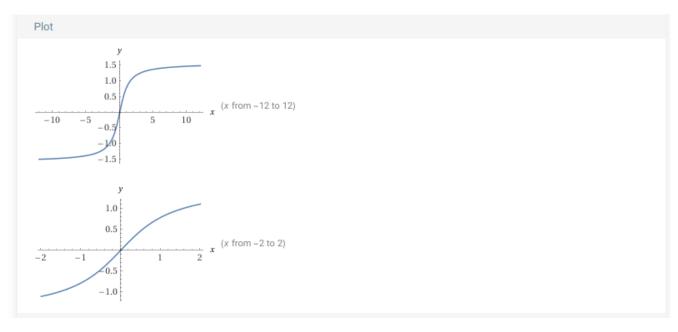


Рисунок 2. – Модификация синусоиды в Desmos

3) WolframAlpha в курсе математического анализа. Пример использования:


$$\int \frac{1}{x^2 + 1} dx = \arctan x + C$$

Система предоставляет не только ответ, но и пошаговое объяснение:

- распознаёт интеграл;
- указывает подстановку, если требуется;
- обосновывает результат [5].

Код для ввода в поисковую строку WolframAlpha: integrate $1/(x^2+1)$

Series expansion of the integral at x=0
$$x-\frac{x^3}{3}+\frac{x^5}{5}+O\big(x^6\big)$$
 (Taylor series)

Рисунок 3. – Пошаговое решение интеграла в WolframAlpha

Это особенно полезно для студентов с низкой математической подготовкой.

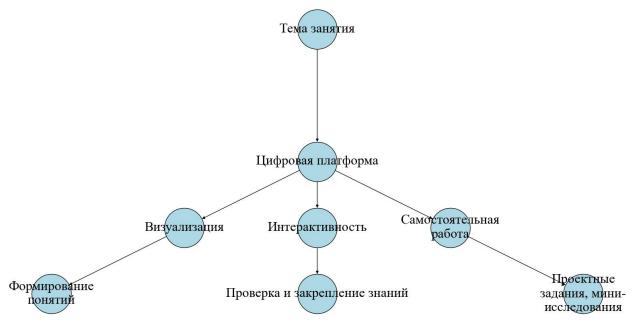


Рисунок 4. – Методическая схема применения цифровых платформ

Исследование проведено в колледже на выборке из 78 студентов второго курса. Использовались анкеты, контрольные работы до и после внедрения технологий [7].

Таблица 2. – Анализ эффективности внедрения цифровых платформ

Критерий	До	После
	внедрения	внедрения
Усвоение понятий	62%	85%
Усвоение формул	58%	81%
Мотивация к работе	66%	88%
Активность на занятиях	60%	84%
Процент самостоятельных	42%	76%
решений		

Результаты подтверждают повышение уровня понимания, интереса и самостоятельности студентов. Особенно заметен рост вовлеченности при использовании GeoGebra для построения и анализа графиков [6].

Качественные отзывы студентов свидетельствуют, что они воспринимают занятия как более современные и «жизненные». Цифровые инструменты воспринимаются не как дополнение, а как неотъемлемая часть обучения.

Цифровые технологии становятся важнейшей частью преподавания математики в СПО. Они открывают широкие возможности для реализации компетентностного и деятельностного подходов, делают обучение более интерактивным и адаптивным. Успешная интеграция требует методической поддержки, повышения цифровой грамотности преподавателей, а также анализа эффективности внедрения [8].

Список использованных источников

- 1. Чернышева, О.Ю. Информационные технологии в обучении: учебное пособие. М.: Академия, 2020.
- 2. Тихонов, АВ., Белова, И.Н. Цифровая дидактика: подходы и реализация. СПб. : Лань, 2022.
 - 3. Онлайн-платформа GeoGebra: https://www.geogebra.org
 - 4. Desmos Graphing Calculator: https://www.desmos.com
 - 5. WolframAlpha Computational Engine: https://www.wolframalpha.com
- 6. Юдина, Е.И. Использование GeoGebra при обучении математике. // Математика в образовании, 2021, №2.
- 7. Георгиева, С.В. Цифровые ресурсы в подготовке специалистов СПО. // Педагогика и образование, 2022, №4.
- 8. Бекиева, М.Б., Мамутниязова, Д.Р., Акмырадова А.Я. Factors influencing acceptance to use M-learning (mobile learning) and CALL (computer assisted language learning) in ELT (english language teaching): an approach to the phenomenon of self-studying through the multifunctional mobile technologies, Международный научный журнал "Вестник науки и творчества", 2024, стр.28-30.