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Abstract

This paper addresses the challenges of testing computing systems and their hardware

components, especially memory devices. It highlights the limitations of traditional random

testing. Such methods often fail to use available information about the system under test

and previously generated test patterns. The potential of controlled random testing, which

incorporates knowledge of prior patterns, is therefore explored. A class of controlled

random tests with a limited number of test patterns is identified and analyzed, including

existing standard approaches. The paper introduces a novel measure of dissimilarity

between test patterns. This measure is based on calculating Hamming distances for binary

patterns after mapping them into different numeral systems, including quaternary, octal,

and hexadecimal. We propose a method for generating controlled random tests with a

guaranteed minimum Hamming distance. It is based on representing binary patterns as

symbols from non-binary numeral systems. In this way, ensuring a specific Hamming

distance in the symbolic domain also guarantees at least the same distance in the binary

representation. We evaluate the effectiveness of the proposed method through simulations,

particularly in the context of memory testing and the detection of multicell faults, i.e., errors

caused by interactions between multiple memory cells. This approach can enhance the

efficiency and reliability of test procedures in embedded systems, memory diagnostics, and

safety-critical applications.

Keywords: test; test pattern; computing systems testing; random test; controlled random

test; Hamming distance; pattern-sensitive faults; March tests

1. Introduction

Testing is still the main method used to verify the quality of software, hardware,

memory devices, and applications. Even though many design-for-test and analysis methods

have been proposed, testing remains a process that requires considerable effort and time.

Therefore, systematic and automated procedures for generating test data are very important.

Since the 1960s, probabilistic approaches, usually called random testing, have been widely

used because they are simple to understand and easy to apply [1–3]. However, the efficiency

of purely random methods is low: they usually ignore information about the system under

test and about earlier test patterns, which often results in weaker fault detection [4,5].

To overcome this limitation, different controlled versions of random testing have been

developed. In this paper, we use the term controlled random testing (CRT) [6] for methods
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that select the next pattern based on its difference from the previous ones. The Hamming

distance is most often used as a measure of this difference. A related idea, well known in

software testing, is called adaptive random testing (ART). A more detailed overview of these

approaches is given in Section 2.1, while the theoretical background relevant for CRT is

presented in Section 2.2.

The main problem studied in this paper is the choice of a difference measure that

(i) can properly describe the diversity between test patterns and (ii) can be computed with

low complexity [5,7]. The classical Hamming distance is widely used, but it often treats

different patterns as equally distant, even when their structures are sufficiently different.

To address this, we propose to extend the idea of Hamming distance by interpreting

binary patterns in other numeral systems and by defining a new vector-based dissimilarity

measure. This allows us to construct controlled tests that remain efficient to compute but

can better distinguish between candidate patterns.

Contributions. The paper offers the following contributions. First, we introduce a

framework in which an n-bit binary pattern can be mapped to sequences over alphabets of

higher radix while still allowing for distance calculations in a consistent way. Second, we

define a new vector-based dissimilarity measure based on these representations and discuss

its main properties. Third, we propose a method for generating controlled random tests

with a given minimum Hamming distance that reduces the need for expensive candidate

checks. Finally, we show in experiments with memory-oriented examples that our method

provides a more effective selection of patterns at a reasonable computational cost.

Paper organization. Section 2 is divided into two parts. Section 2.1 reviews ear-

lier work on controlled random testing. Section 2.2 presents the coding-theoretic back-

ground and shows bounds that limit the construction of CRT. Section 3 introduces the

representation-based extensions of the Hamming distance and the new dissimilarity mea-

sure. Section 4 describes the method for generating tests with a given minimum Hamming

distance. Section 5 presents the experimental results, and Section 6 gives the conclusions

and future directions.

2. Controlled Random Tests Analysis

2.1. Related Work

The related work can be grouped into three major streams: (i) pseudo-random and

pseudo-exhaustive testing, (ii) diversity-driven methods such as Antirandom Testing and

its extensions, and (iii) adaptive random testing (ART) and its numerous variants. Below, we

summarize key contributions within each stream.

Random testing has long been applied in hardware and memory verification due to

its simplicity and low implementation cost. In practice, purely random vectors are seldom

used directly; instead, pseudo-random sequences are commonly employed, often generated

by linear feedback shift registers (LFSRs) within built-in self-test (BIST) schemes [8]. Ex-

haustive and pseudo-exhaustive approaches have also been investigated to guarantee high

fault coverage [9]. Early seminal work by McCluskey [10] introduced a pseudo-exhaustive

testing methodology that became a foundation for later approaches. Fujiwara [11] pro-

vided further theoretical and practical developments, placing pseudo-exhaustive methods

within a broader framework of logic testing and design for testability. Karpovsky, Yarmolik,

and van de Goor [12] subsequently applied pseudo-exhaustive techniques to RAM testing,

demonstrating their potential for memory devices. While such methods ensure thorough

fault coverage, they are impractical for large memories due to excessive computational

requirements. Such drawbacks motivated the development of more advanced approaches

that explicitly control the diversity of generated test patterns.
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A significant breakthrough was the introduction of Antirandom Testing by

Malaiya [13–15], who first defined and demonstrated the method as a distance-based

black-box testing strategy. Yin [16] subsequently developed a practical tool for generating

hardware test sequences based on the principle of maximizing dissimilarity between test

vectors, providing one of the earliest implementations of the antirandom concept. The idea

of maximizing dissimilarity was later refined through extensions, including, among others,

Fast Antirandom Testing (FAR) [17], Scalable Antirandom Testing (SAT) [18], and Pseudo-

Ring Testing (PRT) [19]. Notably, most of these extensions were developed in the context of

hardware and memory testing.

In parallel, the concept of selecting tests according to their distance from previous ones

was generalized into what became known as adaptive random testing (ART) [20–22]. Unlike

the earlier hardware-oriented approaches, ART and its numerous variants were primarily

investigated in software testing. These include Good Random Testing [23], Restricted

Random Testing [24,25], Maximum Distance Testing [26], Mirror Random Testing [27],

Orderly Random Testing [28], hybrid adaptive random testing [29], and Evolutionary

Random Testing [30], among others. A variety of distance metrics have been explored in this

context, including minimum, average, maximum, centroid-based distances, discrepancy,

and membership grade, as well as Hamming distance [7]. None of these metrics can

be regarded as predominant across all ART variants, but they share the common goal

of enforcing diversity when selecting new test cases. Comprehensive surveys, such as

Anand et al. [5] on automated test case generation, Grindal et al. [31] on combination and

diversity-driven strategies, Chen et al. [32] and Huang et al. [7] on adaptive random testing,

and Feldt [33] on quantifying test diversity, provide broader overviews of these approaches

and underline the central role of diversity metrics in general.

Despite these contributions, most existing methods still rely on evaluating specific

characteristics of previously generated test sets. The vast majority of the approaches

presented share the common goal of maximizing diversity among test patterns. However,

this goal is most often achieved at the expense of increased computational overhead [34].

While such costs may be acceptable in some software testing contexts, they become a

serious limitation in hardware- and memory-oriented testing, where the efficiency of test

generation is a critical requirement. Therefore, there is a clear need for methods that ensure

sufficient diversity of test patterns while significantly reducing the computational burden.

2.2. Formal Analysis of Controlled Random Tests

Following the discussion of related work, this subsection provides a theoretical back-

ground on controlled random tests (CRTs). The analysis emphasizes the role of Hamming

distance as the principal diversity metric and introduces fundamental bounds and con-

structions that shape the efficiency of CRT generation. The presented considerations are

rooted in the classical results of coding theory, including Hamming’s seminal work on

error-detecting and error-correcting codes [35], the comprehensive treatment by Peterson

and Weldon [36], and the Plotkin bound [37], while also extending our earlier research on

Multi-Run Memory Tests [38] and optimal controlled random tests [39].

In the following discussions, we consider a sequence Ti of data ti,0, ti,1, . . . , ti,n−1 as a

test pattern Ti = ti,0ti,1 . . . ti,n−1 consisting of n elements ti,l , where l ∈ {0, 1, 2, . . . , n − 1},

generally represented in an arbitrary alphabet. As shown in [7], the next test pattern Ti

in a controlled random test is designed to differ as much as possible from the previously

generated patterns T0, T1, . . . , Ti−1. The hypothesis assumes that for two test patterns with

the maximum difference, the number of faults (errors) detected by the second pattern

will also be maximized. The Hamming distance HD(Ti, Tj) for j ∈ {0, 1, . . . , i − 1} is
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often used as a criterion to distinguish the test pattern Ti from the previous patterns

T0, T1, . . . , Ti−1 [7,32].

For the general case, the Hamming distance is calculated by comparing two sequences

of data, Ti = ti,0ti,1 . . . ti,n−1 and Tj = tj,0tj,1 . . . tj,n−1 each consisting of n characters ti,l and

tj,l from an arbitrary alphabet [35,36].

The Hamming distance HD(Ti, Tj) between Ti and Tj is defined as the number of

positions at which ti,l and tj,l differ, and it can be expressed as

HD(Ti, Tj) =
n−1

∑
l=0

δ(ti,l , tj,l), (1)

where

δ(ti,l , tj,l) =







1, if ti,l ̸= tj,l ,

0, if ti,l = tj,l .

When comparing n characters in the patterns Ti and Tj, the minimum value of the Ham-

ming distance, minHD(Ti, Tj), is 0 if all characters match, and the maximum value,

maxHD(Ti, Tj), is n if all n characters differ. For example, in the case of binary num-

ber systems, the Hamming distance HD(Ti, Tj) between Ti = 0110 and Tj = 1100 is 2,

as they differ at two positions.

Most commonly, binary test patterns are considered, but they can also be interpreted

as sets of characters from other alphabets corresponding to different numeral systems.

For example, quaternary, octal, hexadecimal, and other alphabets can be used, where a

fixed number of consecutive bits in the original binary patterns represent the binary code of

a character in the corresponding alphabet. For instance, the binary pattern Ti = 010110112,

when divided into groups of two consecutive bits, can be represented in the quaternary

number system, which uses an alphabet of four characters (0, 1, 2, and 3), as Ti = 11234.

In the hexadecimal system, the same pattern Ti takes the form Ti = 5B16.

The main idea behind most approaches to controlled random test generation is to select,

from a given set of test candidates, the pattern Ti that has the maximum Hamming distance

with respect to the previously included patterns T0, T1, . . . , Ti−1. Various criteria can be

used for selecting Ti; however, the most common is to maximize the value of minHD(Ti, Tj),

where j ∈ {0, 1, . . . , i − 1}. In this case, the generated test will be characterized by the

minimum Hamming distance between any two test patterns included in the test [7]. As

a result, the controlled random test is defined by the value of the minimum Hamming

distance, as described in the following definition.

Definition 1. The value minHD(Ti, Tj) for a controlled random test T ∈ {T0, T1, . . . , Tq−1} is

equal to the minimum Hamming distance between two arbitrary test patterns Ti and Tj, where i ̸= j

and i, j ∈ {0, 1, 2, . . . , q − 1}.

In terms of coding theory, the minHD(Ti, Tj) characteristic can be regarded as the

code distance d of the code T ∈ {T0, T1, . . . , Tq−1}, which represents the smallest Hamming

distance between different pairs of code words T0, T1, . . . , Tq−1. Therefore, based on the

fundamental principles of coding theory, several useful conclusions can be drawn that

must be considered when generating controlled random tests.

In particular, a significant feature of controlled random tests is their limited length.

This follows from the fact that the larger the minimum distance minHD(Ti, Tj), used as a

criterion for including Ti in the test, the fewer patterns exist that satisfy this criterion. This

relationship is described by the Hamming bound [35,36].
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Hamming Bound. The estimation of the Hamming bound for d = minHD(Ti, Tj) =

2r + 1, where r is an integer, can be expressed as the inequality:

q ≤
bn

∑
r
k=0 (

n
k)(b − 1)k

. (2)

Here, the Hamming bound denotes the maximum possible size q of a b-ary block code

T of length n and minimum Hamming distance d between code words. In the context of

controlled random tests, the value d = minHD(Ti, Tj) directly affects the test length. For

example, in the case of binary patterns (b = 2) with n = 8 and d = minHD(Ti, Tj) = 7 =

2 × 3 + 1, the Hamming bound can be calculated as

q ≤
28

∑
3
k=0 (

8
k)(2 − 1)k

.

As shown in this example, increasing the Hamming distance minHD(Ti, Tj) to a value of

7 reduces the estimate of q to 2. This means that the controlled random test T for n = 8 and

d = minHD(Ti, Tj) = 7 will consist of no more than two patterns: T0 and T1. It is important

to note that the pattern T0 is generated randomly and can take any of 2n = 28 binary values,

while the second pattern T1 is selected to satisfy the criterion minHD(T0, T1) ≥ 7. Thus,

there is a large variety of controlled random tests T with minHD(T0, T1) ≥ 7, but each test

consists of only two patterns: T0 and T1. In practice, this result shows that for short memory

words, only a very limited number of maximally distant test patterns can be constructed,

which restricts the applicability of such strict distance requirements.

Let us consider approaches for constructing controlled random tests consisting

of a minimal number q of test patterns, for which minHD(Ti, Tj) takes the maximum

possible value.

For the synthesis of controlled random tests with a small number of patterns q, we

first examine classic codes with minHD(Ti, Tj) ≥ n/2 [37]. It is known that the Plotkin

theorem allows for determining the maximum possible number q of code words in a binary

code of length n with minHD(Ti, Tj) ≥ n/2. The Plotkin bound provides an upper limit

for this value [37,39].

Plotkin Bound. If d = minHD(Ti, Tj) ≥ n/2 and n is even, the following inequality

holds for q:

q ≤







2
⌊

d
2d−n

⌋

, for 2d − n > 0;

4d, for 2d − n = 0.
(3)

For odd values of n, the Plotkin bound is expressed as

q ≤







2
⌊

d+1
2d+1−n

⌋

, for 2d + 1 − n > 0;

4d + 4, for 2d + 1 − n = 0.
(4)

Based on the application of the Plotkin bound, a formal algorithm for synthesizing con-

trolled random tests MMHD(q), characterized by a small number q of patterns with the

maximum–minimum Hamming distance (max_minHD(Ti, Tj)) between test patterns Ti

and Tj, is proposed in [38].

For q = 2, based on (3) and (4), the maximum possible value max_minHD(Ti, Tj) of

the distance can be estimated. This result, max_minHD(Ti, Tj) = n, and the corresponding

test MMHD(2) = {T0, T1} = {T0, T0}, is supported by previous findings for the optimal

random test consisting of two inverse patterns, T0 and T0 [35,36].
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In the case of q = 3, according to the Plotkin bound, d = max_minHD(Ti, Tj) ≤

3n/4. As shown in [38], the closest optimal solution MMHD(3) can be achieved only for

max_minHD(Ti, Tj) = 2n/3, where 2n/3 < 3n/4. For q = 4, the test MMHD(4) can be

constructed with d = max_minHD(Ti, Tj) ≤ 2n/3 [38].

By generalizing the heuristic procedure for constructing MMHD(q) for small values of

q, a formal algorithm for synthesizing the MMHD(q) test for a given q ≥ 4 was presented

in [38]. According to this algorithm, the MMHD(q) test consists of q patterns with

max_minHD(Ti, Tj) = (2q−3) · n/(2q−2 − 1).

It should be noted that for any integer q, the distance (2q−3) · n/(2q−2 − 1) is greater than

n/2; however, as q increases, it approaches n/2.

A very important remark concerns the size n of the test patterns, which must be

considered. In order to generate MMHD(q) tests with q ≥ 4, the value of n must be

divisible by 2q−2 − 1, and its minimal value is 2q−2 − 1. For example, in the case of q = 4,

one variant of the MMHD(4) test is T = {000, 011, 101, 110} with the minimal value

n = 2q−2 − 1 = 24−2 − 1 = 3.

Based on the Hamming distance HD(Ti, Tj) for test patterns Ti and Tj, and their

Cartesian distance CD(Ti, Tj) as described in [39], a method for synthesizing optimal con-

trolled random tests (OCRTs) is considered. These tests are characterized by the conditions

HD(Ti, Tj) ≥ n/2 and minHD(Ti, Tj) = n/2. In the general case, the number of OCRT

patterns is defined as q = 2(⌈log2 n⌉+ 1). A constructive algorithm for generating test

patterns is presented in [39]. For the specific case when n = 2m, where m is an integer,

the number q of OCRT patterns T0, T1, . . . , Tq−1 is given by q = 2(m + 1). For example,

when n = 4, the number of OCRT patterns is q = 6, and for n = 8, the number of patterns

is q = 8.

The example of the MMHD(4) test with HD(Ti, Tj) = 2 for n = 3 presented in [38]

and the OCRT for n = 4 are shown in Table 1.

Table 1. Examples of MMHD(4) for n = 3 and OCRT with n = 4 tests.

MMHD(4) OCRT

Pattern 1 2 3 Pattern 1 2 3 4

T0 0 0 0 T0 0 0 0 0
T1 0 1 1 T1 1 1 1 1
T2 1 1 0 T2 0 0 1 1
T3 1 0 1 T3 1 1 0 0

T4 0 1 0 1
T5 1 0 1 0

These small examples demonstrate how theoretical bounds directly limit the number

of feasible patterns in controlled random tests, especially for memory diagnostics where

compact but diverse test sets are needed. At the same time, the MMHD(4) and OCRTs

shown in Table 1 can be interpreted as templates for generating patterns of similar tests.

A specific MMHD(4) or OCRT can be defined by a randomly chosen initial test pattern T0,

based on which subsequent patterns are generated by inverting the bits of T0 according

to the given templates. For example, in the case of MMHD(4) shown in Table 1, if the

random initial pattern is chosen as T0 = 101, the corresponding new MMHD(4) test will

consist of the patterns {101, 110, 011, 000}. Therefore, in the following text, the abbreviation

MMHD(q) is used to denote a family of tests with q test patterns and the corresponding

value of max_minHD(Ti, Tj).
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A common drawback of both approaches to generating controlled random tests,

MMHD and OCRT, is the limitation and restriction on the size of their test patterns. Four

main algorithms are known for constructing a set of test patterns (code words) with given

properties based on an initial test (code) [36]. These algorithms utilize the following four

properties, which we formulate for the case of MMHD(q) [36].

Property 1. The result of permuting the bits ti,l simultaneously in all q test patterns

Ti = ti,0ti,1 . . . ti,n−1 of the test MMHD(q) = {T0, T1, . . . , Tq−1} is the test MMHD(q).

Property 2. The result of inverting the bits ti,l in all q test patterns Ti = ti,0ti,1 . . . ti,n−1 of the

test MMHD(q) = {T0, T1, . . . , Tq−1} is also the test MMHD(q).

Property 3. The test MMHD(q) = {T0, T1, . . . , Tq−1} with test patterns

Ti = ti,0ti,1 . . . ti,u·n−1,

consisting of u × n bits, is obtained from the test pattern Ti = ti,0ti,1 . . . ti,n−1 of the original test

MMHD(q) by concatenating it (repeating) u times. For example, if u = 2, then

Ti = ti,0ti,1 . . . ti,2n−1 = ti,0ti,1 . . . ti,n−1ti,0ti,1 . . . ti,n−1.

Property 4. The result of scaling (increasing) by s times the test MMHD(q) = {T0, T1, . . . , Tq−1}

is the test MMHD(q), consisting of test patterns Ti = (ti,0)
s(ti,1)

s . . . (ti,n−1)
s, where

Ti = ti,0ti,1 . . . ti,n−1 is the test pattern of the original test MMHD(q).

The results of applying the above properties to the test MMHD(4) shown in Table 1

are illustrated in Table 2.

Table 2. MMHD(4) test extension examples.

Original MMHD(4) Property 1 (Bit Permutation) Property 2 (Bit Inversion)

0 0 0 0 0 0 1 1 1
0 1 1 1 0 1 0 1 0
1 1 0 1 1 0 0 0 1
1 0 1 0 1 1 1 0 0

Original MMHD(4) Property 3 (Repetition, u = 3) Property 4 (Bit Scaling, s = 2)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1
1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0
1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1

The presented analysis of controlled random tests with a small number of test patterns

demonstrates the feasibility of generating such tests without significant computational

costs. The examples provided in Table 2 illustrate the derivation of new controlled random

tests using formal methods, which enable the generation of a new set of test patterns as

well as the adjustment of the pattern size n. It should be noted that the given properties

apply not only to the MMHD(q) and OCRT but also to any controlled random tests.

As noted above, the key characteristic of tests with a small number of test patterns is the

relationship between the value of the max_minHD(Ti, Tj) Hamming distance and the num-

ber q of test patterns. Increasing the required minimum Hamming distance minHD(Ti, Tj)—

essentially maximizing it—reduces the number q of patterns in the generated test. It is

evident that both test parameters, namely, the Hamming distance minHD(Ti, Tj) and the

number of test patterns, influence the efficiency and quality of the test. Intuitively, one
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might conclude that increasing both parameters improves the test properties. Indeed,

the more test patterns that are maximally distant from each other, the more efficient the test

becomes. However, as the analysis above has shown, it is impossible to simultaneously

increase both parameters. Therefore, in the subsequent discussion, we will consider an

approach that focuses on increasing the number of test patterns while maintaining the

minimum Hamming distance minHD(Ti, Tj) at an acceptable level.

In summary, the theoretical analysis highlights a fundamental trade-off: increasing

the minimum Hamming distance between test patterns inevitably reduces the number of

patterns in the test. These coding-theoretic constraints motivate the search for alternative

distance measures, which can better balance diversity and efficiency. Section 3 introduces

representation-dependent interpretations of the Hamming distance, aimed at achieving

this balance.

3. Modified Approach to Hamming Distance Calculation

The Hamming distance has significant limitations as a dissimilarity metric, as it only

distinguishes fully matching patterns Ti and Tj with HD(Ti, Tj) = 0 while treating all

other non-identical patterns equally. One argument that confirms the indistinguishability

of non-matching sequences is the case of binary patterns Ti and Ti, for which the Ham-

ming distance is always constant and equal to n. For example, HD(10000000, 01111111) =

HD(10101010, 01010101) = HD(00001111, 11110000) = 8. As seen above, the Hamming

distance HD(Ti, Ti) in all the given examples is equal to n = 8, indicating the same

maximum difference across all pairs of patterns. However, the structural differences

between these pairs of sequences are significant. An even greater structural difference

exists in the following character sequence pairs, 00000000, 11110000; 11111111, 00001111;

01011010, 11010100, for which the Hamming distance is HD(Ti, Tj) = 4. These exam-

ples highlight the need for alternative dissimilarity measures capable of capturing not

only the number of differing bits but also the spatial and structural relationships within

the sequences.

Let us examine the potential for extending the use of Hamming distance in comparing

finite sequences of characters Ti = ti,0ti,1 . . . ti,n−1 and Tj = tj,0tj,1 . . . tj,n−1, which represent

test patterns consisting of n characters (elements) ti,l and tj,l , where l ∈ {0, 1, . . . , n − 1}.

The alphabet of characters ti,l and tj,l can be arbitrary, as well as the number n of elements

in the patterns Ti and Tj. Without loss of generality, we assume that the test pattern Ti is

initially a binary pattern, meaning that the characters ti,l ∈ {0, 1}.

The primary objective of the existing modifications to the Hamming distance calcula-

tion is to select, from among potential test pattern candidates, a test pattern Ti that is most

different from the previously included pattern Tj.

The first modification assumes that the length of a binary test pattern is restricted

to n = 2w, where w is an integer. Such constraints frequently occur in practice when

addressing diagnostic problems in computer systems. Under this condition, the original

binary sequence

Ti = ti,0ti,1 . . . ti,n−1

can be represented in w + 1 different ways denoted as Ti(2
v), where v ∈ {0, 1, . . . , w}.

The index 2v specifies the number of consecutive bits that form each character in the new

alphabet. For v = 0 (20 = 1), we obtain the binary alphabet:

Ti(1) = ti,0(1)ti,1(1) . . . ti,n−1(1).
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For v = 1 (21 = 2), we obtain the quaternary alphabet:

Ti(2) = ti,0(2)ti,1(2) . . . ti,n/2−1(2),

where each character is formed from two consecutive bits of Ti(1). For larger values of v,

the construction continues in the same manner, producing

Ti(4), Ti(8), . . . , Ti(n/2), Ti(n) = Ti.

In the general case, the sequence Ti(2
v) consists of 2w−v characters. Each character of

this alphabet is obtained by concatenating two neighboring characters of the previous

representation Ti(2
v−1). For instance, for Ti(2):

ti,0(2) = ti,0(1) ti,1(1), ti,1(2) = ti,2(1) ti,3(1), . . .

and, more generally,

ti,l(2
v) = ti,2l(2

v−1) ti,2l+1(2
v−1), l = 0, 1, . . . , n/2v − 1.

Thus, each representation Ti(1), Ti(2), Ti(4), . . . , Ti(2
w) defines a sequence over a different

alphabet, offering multiple perspectives on the same original binary pattern.

The given interpretation of the original binary patterns does not prevent the determi-

nation of the Hamming distance between the patterns Ti and Tj. Just as in the case of binary

vectors, Equation (1) can also be applied here, provided that both patterns are expressed

in the same chosen alphabet. Let us illustrate this with the following example for the case

where n = 23.

Example 1. As an example of binary test patterns, consider Ti = 011000112 and Tj = 010110112,

for which the condition n = 2w = 23 is satisfied. For each pattern of binary characters

Ti = 011000112 and Tj = 010110112, in accordance with the above-described definitions, there are

w + 1 = 4 representations in the form of sequences of characters belonging to different alphabets

(see Table 3).

Table 3. Hamming distance computation in multiple alphabets for n = 8.

w = 0 w = 1 w = 2 w = 3

Ti Ti(1) = 01100011 Ti(2) = 1203 Ti(4) = 63 Ti(8) = c = (99)256

Tj Tj(1) = 01011011 Tj(2) = 1123 Tj(4) = 5B Tj(8) = [= (91)256

HD(Ti, Tj) 3 2 2 1

In Table 3, the Hamming distance for the original binary patterns Ti(1) and Tj(1), as

well as for their representations in different alphabets with their respective characters, is

presented. In this example, ASCII codes are used to represent Ti(8) and Tj(8). For all cases,

the value of the Hamming distance has been calculated based on Equation (1). The resulting

characteristic HD(Ti, Tj), represented by the four components {3, 2, 2, 1}, provides a more

accurate assessment of the differences between these test patterns.

The requirement that the dimension n = 2w of a binary pattern Ti, where w is an

integer, may not always be satisfied in practice. Consequently, for cases where n ̸= 2w,

when mapping the original pattern Ti into the sequences Ti(1), Ti(2), Ti(4), . . ., the required

number of bits equal to 2v may be insufficient for the last character of the sequence Ti(2
v),

where v ∈ {0, 1, 2, . . . , w}. For example, considering the pattern Ti = 01100012, where

n = 7, it can be represented as the sequences Ti(1), Ti(2), Ti(4), and Ti(8). However,

in three cases—Ti(2), Ti(4), and Ti(8)—the required number of bits is insufficient for the
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last character of the corresponding alphabet; specifically, one bit is missing for Ti(2), and one

bit is missing in both Ti(4) and Ti(8). An obvious solution to overcome this limitation

is a cyclic interpretation of the original pattern Ti = ti,0ti,1 . . . ti,n−1. This interpretation

assumes that the bit following the last bit ti,n−1 is the first bit ti,0, thereby using the initial

bits of the pattern to obtain the required number of bits for the last character of Ti(2
v). For

the pattern Ti = 01100012, such an interpretation allows us to obtain Ti(1) = 011000102

Ti(2) = 011000102 = 12024 Ti(4) = 011000102 = 6216 Ti(8) = 011000102 = b256 = (98)256.

The notation b256 above, as well as the symbols “c” and “[” in Table 3, represent values

in the base-256 numeral system. In each case, a group of 8 consecutive bits is interpreted as

a single element of a 256-ary alphabet. Thus, 011000102 = 9810 is represented by b256 (ASCII

code for the letter b), while 011000112 = 9910 and 010110112 = 9110 correspond to the ASCII

symbols “c” and “[”, respectively. It should be emphasized that these ASCII representations

are used only as illustrative examples, since the base-256 system also includes non-printable

and control characters. The purpose of this notation is to demonstrate that every 8-bit block

can be treated as one symbol of a base-256 alphabet.

Removing the restriction on the size n of the binary pattern Ti by extending it to the

required number of bits allows for an expansion in the number of alphabets available

for different mappings of the original pattern. Naturally, considering the possibility of

extending the original binary pattern to the required number of bits, the number of al-

phabets can be increased up to n. These alphabets consist of characters specified by one

bit, two bits, three bits, four bits, and so on, up to the alphabet in which each charac-

ter is determined by n consecutive bits. For example, considering the original pattern

Ti = 011002 with n = 5 and its cyclic extensions, it can be represented in the form of

sequences obtained for n = 5 different alphabets. The sequential representations are

as follows: Ti(1) = Ti = 011002, Ti(2) = 0110002 = 1204, Ti(3) = 0110002 = 308,

Ti(4) = 011000112 = 6316, and Ti(5) = 011002 = C32.

Another approach to representing the original test pattern in various numerical sys-

tems with different character sets is to expand the last character of the pattern by appending,

for example, all zero values. Consider the example of a test pattern Ti = 01100, which

can be represented in five different numerical systems, each with its own alphabet. To

avoid potential conflicts related to the absence of a complete set of characters (or their

graphical representation) in alphabets containing a large number of symbols, each character

in all numerical systems will be represented in binary form and separated by spaces. Thus,

the test pattern Ti = 01100 can be represented in five different numerical systems as follows:

Ti(1) = 0 1 1 0 02 Ti(2) = 01 10 004 Ti(3) = 011 0008 Ti(4) = 0110 000016 Ti(5) = 01100032.

Let us define the binary n-bit test pattern Ti as a pattern in a numerical system other

than binary.

Definition 2. The test pattern Ti, consisting of n binary characters, can be interpreted in a

2r numerical system with 2r characters as the pattern Ti(r), where r ∈ {1, 2, . . . , n}. This

pattern consists of ⌈n/r⌉ characters, where Ti is expanded to a size of ⌈n/r⌉ × r bits by adding

⌈n/r⌉ × r − n zeros.

For example, the test pattern Ti = 0110001 with n = 7 can be represented in the octal

(23) numerical system with ⌈n/r⌉ = ⌈7/3⌉ = 3 characters as Ti(3) = 011 000 1008 = 3048.

To achieve this representation, ⌈n/r⌉ × r − n = ⌈7/3⌉ × 3 − 7 = 2 zeros have been added.

Note that the above examples of interpreting the pattern Ti and Definition 2 allow

us to consider binary test patterns in various number systems. Using the last example

of representing the test pattern Ti = 01100 in n = 5 different number systems, let us

illustrate the determination of the Hamming distance HD(Ti, Tj) (Equation (1)) for each

interpretation of two patterns: Ti = 01100 and Tj = 01011.
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The below example (see Table 4) of determining the Hamming distance demonstrates

the possibility of obtaining, based on Equation (1), several numerical assessments of the

relationship between the original binary patterns Ti and Tj.

Table 4. Example of the Hamming distance calculation.

Ti(1) Ti(2) Ti(3) Ti(4) Ti(5)

Ti 0 1 1 0 0 01 10 00 011 000 0110 0000 01100
Tj 0 1 0 1 1 01 01 10 010 110 0101 1000 01011
HD(Ti, Tj) 3 2 2 2 1

Let us now define a new measure of dissimilarity between the binary test patterns Ti and

Tj, which consists of a set of numerical characteristics represented by the Hamming distances.

Definition 3 (Dissimilarity Measure MD(Ti, Tj)). The dissimilarity measure MD(Ti, Tj)

between two binary test patterns Ti = ti,0ti,1 . . . ti,n−1 and Tj = tj,0tj,1 . . . tj,n−1, where

ti,l , tj,l ∈ {0, 1} and l ∈ {0, 1, . . . , n − 1}, is defined as an n-component vector composed of the

Hamming distances

HD1 = HD[Ti(1), Tj(1)], HD2 = HD[Ti(2), Tj(2)], . . . , HDn = HD[Ti(n), Tj(n)]

calculated according to Equation (1).

The analyzed characters ti,l and tj,l of the test patterns Ti(r) and Tj(r), according

to Definition 2, are represented by r ∈ {1, 2, . . . , n} binary bits. Accordingly, using

Equation (1), the numerical values of the components HD1, HD2, . . . , HDn of the dissimilar-

ity measure MD(Ti, Tj) are determined. Table 5 presents examples of calculating MD(Ti, Tj)

for various pairs of test patterns Ti and Tj in the case where n = 5.

Table 5. Example of the dissimilarity measure MD(Ti, Tj) calculation.

Ti(1) Ti(2) Ti(3) Ti(4) Ti(5)

Ti 0 1 1 0 0 01 10 00 011 000 0110 0000 01100
Tj 1 0 0 0 0 10 00 00 100 000 1000 0000 10000
HD(Ti, Tj) 3 2 1 1 1

Ti 0 1 1 0 0 01 10 00 011 000 0110 0000 01100
Tj 1 1 0 0 1 11 00 10 110 010 1100 1000 11001
HD(Ti, Tj) 3 3 2 2 1

Note that in all three examples presented in Tables 4 and 5, the same pattern Ti = 01100

was used as the test pattern Ti, while three different patterns Tj were selected to determine the

value of the measure MD(Ti, Tj). Accordingly, for the three cases shown in Tables 4 and 5,

the measure of dissimilarity MD(Ti, Tj) takes the following values: MD(01100, 01011) =

{3, 2, 2, 2, 1}, MD(01100, 10000) = {3, 2, 1, 1, 1}, MD(01100, 11001) = {3, 3, 2, 2, 1}.

The examples presented in Tables 4 and 5 demonstrate the indistinguishability of all

three patterns Tj with respect to the reference pattern Ti = 01100 when using the classical

measure of difference—the Hamming distance—since in all three cases HD(Ti, Tj) =

HD1 = 3. At the same time, applying the new measure of dissimilarity (see Definition 3)

reveals different degrees of difference between the patterns Tj and Ti, as expressed by the

varying values of the components HD2, HD3, and HD4 of the measure MD(Ti, Tj).

The measure of dissimilarity MD(Ti, Tj) for the binary test patterns Ti and Tj has the

following obvious properties.
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Property 1. The minimum value of all components HD1, HD2, . . . , HDn of the measure

MD(Ti, Tj) is zero, that is,

minHD1 = minHD2 = · · · = minHDn = 0.

This condition occurs when the test patterns are identical, i.e., Ti = Tj.

Property 2. If one component HDr, where r ∈ {1, 2, . . . , n}, equals zero, then all the

others are also equal to zero. Conversely, if any component HDr > 0, then

all other components are greater than zero as well.

Property 3. The maximum values of the components HD1, HD2, . . . , HDn depend on

the number of characters in the representations Ti(r) and Tj(r). Specifically,

maxHD1 = n, maxHD2 = ⌈n/2⌉, maxHD3 = ⌈n/3⌉,

maxHD⌈n/2⌉−1 =

⌈

n

⌈n/2⌉ − 1

⌉

= 3,

maxHD⌈n/2⌉ = · · · = maxHDn−1 = 2, maxHDn = 1.

The maximum difference between test patterns Ti and Tj in terms of the new

dissimilarity measure MD(Ti, Tj) is achieved when Tj is the bitwise inverse

of Ti. In this case, all components HD1, HD2, HD3, . . . , HDn of the measure

MD(Ti, Tj) reach their maximum values.

For example, for Ti = 01100 and its inverse pattern Tj = Ti = 10011,

the corresponding component values are

HD1 = maxHD1 = n = 5,

HD2 = maxHD2 = ⌈n/2⌉ = ⌈5/2⌉ = 3,

HD3 = maxHD3 = ⌈n/3⌉ = ⌈5/3⌉ = 2,

HD4 = maxHD4 = ⌈n/4⌉ = ⌈5/4⌉ = 2,

HD5 = maxHD5 = 1.

Property 4. The components of MD(Ti, Tj) satisfy the following relation:

HD1 ≥ HD2 ≥ HD3 ≥ · · · ≥ HDn.

The fulfillment of this property is explained by the fact that when calculat-

ing HDr+1, the number of characters included in the patterns Ti(r + 1)

and Tj(r + 1) is less than or equal to the number of characters within

the patterns Ti(r) and Tj(r). Therefore, the following inequality holds:

HDr

[

Ti(r), Tj(r)
]

≥ HDr+1

[

Ti(r + 1), Tj(r + 1)
]

.

As noted in [7,13,32], the idea of controlled random tests is as follows: the next

test pattern Ti is generated to be as different (or distant) as possible from the previously

generated patterns T0, T1, . . . , Ti−1 in terms of predetermined measures of dissimilarity. For

this purpose, at each step of forming the next test pattern, a candidate is selected from a

set of potential test patterns [7,13,32]. The main operation of the selection procedure is to

determine the numerical value of the chosen measure of dissimilarity between two patterns:

Ti, which is one of the test patterns, and Tj, which is one of the candidate test patterns. As

a result, the candidate test pattern for which the measure (or measures) of dissimilarity

attains the maximum value is selected as the next test pattern.

Let us explain the procedure for generating a controlled random test using the ex-

amples presented in Tables 4 and 5 for the case where the Hamming distance is applied

as a measure of dissimilarity. Assume that the first pattern of the controlled random

test is Ti = 01100, and three randomly generated candidates for the next test pattern are



Appl. Sci. 2025, 15, 9951 13 of 22

Tj = 01011, Tj = 10000, and Tj = 11001. For each candidate pattern Tj, the value of the

dissimilarity measure, as defined in Equation (1), is calculated with respect to the test

pattern Ti. As shown in Tables 4 and 5, the value of HD1 is equal to 3 in all three cases. The

classical technique for generating controlled random tests assumes that any of the three

candidate patterns—Tj = 01011, Tj = 10000, or Tj = 11001—can be selected as the next

test pattern.

In cases where multiple test pattern candidates yield the maximum value of HD1,

the new measure of dissimilarity MD(Ti, Tj), introduced by the authors (see Definition 3),

provides a more comprehensive way to distinguish between test pattern candidates Tj with

respect to the test pattern Ti. To achieve this, it is necessary to analyze the values of the next

component, HD2, of the dissimilarity measure. As demonstrated in the given example,

the maximum value HD2 = 3 is obtained for the pattern Tj = 11001, which can then be

selected as the next test pattern in the controlled random test.

Based on the above example and following the classical strategy for generating random

tests, we will formulate one of the rules for applying the new dissimilarity measure.

MD(Ti, Tj) Application Rule. The test pattern candidate Tj is selected as the next

test pattern Ti if it is the only candidate, among the entire set of test pattern candidates,

that has the maximum value HDr for the minimum value of r ∈ {1, 2, . . . , n} in the

dissimilarity measure MD(Ti, Tj), specifically among the components HD1, HD2, . . . , HDn.

Otherwise, if multiple candidates have the same maximum value of HDr, one of them is

selected randomly.

Other strategies for generating controlled random tests are possible, differing from the

given MD(Ti, Tj) application rule for the new dissimilarity measure. For example, instead

of selecting the next test pattern based on a single component of the measure, one can use

an integral measure of dissimilarity, MDTotal(Ti, Tj), defined as the arithmetic sum of its

components, i.e., MDTotal(Ti, Tj) = HD1 + HD2 + · · ·+ HDn.

MDTotal(Ti, Tj) =
n

∑
r=1

HDr(Ti, Tj). (5)

Table 6 presents the results of calculations, based on Equation (1), of the components

HD1, HD2, HD3, . . . , HD8 of the dissimilarity measure MD(Ti, Tj) for the binary pattern

Ti = 00000000 and for four test pattern candidates Tj: 11110000, 00110011, 11100010,

and 10010101. The last column of Table 6 contains the value of the integral measure

MDTotal(Ti, Tj) for all four candidate patterns Tj.

Table 6. Numerical values for dissimilarity measure MD(Ti, Tj).

Tj HD1 HD2 HD3 HD4 HD5 HD6 HD7 HD8 MDTotal

11110000 4 2 2 1 1 1 1 1 13
00110011 4 2 3 2 2 2 2 1 18
11100010 4 3 2 2 2 2 1 1 17
10010101 4 4 3 2 2 2 2 1 20

As can be seen from Table 6, according to both criteria, namely, the MD(Ti, Tj) appli-

cation rule and its integral value MDTotal(Ti, Tj), the pattern Tj = 10010101 will be selected

as the next test pattern.

An analysis of the data presented in Table 6 shows that as r increases, the significance

of the HDr component decreases significantly. This can be explained by the fact that for

r ≥ ⌈n/2⌉ (see MD(Ti, Tj) Property 3), all HDr components, except for the last HDn, take

only three possible values: 0 if Ti = Tj, and either 1 or 2 if Ti ̸= Tj.
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The given measure of dissimilarity MD(Ti, Tj) demonstrates its effectiveness in gener-

ating controlled random tests. It enables the selection of an optimal pattern Tj from a set

of candidates that share the same Hamming distance from the previously included test

pattern Ti. However, its application is associated with the same drawbacks as classical

approaches, requiring significant computational costs. Most notably, it necessitates the

determination of dissimilarity measures between candidate test patterns and previously

selected test patterns.

4. Controlled Random Test Generation with the Given
Hamming Distance

The significant computational complexity of generating controlled random tests has

led to the development of methods for constructing such tests that do not require selecting

the next test pattern from a set of possible candidates. The core idea behind these methods

is to use a small number of test patterns that are maximally distant from each other in

terms of the Hamming distance while avoiding the computationally expensive process of

candidate selection and enumeration.

As noted in previous sections, there are approaches for constructing controlled random

tests with a small number of test patterns based on formal procedures that eliminate compu-

tational costs, such as MMHD(q) and OCRTs [38]. The key characteristic of such tests is the

relationship between the maximum–minimum Hamming distance, max_minHD(Ti, Tj),

and the number of test patterns, q. Increasing the required minimum Hamming distance,

minHD(Ti, Tj), effectively maximizing it for the generated test, results in a reduction in the

number of test patterns, q. Unfortunately, a simultaneous increase in both parameters—

namely, the required minHD(Ti, Tj) and the number of test patterns q—is not possible.

As an alternative to existing approaches, we propose a method based on increasing the

number of test patterns q while maintaining the value of minHD(Ti, Tj) at a moderate level.

The result of implementing the proposed approach is a controlled random test consisting of

binary patterns Ti = ti,0ti,1 . . . ti,n−1, where ti,l ∈ {0, 1} for l ∈ {0, 1, . . . , n − 1}, and where

minHD(Ti, Tj), for j ̸= i, takes given values from the set {0, 1, . . . , q − 1}. The main feature

of the proposed approach is the use of a new measure of dissimilarity, MD(Ti, Tj) (see

Definition 3), introduced by the authors, which is defined for an arbitrary alphabet of test

patterns. This measure allows for the estimation of the n components HD1, HD2, . . . , HDn

that quantify the dissimilarity between two arbitrary binary patterns Ti = ti,0ti,1 . . . ti,n−1

and Tj = tj,0tj,1 . . . tj,n−1. Property 4 of this measure states that the components are re-

lated according to the following inequality: HD1 ≥ HD2 ≥ HD3 ≥ · · · ≥ HDn, where

HDr = HDr[Ti(r), Tj(r)]. According to Definition 2, the patterns Ti(r) and Tj(r) represent the

binary patterns Ti and Tj in a base - 2r numerical system consisting of 2r distinct characters.

Based on Property 4 of the new measure of dissimilarity MD(Ti, Tj), we formulate a

statement that serves as the foundation for generating controlled random tests with a small

number q of test patterns while maintaining a given minHD(Ti, Tj) value.

Statement 1. A controlled random test consisting of q = 2r binary patterns, where r ∈

{1, 2, . . . , n}, is the minimum value of r for which HDr[Ti(r), Tj(r)] = maxHDr[Ti(r), Tj(r)]

for all i ̸= j ∈ {0, 1, . . . , q − 1} and n mod r = 0 has minHD(Ti, Tj) = n/r.

The limited number of test patterns, q = 2r, is determined by the restricted num-

ber of characters in the alphabet, which is also equal to 2r, in which the test patterns

Ti(r) = ti,0(r)ti,1(r) . . . ti,n/r−1(r) and Tj(r) = tj,0(r)tj,1(r) . . . tj,n/r−1(r) are represented.

Only in this case can the characters at the same positions in all q test patterns assume differ-

ent values without repetition. This is the necessary condition for achieving the maximum

value HDr[Ti(r), Tj(r)] of the Hamming distance for all pairs of test patterns Ti(r) and
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Tj(r), where i ̸= j ∈ {0, 1, . . . , q − 1}. To illustrate the meaning of this statement, let us

consider the following example of a controlled random test.

Example 2. In the case of n = 6, the controlled random test consisting of q = 4 patterns has

the following form in binary (r = 1), quaternary (r = 2), and octal (r = 3) number systems (see

Table 7).

As can be seen from Table 7, there are no repeating characters in any digit of the quaternary and

octal representations of the test patterns. This indicates that in both cases, the Hamming distance

between the test patterns, according to Equation (1), takes its maximum values. Indeed, for any two

patterns Ti and Tj in the test, HD2[Ti(2), Tj(2)] = maxHD2[Ti(2), Tj(2)] = n/2 = 3, as well

as HD3[Ti(3), Tj(3)] = maxHD3[Ti(3), Tj(3)] = n/3 = 2. Moreover, in the quaternary case, all

four characters (0, 1, 2, and 3) are used in each digit of the test patterns without repetition.

Following the above statement, we can conclude that a test consisting of q = 22 binary patterns

with a minimum value of r = 2, for which HD2[Ti(2), Tj(2)] = maxHD2[Ti(2), Tj(2)] for all

i ̸= j ∈ {0, 1, 2, 3}, satisfies the condition HD(Ti, Tj) ≥ minHD(Ti, Tj) = n/r = 6/2 = 3. In-

deed, as can be observed, HD1[T0(1), T1(1)] = HD1[T0(1), T2(1)] = HD1[T1(1), T3(1)] =

HD1[T2(1), T3(1)] = 3 and HD1[T0(1), T3(1)] = HD1[T1(1), T2(1)] = 6. All values of

HD(Ti, Tj) are greater than or equal to 3, which confirms that the condition stated in the statement

is fulfilled.

Table 7. Binary controlled random test for n = 6 and its representation in quaternary and octal notation.

Ti(r) t
(1)
i,0 t

(1)
i,1 t

(1)
i,2 t

(1)
i,3 t

(1)
i,4 t

(1)
i,5 t

(2)
i,0 t

(2)
i,1 t

(2)
i,2 t

(3)
i,0 t

(3)
i,1

T0 0 0 1 1 0 1 0 3 1 1 5
T1 0 1 1 0 0 0 1 2 0 3 0
T2 1 0 0 1 1 1 2 1 3 4 7
T3 1 1 0 0 1 0 3 0 2 6 2

Based on the statement, we propose a formal procedure for constructing controlled

random tests with q = 2r binary patterns and a given value of minHD(Ti, Tj) ≥ ⌊n/r⌋. The

possible values of minHD(Ti, Tj) depend on the number n of bits in the binary test patterns

Ti and Tj. For example, for n = 16, the possible test configurations with a given value of

minHD(Ti, Tj) ≥ ⌊n/r⌋ and the number q of test patterns are presented in Table 8.

Table 8. Dependence between the number of bits n = 16 of binary patterns and minHD(Ti, Tj).

r 2 3 4 5 6 7 8 9 10 . . . 15 16

minHD(Ti, Tj) = ⌊16/r⌋ 8 5 4 3 2 2 2 1 1 . . . 1 1

q 4 8 16 32 64 128 256 512 1024 . . . 32,768 65,536

As can be seen from Table 8, the fixed value n of the test pattern bit length determines

the possible values of minHD(Ti, Tj) for which a test can be constructed based on the

statement. Naturally, the most interesting cases are those where minHD(Ti, Tj) attains

acceptably large values, which correspond to the smallest values of r.

The algorithm for generating binary controlled random tests with a given Hamming

distance consists of the steps outlined in Algorithm 1. An extension of this algorithm

(Algorithm 1) can involve selecting not necessarily consecutive r bits of the patterns but any

arbitrary r out of n bits to specify the binary code of characters. The only limitation is the

requirement to select non-overlapping blocks of r bits.
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Algorithm 1 Generation of Binary Controlled Random Tests with a Given Hamming Distance

Input data: the size n of the test patterns (in bits) and the required value of
Rec_minHD(Ti, Tj), which denotes the minimum Hamming distance between any two
test patterns.

1. From the inequality

Rec_minHD(Ti, Tj) ≤
⌊n

r

⌋

,

determine the largest possible value of r ∈ {1, 2, . . . , n}. Based on this condition,
compute the number of test patterns as q = 2r. The minimum Hamming distance
between any two patterns will then satisfy

minHD(Ti, Tj) ≥
⌊n

r

⌋

, for all i ̸= j, i, j ∈ {0, 1, . . . , 2r − 1}.

2. Assign the first r bits of each test pattern T0, T1, . . . , Tq−1 to distinct binary codes
selected randomly from an alphabet of 2r possible r-bit combinations. Each code
is assigned without repetition, starting from T0 to Tq−1. As a result, each pattern
contains in the first r bits a unique binary combination corresponding to one of the 2r

possible codes.
3. Repeat step 2 for the next

⌊

n
r

⌋

− 1 blocks of r bits. In each iteration, assign the next r
bits of all test patterns (e.g., bits r to 2r − 1, 2r to 3r − 1, etc.) to new sets of unique
binary codes of length r, again selected randomly without repetition.

4. If the pattern length n is not divisible by r, i.e., n −
⌊

n
r

⌋

· r > 0, then assign the
remaining bits randomly for all test patterns.

The described algorithm generates test patterns with a guaranteed minimum Ham-

ming distance between any pair of test patterns. By partitioning each test pattern into

independent r-bit blocks and ensuring that each block contains a unique binary code se-

lected from a maximally distinct set, the method guarantees that the resulting test set is both

compact and diverse. The final step introduces randomness in the unused bit positions,

further enhancing the variability of the test without violating the distance constraint. It

should be emphasized that the guaranteed minimum Hamming distance is determined

solely by the disjoint allocation of unique codes in the complete r-bit blocks. When the

pattern length n is not divisible by r, the remaining bits are filled by random padding.

This step only affects the residual part of the patterns and does not reduce the guaranteed

minimum Hamming distance between them. On the contrary, it adds additional variability

to the generated tests while fully preserving the distance constraint.

The computational complexity of Algorithm 1 is O(q · n), where q = 2r denotes the

number of generated patterns and n is the pattern length. This is significantly more efficient

than classical candidate–selection approaches, which usually require O(q2 · n) operations

due to pairwise comparisons.

The following example demonstrates the operation of Algorithm 1 for a specific input

configuration, highlighting the structure of the generated patterns and validating the

achieved minimum Hamming distance.

Example 3. Let the size n of the test patterns be 7, and let the required value of Rec_minHD(Ti, Tj) = 3.

1. Based on the inequality Rec_minHD(Ti, Tj) ≤ ⌊n/r⌋, we obtain r = 2. This is the largest

value of r for which the inequality holds: 3 ≤ ⌊7/2⌋ = 3. Therefore, the generated test T will

consist of 2r = 4 patterns, T0, T1, T2, T3, with a guaranteed minimum Hamming distance

minHD(Ti, Tj) ≥ 3.

2. The first two bits ti,0 and ti,1 of the test patterns are assigned binary values corresponding

to four distinct characters from the quaternary alphabet: 00, 01, 10, and 11. These binary
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codes are assigned randomly, without repetition, starting from T0 to T3. As a result, each test

pattern contains a unique 2-bit prefix: 10, 11, 00, and 01.

3. Step 2 is repeated ⌊7/2⌋ − 1 = 2 times for the next two r-bit blocks, i.e., (ti,2, ti,3)

and (ti,4, ti,5). For each block, values are assigned using random permutations of the

quaternary alphabet.

4. The remaining bit ti,6, since 7 − ⌊7/2⌋ × 2 = 1, is assigned randomly for all patterns.

The resulting controlled random test is presented in Table 9.

Table 9. Controlled random test with minHD(Ti, Tj) = 3.

T ti,0 ti,1 ti,2 ti,3 ti,4 ti,5 ti,6

T0 1 0 0 0 0 1 1
T1 1 1 1 1 0 0 0
T2 0 0 0 1 1 1 1
T3 0 1 1 0 1 0 0

All pairwise Hamming distances between patterns satisfy the required minimum value:

HD(T0, T1) = 5, HD(T0, T2) = 3, HD(T0, T3) = 6,

HD(T1, T2) = 6, HD(T1, T3) = 3, HD(T2, T3) = 5.

Since all values are greater than or equal to 3, the condition Rec_minHD(Ti, Tj) ≥ 3 is fulfilled.

It should be noted that the proposed algorithm was intentionally formulated in the

binary domain, since it directly corresponds to the digital world at the low level of hardware

implementation, where the binary alphabet is natural and fundamental. Although the

theoretical framework allows for the use of higher-radix alphabets and non-binary symbols,

our focus on binary patterns reflects the practical context of memory testing and built-in

self-test environments. Extending the method to real non-binary alphabets remains an

interesting direction for future research.

5. Experimental Investigation

This section presents a comparative analysis of the effectiveness of two types of tests:

controlled random tests with a given Hamming distance (CRTs), generated using the

proposed algorithm, and standard random patterns. The comparison is conducted in

the context of their ability to detect multicell faults, particularly Pattern-Sensitive Faults

(PSFs) occurring in RAM. Due to the size of the test patterns and the vast number of

their permutations, the comparisons are based on the average values obtained from the

generated test collections.

The first test collection consists of patterns generated using the proposed algorithm,

based on the controlled random test generation method described earlier. Using this approach,

a controlled random test of length 1024 bits was generated with minHD(Ti, Tj) = 256. For the

input parameters n = 1024 and Rec_minHD(Ti, Tj) = 256, the value of r was determined

to be 4, resulting in the generation of 2r = 16 patterns per test. The average value of the

metric MDTotal(Ti, Tj) (Equation (5)) for these patterns is 287,092, with a standard deviation

of 34.54.

In contrast, the second test collection consists of 16 purely random patterns of the same

size. The average value of MDTotal(Ti, Tj) for these test sets is 273,815, with a standard

deviation of 871.

The basic statistical parameters of the generated test collections are summarized in

Table 10.
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Table 10. Comparison of statistical parameters between CRT and random tests.

Parameter CRT Random Tests

Number of tests in collection 1000 2000
Patterns per test 16 16
Bits per pattern 1024 1024
Average MDTotal(Ti, Tj) 261,052.62 248,361.75
Standard deviation 34.54 455.55
Coefficient of variation (CV) 0.0132% 0.1834%
Relative error (Erel) 0.00082% 0.00804%
Confidence level 95% 95%

The generated test collections confirm their statistical reliability, as evidenced by low

relative errors (Erel) and consistent coefficient of variation (CV) values.

Similar test collections of 1024-bit size and comparable statistical parameters were

generated for r = 2, 3, and 5 and will be used in further analyses.

In Table 11, the detailed results for individual values of HD1, HD2, . . . , HD8 and MD

for r = 4 are compared.

Table 11. Average results for HD1, HD2, . . . , HD8 and MDTotal(Ti, Tj) for r = 4.

Test HD1 HD2 HD3 HD4 HD5 HD6 HD7 HD8 MDTotal(Ti, Tj)

CRT 65,536 49,152 37,711 30,720 24,436 20,520 17,616 15,360 287,092
Random 61,316 45,978 35,612 28,637 23,824 20,211 17,477 15,295 274,354
% Diff 6.88% 6.90% 5.87% 7.27% 2.57% 1.53% 0.80% 0.42% 4.64%

The results presented in Table 11 highlight the comparative performance of the ana-

lyzed CRT and standard random tests across individual HDn values (HD1 to HD8) and

the overall metric MDTotal(Ti, Tj) for r = 4. On average, the CRT outperforms random

tests across all tested HD values, with percentage differences ranging from 0.42% to 7.27%.

The highest difference (7.27%) was observed for HD4, which aligns with the parameter

r = 4 used in generating the CRTs. This correlation underscores the effectiveness of the

proposed algorithm in targeting specific test conditions based on the selected r parameter.

Although the percentage differences in Table 11 may appear moderate, they are systematic

across all evaluated parameters. More importantly, the subsequent experiments (Table 12

and Figure 1) confirm that these differences translate into noticeable improvements in

memory fault coverage.

In the next set of experiments, conducted in a simulation environment, the focus was

on evaluating the effectiveness of test patterns generated using the proposed algorithm in

detecting multicell RAM faults. Multicell memory faults, such as Pattern-Sensitive Faults

(PSFs), involve dependencies between any k out of N memory cells (N being the memory

size). These faults are triggered when specific binary patterns are present in the related

cells or when particular transitions occur based on predefined conditions. Consequently,

effective detection of such faults requires generating the largest possible number of binary

patterns during testing. These patterns activate the faults and enable their detection.

The simulations analyzed groups consisting of k memory cells for k = 2 . . . 10. For each

group, up to 2k distinct k-bit binary patterns (i.e., values ranging from 0 to 2k − 1) could

potentially appear. The objective was to determine the average number of unique k-bit

patterns generated during a march test, with the memory being initialized in each iteration

using test patterns from the CRT with a given Hamming distance. The obtained results

were compared with the results for random tests presented in Table 8.12 in [38].
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Each simulation-based test consisted of a specific number of iterations, determined

by the value of r: 4 iterations for r = 2, 8 iterations for r = 3, and 16 iterations for r = 4.

During each iteration, the simulated memory was initialized with a given test pattern from

the analyzed set, followed by the execution of a transparent version of the MATS+ memory

test. Throughout the simulation, the memory model was monitored, and the number

of unique k-bit binary patterns observed in individual groups of k-cells was recorded.

The results are presented in Table 12.

Table 12. Fault coverage [%] comparison for random tests and CRTs with a given Hamming distance

for different memory fault sizes k and different numbers of iterations (2r).

k 3 4 5 6 7 8 9 10

r = 2 (4 iterations)
random [38] 93.74 77.67 56.42 37.07 22.75 13.34 7.59 4.31
CRT with given HDr 97.27 81.49 58.42 37.79 22.93 13.35 7.58 4.22

r = 3 (8 iterations)
random [38] 99.69 95.01 81.03 60.41 40.33 24.91 14.61 8.28
CRT with given HDr 99.98 97.52 84.58 62.89 41.54 25.38 14.77 8.33

r = 4 (16 iterations)
random [38] 100.00 99.75 96.47 84.39 64.44 43.64 27.18 15.88
CRT with given HDr 100.00 99.95 97.85 86.78 66.36 44.64 27.55 16.03

Based on the results presented in Table 12, it can be concluded that CRTs consistently

achieve better results than random tests in most cases. The difference is most noticeable for

lower values of r and k, where the CRT outperforms random tests by several percentage

points. For instance, for r = 2 and k = 3, the CRT achieves a fault coverage of 97.27%,

while random tests reach 93.74%. Fault coverage decreases as the value of k increases.

This is expected, since the number of possible binary combinations 2k grows exponentially,

making full coverage harder to achieve. However, the results in Table 12 indicate that CRTs

perform slightly better for larger k compared to random tests, highlighting the greater

ability of a CRT to generate diverse test patterns.

In the final experiment, the average number of unique k-bit test patterns generated in

arbitrary groups of k out of N memory cells using the proposed algorithm was compared

with that obtained using traditional CRT generation methods, including native antirandom

tests [13], concatenated antirandom tests [13], and STPG [40]. The comparison was carried

out for fault groups of size k = 3, using tests generated for r = 3 (i.e., 8 iterations).

During the simulation, the number of distinct k-bit patterns generated in each iteration

was recorded to assess the performance of the proposed method relative to the standard

techniques. The outcomes of this analysis are presented in Figure 1, which illustrates the

differences in the number of generated k-bit patterns across the tested methods.

The results show that the CRT method with a given Hamming distance consistently

outperforms other test generation methods in terms of fault coverage, with one exception in

the second iteration, where it achieves a slightly lower result (76.13%) compared to native

antirandom (77.77%). However, starting from the third iteration, the CRT surpasses all

other methods, demonstrating a faster increase in fault coverage (e.g., between iterations 2

and 3, the CRT rises from 76.13% to 90.05%). In the later iterations (7 and 8), the CRT ap-

proaches near-complete fault coverage, reaching 99.92% and 99.99%, respectively. Although

the differences between the CRT and other methods diminish with a higher number of

iterations, the CRT consistently demonstrates superior effectiveness, confirming its ability

to generate diverse and efficient test patterns even in advanced stages of testing.
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In summary, the experimental evaluation demonstrates that the proposed method

consistently provides superior results compared to both purely random tests and classical

controlled random tests. The improvements are systematic across all examined cases, partic-

ularly in terms of fault coverage and test diversity, while being achieved with significantly

reduced computational effort.
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Figure 1. Fault coverage comparison for different test generation methods for k = 3 and r = 3

(8 iterations).

6. Conclusions

This paper presented a method for generating controlled random tests with a given

Hamming distance, aimed at improving the diversity and effectiveness of test sets used

in computing systems, particularly memory devices. A new dissimilarity measure was

introduced, based on Hamming distances calculated for binary patterns represented in

various numeral systems. This extended measure allows for a more detailed assessment of

differences between patterns compared to the classical Hamming distance alone.

We proposed an algorithm that generates test sets with a predefined minimum Ham-

ming distance, without selecting patterns from large pools of candidates. This approach

reduces computational effort while ensuring sufficient diversity in the generated patterns.

The effectiveness of the proposed method was evaluated through a series of compara-

tive experiments. The results showed that the generated tests outperform not only purely

random test sets but also traditional controlled random tests (CRTs) in several aspects.

Specifically, tests created using the proposed method achieved higher total dissimilarity

values and better coverage of multicell memory faults, particularly for lower numbers of

iterations and smaller fault group sizes. Although some improvements observed in the

experiments may appear moderate, they are systematic across all evaluated cases. More

importantly, the obtained results demonstrate that these differences translate into tangible

practical benefits, as the proposed method consistently achieves higher fault coverage than

random and classical controlled random testing, especially in scenarios with smaller fault

groups and lower iteration counts.

These results suggest that the method may be a practical alternative in contexts

where test diversity and efficiency are important. Future work may include extending the

approach to more complex fault models or exploring its use in different types of systems.
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