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Abstract

This paper addresses the challenges of testing computing systems and their hardware
components, especially memory devices. It highlights the limitations of traditional random
testing. Such methods often fail to use available information about the system under test
and previously generated test patterns. The potential of controlled random testing, which
incorporates knowledge of prior patterns, is therefore explored. A class of controlled
random tests with a limited number of test patterns is identified and analyzed, including
existing standard approaches. The paper introduces a novel measure of dissimilarity
between test patterns. This measure is based on calculating Hamming distances for binary
patterns after mapping them into different numeral systems, including quaternary, octal,
and hexadecimal. We propose a method for generating controlled random tests with a
guaranteed minimum Hamming distance. It is based on representing binary patterns as
symbols from non-binary numeral systems. In this way, ensuring a specific Hamming
distance in the symbolic domain also guarantees at least the same distance in the binary
representation. We evaluate the effectiveness of the proposed method through simulations,
particularly in the context of memory testing and the detection of multicell faults, i.e., errors
caused by interactions between multiple memory cells. This approach can enhance the
efficiency and reliability of test procedures in embedded systems, memory diagnostics, and
safety-critical applications.

Keywords: test; test pattern; computing systems testing; random test; controlled random
test; Hamming distance; pattern-sensitive faults; March tests

1. Introduction

Testing is still the main method used to verify the quality of software, hardware,
memory devices, and applications. Even though many design-for-test and analysis methods
have been proposed, testing remains a process that requires considerable effort and time.
Therefore, systematic and automated procedures for generating test data are very important.
Since the 1960s, probabilistic approaches, usually called random testing, have been widely
used because they are simple to understand and easy to apply [1-3]. However, the efficiency
of purely random methods is low: they usually ignore information about the system under
test and about earlier test patterns, which often results in weaker fault detection [4,5].

To overcome this limitation, different controlled versions of random testing have been
developed. In this paper, we use the term controlled random testing (CRT) [6] for methods
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that select the next pattern based on its difference from the previous ones. The Hamming
distance is most often used as a measure of this difference. A related idea, well known in
software testing, is called adaptive random testing (ART). A more detailed overview of these
approaches is given in Section 2.1, while the theoretical background relevant for CRT is
presented in Section 2.2.

The main problem studied in this paper is the choice of a difference measure that
(i) can properly describe the diversity between test patterns and (ii) can be computed with
low complexity [5,7]. The classical Hamming distance is widely used, but it often treats
different patterns as equally distant, even when their structures are sufficiently different.
To address this, we propose to extend the idea of Hamming distance by interpreting
binary patterns in other numeral systems and by defining a new vector-based dissimilarity
measure. This allows us to construct controlled tests that remain efficient to compute but
can better distinguish between candidate patterns.

Contributions. The paper offers the following contributions. First, we introduce a
framework in which an n-bit binary pattern can be mapped to sequences over alphabets of
higher radix while still allowing for distance calculations in a consistent way. Second, we
define a new vector-based dissimilarity measure based on these representations and discuss
its main properties. Third, we propose a method for generating controlled random tests
with a given minimum Hamming distance that reduces the need for expensive candidate
checks. Finally, we show in experiments with memory-oriented examples that our method
provides a more effective selection of patterns at a reasonable computational cost.

Paper organization. Section 2 is divided into two parts. Section 2.1 reviews ear-
lier work on controlled random testing. Section 2.2 presents the coding-theoretic back-
ground and shows bounds that limit the construction of CRT. Section 3 introduces the
representation-based extensions of the Hamming distance and the new dissimilarity mea-
sure. Section 4 describes the method for generating tests with a given minimum Hamming
distance. Section 5 presents the experimental results, and Section 6 gives the conclusions
and future directions.

2. Controlled Random Tests Analysis
2.1. Related Work

The related work can be grouped into three major streams: (i) pseudo-random and
pseudo-exhaustive testing, (ii) diversity-driven methods such as Antirandom Testing and
its extensions, and (iii) adaptive random testing (ART) and its numerous variants. Below, we
summarize key contributions within each stream.

Random testing has long been applied in hardware and memory verification due to
its simplicity and low implementation cost. In practice, purely random vectors are seldom
used directly; instead, pseudo-random sequences are commonly employed, often generated
by linear feedback shift registers (LFSRs) within built-in self-test (BIST) schemes [8]. Ex-
haustive and pseudo-exhaustive approaches have also been investigated to guarantee high
fault coverage [9]. Early seminal work by McCluskey [10] introduced a pseudo-exhaustive
testing methodology that became a foundation for later approaches. Fujiwara [11] pro-
vided further theoretical and practical developments, placing pseudo-exhaustive methods
within a broader framework of logic testing and design for testability. Karpovsky, Yarmolik,
and van de Goor [12] subsequently applied pseudo-exhaustive techniques to RAM testing,
demonstrating their potential for memory devices. While such methods ensure thorough
fault coverage, they are impractical for large memories due to excessive computational
requirements. Such drawbacks motivated the development of more advanced approaches
that explicitly control the diversity of generated test patterns.
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A significant breakthrough was the introduction of Antirandom Testing by
Malaiya [13-15], who first defined and demonstrated the method as a distance-based
black-box testing strategy. Yin [16] subsequently developed a practical tool for generating
hardware test sequences based on the principle of maximizing dissimilarity between test
vectors, providing one of the earliest implementations of the antirandom concept. The idea
of maximizing dissimilarity was later refined through extensions, including, among others,
Fast Antirandom Testing (FAR) [17], Scalable Antirandom Testing (SAT) [18], and Pseudo-
Ring Testing (PRT) [19]. Notably, most of these extensions were developed in the context of
hardware and memory testing.

In parallel, the concept of selecting tests according to their distance from previous ones
was generalized into what became known as adaptive random testing (ART) [20-22]. Unlike
the earlier hardware-oriented approaches, ART and its numerous variants were primarily
investigated in software testing. These include Good Random Testing [23], Restricted
Random Testing [24,25], Maximum Distance Testing [26], Mirror Random Testing [27],
Orderly Random Testing [28], hybrid adaptive random testing [29], and Evolutionary
Random Testing [30], among others. A variety of distance metrics have been explored in this
context, including minimum, average, maximum, centroid-based distances, discrepancy,
and membership grade, as well as Hamming distance [7]. None of these metrics can
be regarded as predominant across all ART variants, but they share the common goal
of enforcing diversity when selecting new test cases. Comprehensive surveys, such as
Anand et al. [5] on automated test case generation, Grindal et al. [31] on combination and
diversity-driven strategies, Chen et al. [32] and Huang et al. [7] on adaptive random testing,
and Feldt [33] on quantifying test diversity, provide broader overviews of these approaches
and underline the central role of diversity metrics in general.

Despite these contributions, most existing methods still rely on evaluating specific
characteristics of previously generated test sets. The vast majority of the approaches
presented share the common goal of maximizing diversity among test patterns. However,
this goal is most often achieved at the expense of increased computational overhead [34].
While such costs may be acceptable in some software testing contexts, they become a
serious limitation in hardware- and memory-oriented testing, where the efficiency of test
generation is a critical requirement. Therefore, there is a clear need for methods that ensure
sufficient diversity of test patterns while significantly reducing the computational burden.

2.2. Formal Analysis of Controlled Random Tests

Following the discussion of related work, this subsection provides a theoretical back-
ground on controlled random tests (CRTs). The analysis emphasizes the role of Hamming
distance as the principal diversity metric and introduces fundamental bounds and con-
structions that shape the efficiency of CRT generation. The presented considerations are
rooted in the classical results of coding theory, including Hamming’s seminal work on
error-detecting and error-correcting codes [35], the comprehensive treatment by Peterson
and Weldon [36], and the Plotkin bound [37], while also extending our earlier research on
Multi-Run Memory Tests [38] and optimal controlled random tests [39].

In the following discussions, we consider a sequence T; of data t;,t;1,...,t;,—1 asa
test pattern T; = t;ot;1 ...t ,—1 consisting of 1 elements t;;, where ] € {0,1,2,...,n —1},
generally represented in an arbitrary alphabet. As shown in [7], the next test pattern T;
in a controlled random test is designed to differ as much as possible from the previously
generated patterns Ty, Ty, . . ., T;_1. The hypothesis assumes that for two test patterns with
the maximum difference, the number of faults (errors) detected by the second pattern
will also be maximized. The Hamming distance HD(T;, T]) forj € {0,1,...,i — 1} is



Appl. Sci. 2025, 15, 9951

4 0f 22

often used as a criterion to distinguish the test pattern T; from the previous patterns
To, Ty, ..., Ti—1 [7,32].

For the general case, the Hamming distance is calculated by comparing two sequences
of data, T; = tioti1.. . tin—1and T; = tjptj1 ... tj,—1 each consisting of n characters ;; and
t;; from an arbitrary alphabet [35,36].

The Hamming distance HD(T;, Tj) between T; and T; is defined as the number of
positions at which ¢;; and ¢;; differ, and it can be expressed as

n—1
HD(Ti/ T]) = Z 5(ti,l/tj,l)/ (1)
1=0
where
1, ity # b
Otiptj) = v

0, if ti] = tj,l-

When comparing n characters in the patterns T; and T}, the minimum value of the Ham-
ming distance, minHD(T;, T]), is 0 if all characters match, and the maximum value,
maxHD(T;, T;), is n if all n characters differ. For example, in the case of binary num-
ber systems, the Hamming distance HD(T;, T;) between T; = 0110 and T; = 1100 is 2,
as they differ at two positions.

Most commonly, binary test patterns are considered, but they can also be interpreted
as sets of characters from other alphabets corresponding to different numeral systems.
For example, quaternary, octal, hexadecimal, and other alphabets can be used, where a
fixed number of consecutive bits in the original binary patterns represent the binary code of
a character in the corresponding alphabet. For instance, the binary pattern T; = 010110115,
when divided into groups of two consecutive bits, can be represented in the quaternary
number system, which uses an alphabet of four characters (0, 1, 2, and 3), as T; = 1123,.
In the hexadecimal system, the same pattern T; takes the form T; = 5B¢.

The main idea behind most approaches to controlled random test generation is to select,
from a given set of test candidates, the pattern T; that has the maximum Hamming distance
with respect to the previously included patterns Ty, Ty, ..., T;_1. Various criteria can be
used for selecting T;; however, the most common is to maximize the value of minHD(T;, T;),
where j € {0,1,...,i — 1}. In this case, the generated test will be characterized by the
minimum Hamming distance between any two test patterns included in the test [7]. As
a result, the controlled random test is defined by the value of the minimum Hamming
distance, as described in the following definition.

Definition 1. The value minHD(T;, T;) for a controlled random test T € {To, T, ..., Ty—1} is
equal to the minimum Hamming distance between two arbitrary test patterns T; and T;, where i # j
andi,j€{0,1,2,...,9 —1}.

In terms of coding theory, the minHD(T;, Tj) characteristic can be regarded as the
code distance d of the code T € {Ty, Ty, . .-, Ty }, which represents the smallest Hamming
distance between different pairs of code words Ty, Ty, . .., T;—1. Therefore, based on the
fundamental principles of coding theory, several useful conclusions can be drawn that
must be considered when generating controlled random tests.

In particular, a significant feature of controlled random tests is their limited length.
This follows from the fact that the larger the minimum distance min HD(T;, Tj), used as a
criterion for including T; in the test, the fewer patterns exist that satisfy this criterion. This
relationship is described by the Hamming bound [35,36].
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Hamming Bound. The estimation of the Hamming bound for d = minHD(T;, T;) =

2r + 1, where r is an integer, can be expressed as the inequality:
b?’l

_ 2
1= S b —1F @

Here, the Hamming bound denotes the maximum possible size q of a b-ary block code
T of length n and minimum Hamming distance d between code words. In the context of
controlled random tests, the value d = minHD(T;, T;) directly affects the test length. For
example, in the case of binary patterns (b = 2) with n = 8 and d = minHD(T;, Tj) =7 =
2 x 3 + 1, the Hamming bound can be calculated as

28

<
1= Be—1yF

As shown in this example, increasing the Hamming distance minHD(T;, T;) to a value of
7 reduces the estimate of g to 2. This means that the controlled random test T for n = 8 and
d = minHD(T;, T;) = 7 will consist of no more than two patterns: Ty and T;. It is important
to note that the pattern Ty is generated randomly and can take any of 2 = 2% binary values,
while the second pattern T; is selected to satisfy the criterion minHD(Ty, Ty) > 7. Thus,
there is a large variety of controlled random tests T with minHD(Ty, Ty) > 7, but each test
consists of only two patterns: Ty and T;. In practice, this result shows that for short memory
words, only a very limited number of maximally distant test patterns can be constructed,
which restricts the applicability of such strict distance requirements.

Let us consider approaches for constructing controlled random tests consisting
of a minimal number g of test patterns, for which minHD(T;, T;) takes the maximum
possible value.

For the synthesis of controlled random tests with a small number of patterns g, we
first examine classic codes with min HD(T;, T]) > n/2 [37]. Tt is known that the Plotkin
theorem allows for determining the maximum possible number g of code words in a binary
code of length n with minHD(T;, T;) > n/2. The Plotkin bound provides an upper limit
for this value [37,39].

Plotkin Bound. If d = minHD(T;, Tj) > n/2 and n is even, the following inequality
holds for ¢:

) 2| 55|, for2d—n>0;

< - )
44, for2d —n =0.
For odd values of 7, the Plotkin bound is expressed as
2| il |, for2d+1-n>0;
< o 4)

4d + 4, for2d+1—n=0.

Based on the application of the Plotkin bound, a formal algorithm for synthesizing con-
trolled random tests MMHD(g), characterized by a small number g of patterns with the
maximum-minimum Hamming distance (max_minHD(T;, T;)) between test patterns T;
and T}, is proposed in [38].

For g = 2, based on (3) and (4), the maximum possible value max_minHD(T;, Tj) of
the distance can be estimated. This result, max_minHD(T;, Tj) = n, and the corresponding
test MMHD(2) = {Tp, T1 } = {To, Tp}, is supported by previous findings for the optimal
random test consisting of two inverse patterns, Ty and Ty [35,36].
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In the case of g = 3, according to the Plotkin bound, d = max_minHD(T;, T]) <
3n/4. As shown in [38], the closest optimal solution MMHD(3) can be achieved only for
max_minHD(T;, T;) = 2n/3, where 2n/3 < 3n/4. For q = 4, the test MMHD(4) can be
constructed with d = max_minHD(T;, T;) < 2n/3 [38].

By generalizing the heuristic procedure for constructing MMHD(g) for small values of
q, a formal algorithm for synthesizing the MMHD(q) test for a given g > 4 was presented

in [38]. According to this algorithm, the MMHD(g) test consists of q patterns with
max_minHD(T;, Tj) = (217%) -n/ (2772 = 1).

It should be noted that for any integer g, the distance (27-3) - n/(27-2 — 1) is greater than
n/2; however, as q increases, it approaches n/2.

A very important remark concerns the size n of the test patterns, which must be
considered. In order to generate MMHD(g) tests with g > 4, the value of n must be
divisible by 29-2 — 1, and its minimal value is 292 — 1. For example, in the case of g4 = 4,
one variant of the MMHD(4) test is T = {000,011,101,110} with the minimal value
n=21"2-1=2+2-1=3.

Based on the Hamming distance HD(T;, T;) for test patterns T; and Tj, and their
Cartesian distance CD(T;, T;) as described in [39], a method for synthesizing optimal con-
trolled random tests (OCRT5) is considered. These tests are characterized by the conditions
HD(T;, T;) > n/2 and minHD(T;, T;) = n/2. In the general case, the number of OCRT
patterns is defined as g = 2([log, 7] +1). A constructive algorithm for generating test
patterns is presented in [39]. For the specific case when n = 2™, where m is an integer,
the number g of OCRT patterns Ty, Ty, ..., T;—1 is given by g = 2(m + 1). For example,
when n = 4, the number of OCRT patterns is g4 = 6, and for n = 8, the number of patterns
isqg =8.

The example of the MMHD(4) test with HD(T;, T;) = 2 for n = 3 presented in [38]
and the OCRT for n = 4 are shown in Table 1.

Table 1. Examples of MMHD(4) for n = 3 and OCRT with n = 4 tests.

MMHD4) OCRT

Pattern 1 2 3 Pattern 1 2 3 4
Ty 0 0 0 Ty 0 0 0 0
T 0 1 1 T 1 1 1 1
T, 1 1 0 Ts 0 0 1 1
Ts 1 0 1 T; 1 1 0 0

Ty 0 1 0 1

Ts 1 0 1 0

These small examples demonstrate how theoretical bounds directly limit the number
of feasible patterns in controlled random tests, especially for memory diagnostics where
compact but diverse test sets are needed. At the same time, the MMHD(4) and OCRTs
shown in Table 1 can be interpreted as templates for generating patterns of similar tests.
A specific MMHD(4) or OCRT can be defined by a randomly chosen initial test pattern Ty,
based on which subsequent patterns are generated by inverting the bits of Ty according
to the given templates. For example, in the case of MMHD(4) shown in Table 1, if the
random initial pattern is chosen as Ty = 101, the corresponding new MMHD(4) test will
consist of the patterns {101,110,011,000}. Therefore, in the following text, the abbreviation
MMHD(g) is used to denote a family of tests with g test patterns and the corresponding
value of max_minHD(T;, Tj).
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A common drawback of both approaches to generating controlled random tests,
MMHD and OCRT, is the limitation and restriction on the size of their test patterns. Four
main algorithms are known for constructing a set of test patterns (code words) with given
properties based on an initial test (code) [36]. These algorithms utilize the following four
properties, which we formulate for the case of MMHD(q) [36].

Property 1. The result of permuting the bits t;; simultaneously in all q test patterns
T; = tiotiy ... tin—1 of the test MMHD(q) = {To, Ty, ..., Ty—1} is the test MMHD(q).

Property 2. The result of inverting the bits t; | in all q test patterns T; = tiot;1...t;,_1 of the
test MMHD(q) = {To, Ty, ..., T;—1} is also the test MMHD(q).

Property 3. The test MMHD(q) = {To, Ty, ..., T;—1} with test patterns
Ti = tiotin - tiuwn—1,

consisting of u x n bits, is obtained from the test pattern T; = t;ot;1 ...t; ,_1 of the original test
MMHD(q) by concatenating it (repeating) u times. For example, if u = 2, then

T; =tiotin-.-tipn—1 = tioti1-. - tin—1tiotin .- tin—1.

Property 4. The result of scaling (increasing) by s times the test MMHD(q) = {To, Ty, ..., Ty—1}
is the test MMHD(q), consisting of test patterns T; = (t;jo)*(ti1)°... (tin—1)°, where
Ti = tioti1 ... tin_1 is the test pattern of the original test MMHD(q).

The results of applying the above properties to the test MMHD(4) shown in Table 1
are illustrated in Table 2.

Table 2. MMHD(4) test extension examples.

Original MMHD(4) Property 1 (Bit Permutation)  Property 2 (Bit Inversion)

000 000 111

011 101 010

110 110 001

101 011 100

Original MMHD(4) Property 3 (Repetition, u =3) Property 4 (Bit Scaling, s = 2)
000 000000000 000000

011 011011011 001111

110 110110110 111100

101 101101101 110011

The presented analysis of controlled random tests with a small number of test patterns
demonstrates the feasibility of generating such tests without significant computational
costs. The examples provided in Table 2 illustrate the derivation of new controlled random
tests using formal methods, which enable the generation of a new set of test patterns as
well as the adjustment of the pattern size n. It should be noted that the given properties
apply not only to the MMHD(g) and OCRT but also to any controlled random tests.

As noted above, the key characteristic of tests with a small number of test patterns is the
relationship between the value of the max_minHD(T;, T;) Hamming distance and the num-
ber g of test patterns. Increasing the required minimum Hamming distance min HD(T;, T;)—
essentially maximizing it—reduces the number q of patterns in the generated test. It is
evident that both test parameters, namely, the Hamming distance minHD(T;, Tj) and the
number of test patterns, influence the efficiency and quality of the test. Intuitively, one
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might conclude that increasing both parameters improves the test properties. Indeed,
the more test patterns that are maximally distant from each other, the more efficient the test
becomes. However, as the analysis above has shown, it is impossible to simultaneously
increase both parameters. Therefore, in the subsequent discussion, we will consider an
approach that focuses on increasing the number of test patterns while maintaining the
minimum Hamming distance minHD(T;, T;) at an acceptable level.

In summary, the theoretical analysis highlights a fundamental trade-off: increasing
the minimum Hamming distance between test patterns inevitably reduces the number of
patterns in the test. These coding-theoretic constraints motivate the search for alternative
distance measures, which can better balance diversity and efficiency. Section 3 introduces
representation-dependent interpretations of the Hamming distance, aimed at achieving
this balance.

3. Modified Approach to Hamming Distance Calculation

The Hamming distance has significant limitations as a dissimilarity metric, as it only
distinguishes fully matching patterns T; and T; with HD(T;, T;) = 0 while treating all
other non-identical patterns equally. One argument that confirms the indistinguishability
of non-matching sequences is the case of binary patterns T; and T;, for which the Ham-
ming distance is always constant and equal to n. For example, HD(10000000,01111111) =
HD(10101010,01010101) = HD(00001111,11110000) = 8. As seen above, the Hamming
distance HD(T;, T;) in all the given examples is equal to n = 8, indicating the same
maximum difference across all pairs of patterns. However, the structural differences
between these pairs of sequences are significant. An even greater structural difference
exists in the following character sequence pairs, 00000000,11110000; 11111111, 00001111;
01011010, 11010100, for which the Hamming distance is HD(T;, Tj) = 4. These exam-
ples highlight the need for alternative dissimilarity measures capable of capturing not
only the number of differing bits but also the spatial and structural relationships within
the sequences.

Let us examine the potential for extending the use of Hamming distance in comparing
finite sequences of characters T; = t;ot;1...t;,—1 and T; = tjot;1 ... t; ,—1, which represent
test patterns consisting of n characters (elements) ¢;; and t;;, where ! € {0,1,...,n —1}.
The alphabet of characters #;; and ;; can be arbitrary, as well as the number # of elements
in the patterns T; and T;. Without loss of generality, we assume that the test pattern T; is
initially a binary pattern, meaning that the characters t;; € {0,1}.

The primary objective of the existing modifications to the Hamming distance calcula-
tion is to select, from among potential test pattern candidates, a test pattern T; that is most
different from the previously included pattern T;.

The first modification assumes that the length of a binary test pattern is restricted
ton = 2% where w is an integer. Such constraints frequently occur in practice when
addressing diagnostic problems in computer systems. Under this condition, the original
binary sequence

T; = tiotip - - tin—1

can be represented in w + 1 different ways denoted as T;(2Y), where v € {0,1,...,w}.
The index 27 specifies the number of consecutive bits that form each character in the new
alphabet. For v = 0 (2 = 1), we obtain the binary alphabet:

Ti(1) = tip(1)ti1(1) ...t 1 (1).
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For v = 1 (2! = 2), we obtain the quaternary alphabet:

Ti(2) = tip(2)ti1(2) .. tin2-1(2),

where each character is formed from two consecutive bits of T;(1). For larger values of v,
the construction continues in the same manner, producing

Ti(4), TI(S), ey Ti(I’l/Z), Ti(i’l) = Ti-

In the general case, the sequence T;(2°) consists of 2“7 characters. Each character of
this alphabet is obtained by concatenating two neighboring characters of the previous
representation T;(2°~!). For instance, for T;(2):

tio(2) = tip(1) i1 (1), t1(2) = ti2(1) ti3(1),
and, more generally,
t1(2°) =t (2 ) i1 (2°7Y), 1=0,1,...,n/2° - 1.

Thus, each representation T;(1), T;(2), T;(4), . .., T;(2¥) defines a sequence over a different
alphabet, offering multiple perspectives on the same original binary pattern.

The given interpretation of the original binary patterns does not prevent the determi-
nation of the Hamming distance between the patterns T; and T;. Just as in the case of binary
vectors, Equation (1) can also be applied here, provided that both patterns are expressed
in the same chosen alphabet. Let us illustrate this with the following example for the case
where n = 23,

Example 1. As an example of binary test patterns, consider T; = 01100011 and T; = 010110115,
for which the condition n = 2V = 23 is satisfied. For each pattern of binary characters
T; = 01100011, and T; = 010110115, in accordance with the above-described definitions, there are
w + 1 = 4 representations in the form of sequences of characters belonging to different alphabets
(see Table 3).

Table 3. Hamming distance computation in multiple alphabets for n = 8.

w=20 w=1 w=2 w=3
T; T;(1) = 01100011 T;(2) = 1203 T;(4) =63 T;(8) = ¢ = (99)256
Tj T](l) = 01011011 T](Z) =1123 Tj(4) =5B T](S) =[= (91)256
HD(T;, T]-) 3 2 2 1

In Table 3, the Hamming distance for the original binary patterns T;(1) and Tj(1), as
well as for their representations in different alphabets with their respective characters, is
presented. In this example, ASCII codes are used to represent T;(8) and T;(8). For all cases,
the value of the Hamming distance has been calculated based on Equation (1). The resulting
characteristic HD(T;, T]), represented by the four components {3,2,2,1}, provides a more
accurate assessment of the differences between these test patterns.

The requirement that the dimension n = 2% of a binary pattern T;, where w is an
integer, may not always be satisfied in practice. Consequently, for cases where n # 2%,
when mapping the original pattern T; into the sequences T;(1), T;(2), T;(4), . . ., the required
number of bits equal to 2” may be insufficient for the last character of the sequence T;(27),
where v € {0,1,2,...,w}. For example, considering the pattern T; = 0110001,, where
n = 7, it can be represented as the sequences T;(1), T;(2), T;(4), and T;(8). However,
in three cases—T;(2), T;(4), and T;(8)—the required number of bits is insufficient for the
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last character of the corresponding alphabet; specifically, one bit is missing for T;(2), and one
bit is missing in both T;(4) and T;(8). An obvious solution to overcome this limitation
is a cyclic interpretation of the original pattern T; = t;ot;1...t; ,_1. This interpretation
assumes that the bit following the last bit ¢; ,_; is the first bit t; y, thereby using the initial
bits of the pattern to obtain the required number of bits for the last character of T;(2”). For
the pattern T; = 0110001,, such an interpretation allows us to obtain T;(1) = 01100010,
T;i(2) = 01100010, = 12024 T;(4) = 01100010, = 6214 T;(8) = 011000102 = bys6 = (98)256-

The notation bysg above, as well as the symbols “c” and “[” in Table 3, represent values
in the base-256 numeral system. In each case, a group of 8 consecutive bits is interpreted as
a single element of a 256-ary alphabet. Thus, 01100010, = 98, is represented by bys¢ (ASCII
code for the letter b), while 01100011, = 9919 and 01011011, = 911 correspond to the ASCII
symbols “c” and “ [, respectively. It should be emphasized that these ASCII representations
are used only as illustrative examples, since the base-256 system also includes non-printable
and control characters. The purpose of this notation is to demonstrate that every 8-bit block
can be treated as one symbol of a base-256 alphabet.

Removing the restriction on the size n of the binary pattern T; by extending it to the
required number of bits allows for an expansion in the number of alphabets available
for different mappings of the original pattern. Naturally, considering the possibility of
extending the original binary pattern to the required number of bits, the number of al-
phabets can be increased up to n. These alphabets consist of characters specified by one
bit, two bits, three bits, four bits, and so on, up to the alphabet in which each charac-
ter is determined by n consecutive bits. For example, considering the original pattern
T; = 01100, with n = 5 and its cyclic extensions, it can be represented in the form of
sequences obtained for n = 5 different alphabets. The sequential representations are
as follows: T;(1) = T; = 01100, T;(2) = 011000, = 1204, T;(3) = 011000, = 30s,
T;(4) = 01100011, = 6314, and T;(5) = 01100, = Cs;.

Another approach to representing the original test pattern in various numerical sys-
tems with different character sets is to expand the last character of the pattern by appending,
for example, all zero values. Consider the example of a test pattern T; = 01100, which
can be represented in five different numerical systems, each with its own alphabet. To
avoid potential conflicts related to the absence of a complete set of characters (or their
graphical representation) in alphabets containing a large number of symbols, each character
in all numerical systems will be represented in binary form and separated by spaces. Thus,
the test pattern T; = 01100 can be represented in five different numerical systems as follows:
Ti(1) =01100; T;(2) = 0110 004 T;(3) = 011 000g T;(4) = 0110 000046 T;(5) = 0110003;.

Let us define the binary n-bit test pattern T; as a pattern in a numerical system other
than binary.

Definition 2. The test pattern T;, consisting of n binary characters, can be interpreted in a
2" numerical system with 2" characters as the pattern T;(r), where r € {1,2,...,n}. This
pattern consists of [n/r| characters, where T; is expanded to a size of [n/r] X r bits by adding
[n/r] X r—n zeros.

For example, the test pattern T; = 0110001 with n = 7 can be represented in the octal
(2%) numerical system with [n/r] = [7/3] = 3 characters as T;(3) = 011 000 100g = 304sg.
To achieve this representation, [n/r] x r —n = [7/3] x 3 —7 = 2 zeros have been added.

Note that the above examples of interpreting the pattern T; and Definition 2 allow
us to consider binary test patterns in various number systems. Using the last example
of representing the test pattern T; = 01100 in n = 5 different number systems, let us
illustrate the determination of the Hamming distance HD(T;, Tj) (Equation (1)) for each
interpretation of two patterns: T; = 01100 and T; = 01011.



Appl. Sci. 2025, 15, 9951

11 of 22

The below example (see Table 4) of determining the Hamming distance demonstrates
the possibility of obtaining, based on Equation (1), several numerical assessments of the
relationship between the original binary patterns T; and T;.

Table 4. Example of the Hamming distance calculation.

T;(1) T;(2) T:(3) T:(4) T;(5)
T; 01100 011000 011 000 0110 0000 01100
T; 01011 0101 10 010 110 0101 1000 01011
HD(T,, T)) 3 2 2 2 1

Let us now define a new measure of dissimilarity between the binary test patterns T; and
T;, which consists of a set of numerical characteristics represented by the Hamming distances.

Definition 3 (Dissimilarity Measure MD(T;, T;)). The dissimilarity measure MD(T;, T;)
between two binary test patterns T; = tipti1...t;1 and T; = tiotj1...t;, 1, where
tig tjp € {0,1} and 1 € {0,1,...,n — 1}, is defined as an n-component vector composed of the
Hamming distances

HD; = HD[T;(1),Tj(1)], HD, = HD[T;(2),T;(2)], ..., HD, = HD[T;(n), T;(n)]

calculated according to Equation (1).

The analyzed characters t;; and t;; of the test patterns T;(r) and Tj(r), according
to Definition 2, are represented by r € {1,2,...,n} binary bits. Accordingly, using
Equation (1), the numerical values of the components HD1, HDy, ..., HD,, of the dissimilar-
ity measure MD(T;, T;) are determined. Table 5 presents examples of calculating MD(T;, T;)
for various pairs of test patterns T; and Tj in the case where n = 5.

Table 5. Example of the dissimilarity measure MD(T;, Tj) calculation.

T;(1) T;(2) T:(3) T;(4) T;(5)
T; 01100 0110 00 011 000 0110 0000 01100
T; 10000 10 00 00 100 000 1000 0000 10000
HD(T, T)) 3 2 1 1 1
T; 01100 011000 011 000 0110 0000 01100
T, 11001 1100 10 110 010 1100 1000 11001
HD(T;, T;) 3 3 2 2 1

Note that in all three examples presented in Tables 4 and 5, the same pattern T; = 01100
was used as the test pattern T;, while three different patterns T; were selected to determine the
value of the measure MD(T;, T;). Accordingly, for the three cases shown in Tables 4 and 5,
the measure of dissimilarity MD(T;, T;) takes the following values: MD(01100,01011) =
{3,2,2,2,1}, MD(01100,10000) = {3,2,1,1,1}, MD(01100,11001) = {3,3,2,2,1}.

The examples presented in Tables 4 and 5 demonstrate the indistinguishability of all
three patterns T; with respect to the reference pattern T; = 01100 when using the classical
measure of difference—the Hamming distance—since in all three cases HD(T;, T;) =
HD; = 3. At the same time, applying the new measure of dissimilarity (see Definition 3)
reveals different degrees of difference between the patterns T; and T;, as expressed by the
varying values of the components HD, HD3, and HD, of the measure MD(T;, T;).

The measure of dissimilarity MD(T;, T;) for the binary test patterns T; and T; has the
following obvious properties.
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Property 1.  The minimum value of all components HDy, HD, ..., HD,, of the measure
MD(T;, T]) is zero, that is,

minHD1 = minHDy = --- = minHD, = 0.

This condition occurs when the test patterns are identical, i.e., T; = Tj.
Property 2.  If one component HD,, where r € {1,2,...,n}, equals zero, then all the
others are also equal to zero. Conversely, if any component HD, > 0, then
all other components are greater than zero as well.
Property 3. The maximum values of the components HD1, HD,, ..., HD, depend on
the number of characters in the representations T;(r) and Tj(r). Specifically,

maxHDy =n, maxHDy = [n/2], maxHD3 = [n/3],
n

maxHDp/a1-1 = %n/ﬂ - J =

maxHDy, 51 = --- =maxHDy_1 =2, maxHD, = 1.

The maximum difference between test patterns T; and T; in terms of the new
dissimilarity measure MD(T;, T;) is achieved when T; is the bitwise inverse
of T;. In this case, all components HD1, HDy, HD3, ..., HD,, of the measure
MD(T;, T;) reach their maximum values.
For example, for T; = 01100 and its inverse pattern T; = T; = 10011,
the corresponding component values are

HDy = maxHD1 =n =5,

HD, = maxHD, = [n/2] = [5/2] =3,
HD3 = maxHD3 = [n/3] = [5/3] =2,
HD4 = maxHDy = [n/4] = [5/4] = 2,

HDs = maxHDs = 1.

Property 4.  The components of MD(T;, T;) satisfy the following relation:
HDy > HDy > HD3 > --- > HD,,.

The fulfillment of this property is explained by the fact that when calculat-
ing HD, 1, the number of characters included in the patterns T;(r + 1)
and Tj(r +1) is less than or equal to the number of characters within
the patterns T;(r) and T;(r). Therefore, the following inequality holds:
HD,[Ti(r), Tj(r)] > HD,q [T;(r +1), Tj(r + 1)].

As noted in [7,13,32], the idea of controlled random tests is as follows: the next
test pattern T; is generated to be as different (or distant) as possible from the previously
generated patterns Ty, Ty, . . ., T;_1 in terms of predetermined measures of dissimilarity. For
this purpose, at each step of forming the next test pattern, a candidate is selected from a
set of potential test patterns [7,13,32]. The main operation of the selection procedure is to
determine the numerical value of the chosen measure of dissimilarity between two patterns:
T;, which is one of the test patterns, and T;, which is one of the candidate test patterns. As
a result, the candidate test pattern for which the measure (or measures) of dissimilarity
attains the maximum value is selected as the next test pattern.

Let us explain the procedure for generating a controlled random test using the ex-
amples presented in Tables 4 and 5 for the case where the Hamming distance is applied
as a measure of dissimilarity. Assume that the first pattern of the controlled random
test is T; = 01100, and three randomly generated candidates for the next test pattern are
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T]- = 01011, T] = 10000, and T] = 11001. For each candidate pattern T]-, the value of the
dissimilarity measure, as defined in Equation (1), is calculated with respect to the test
pattern T;. As shown in Tables 4 and 5, the value of HD; is equal to 3 in all three cases. The
classical technique for generating controlled random tests assumes that any of the three
candidate patternS—Tj = 01011, T] = 10000, or T] = 11001—can be selected as the next
test pattern.

In cases where multiple test pattern candidates yield the maximum value of HD;,
the new measure of dissimilarity MD(T;, T]), introduced by the authors (see Definition 3),
provides a more comprehensive way to distinguish between test pattern candidates T; with
respect to the test pattern T;. To achieve this, it is necessary to analyze the values of the next
component, HD,, of the dissimilarity measure. As demonstrated in the given example,
the maximum value HD, = 3 is obtained for the pattern T; = 11001, which can then be
selected as the next test pattern in the controlled random test.

Based on the above example and following the classical strategy for generating random
tests, we will formulate one of the rules for applying the new dissimilarity measure.

MD(T;, T;) Application Rule. The test pattern candidate T; is selected as the next
test pattern T; if it is the only candidate, among the entire set of test pattern candidates,
that has the maximum value HD, for the minimum value of r € {1,2,...,n} in the
dissimilarity measure MD(T;, T]), specifically among the components HD1, HD», ..., HD,,.
Otherwise, if multiple candidates have the same maximum value of HD,, one of them is
selected randomly.

Other strategies for generating controlled random tests are possible, differing from the
given MD(T;, Tj) application rule for the new dissimilarity measure. For example, instead
of selecting the next test pattern based on a single component of the measure, one can use
an integral measure of dissimilarity, MDry1 (T;, T;), defined as the arithmetic sum of its

components, i.e., MDrotal (T;, Tj) = HDy + HDy + - - + HDj.

n
MDTotal(Tir T]) = Z HDr(Ti, Tj) (5)
r=1

Table 6 presents the results of calculations, based on Equation (1), of the components
HDi,HD;, HDs3, ..., HDg of the dissimilarity measure MD(T;, T]) for the binary pattern
T; = 00000000 and for four test pattern candidates T;: 11110000, 00110011, 11100010,
and 10010101. The last column of Table 6 contains the value of the integral measure
MDryta1(T;, Tj) for all four candidate patterns T;.

Table 6. Numerical values for dissimilarity measure MD(T;, T;).

T; HD, HD, HD; HDsy HDs HD¢ HD; HDs MDry
11110000 4 2 2 1 1 1 1 1 13
00110011 4 2 3 2 2 2 2 1 18
11100010 4 3 2 2 2 2 1 1 17
10010101 4 4 3 2 2 2 2 1 20

As can be seen from Table 6, according to both criteria, namely, the MD(T;, T;) appli-
cation rule and its integral value M Dy (T, T]), the pattern T; = 10010101 will be selected
as the next test pattern.

An analysis of the data presented in Table 6 shows that as r increases, the significance
of the HD, component decreases significantly. This can be explained by the fact that for
r > [n/2] (see MD(T;, T]) Property 3), all HD, components, except for the last HD,,, take
only three possible values: 0 if T; = T}, and either 1 or 2if T; # T;.
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The given measure of dissimilarity MD(T;, T;) demonstrates its effectiveness in gener-
ating controlled random tests. It enables the selection of an optimal pattern T; from a set
of candidates that share the same Hamming distance from the previously included test
pattern T;. However, its application is associated with the same drawbacks as classical
approaches, requiring significant computational costs. Most notably, it necessitates the
determination of dissimilarity measures between candidate test patterns and previously
selected test patterns.

4. Controlled Random Test Generation with the Given
Hamming Distance

The significant computational complexity of generating controlled random tests has
led to the development of methods for constructing such tests that do not require selecting
the next test pattern from a set of possible candidates. The core idea behind these methods
is to use a small number of test patterns that are maximally distant from each other in
terms of the Hamming distance while avoiding the computationally expensive process of
candidate selection and enumeration.

As noted in previous sections, there are approaches for constructing controlled random
tests with a small number of test patterns based on formal procedures that eliminate compu-
tational costs, such as MMHD(q) and OCRTs [38]. The key characteristic of such tests is the
relationship between the maximum-minimum Hamming distance, max_minHD(T;, T]),
and the number of test patterns, q. Increasing the required minimum Hamming distance,
minHD(T;, T]), effectively maximizing it for the generated test, results in a reduction in the
number of test patterns, . Unfortunately, a simultaneous increase in both parameters—
namely, the required minHD(T;, Tj) and the number of test patterns g—is not possible.

As an alternative to existing approaches, we propose a method based on increasing the
number of test patterns g while maintaining the value of minHD(T;, T;) at a moderate level.
The result of implementing the proposed approach is a controlled random test consisting of
binary patterns T; = t;otj1 ...t ,—1, where t;; € {0,1} forl € {0,1,...,n — 1}, and where
minHD(T;, T]), for j # i, takes given values from the set {0,1,...,4 — 1}. The main feature
of the proposed approach is the use of a new measure of dissimilarity, MD(T;, T;) (see
Definition 3), introduced by the authors, which is defined for an arbitrary alphabet of test
patterns. This measure allows for the estimation of the n components HD1, HD;, ..., HD,
that quantify the dissimilarity between two arbitrary binary patterns T; = t;ot;1 ...t ,—1
and T; = tjotj1...tj,,—1. Property 4 of this measure states that the components are re-
lated according to the following inequality: HD; > HD, > HD3; > --- > HD,, where
HD, = HD,[T;(r), Tj(r)]. According to Definition 2, the patterns T;(r) and T;(r) represent the
binary patterns T; and T; in a base - 2" numerical system consisting of 2" distinct characters.

Based on Property 4 of the new measure of dissimilarity MD(T;, T;), we formulate a
statement that serves as the foundation for generating controlled random tests with a small

number g of test patterns while maintaining a given min HD(T;, T;) value.

Statement 1. A controlled random test consisting of 4 = 2" binary patterns, where r €
{1,2,...,n},is the minimum value of r for which HD,[T;(r), Ti(r)] = maxHD,[T;(r), Tj(r)]

foralli #j€{0,1,...,g—1} and n mod r = 0 has minHD(T; T]-) =n/r.

The limited number of test patterns, g = 2', is determined by the restricted num-
ber of characters in the alphabet, which is also equal to 2", in which the test patterns
Ti(r) = tio(")tir(r) .- tinsr—1(r) and Ti(r) = tjo(r)tj1(r)...tju/r—1(r) are represented.
Only in this case can the characters at the same positions in all 4 test patterns assume differ-
ent values without repetition. This is the necessary condition for achieving the maximum
value HD,[T;(r), Tj(r)] of the Hamming distance for all pairs of test patterns T;(r) and
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Tj(r), wherei # j € {0,1,...,q — 1}. To illustrate the meaning of this statement, let us
consider the following example of a controlled random test.

Example 2. In the case of n = 6, the controlled random test consisting of g = 4 patterns has
the following form in binary (r = 1), quaternary (r = 2), and octal (v = 3) number systems (see
Table 7).

As can be seen from Table 7, there are no repeating characters in any digit of the quaternary and
octal representations of the test patterns. This indicates that in both cases, the Hamming distance
between the test patterns, according to Equation (1), takes its maximum values. Indeed, for any two
patterns T; and T; in the test, HD,[T;(2), T;(2)] = maxHD;[T;(2), T;(2)] = n/2 = 3, as well
as HD3[T;(3), Tj(3)] = maxHD3[T;(3), Tj(3)] = n/3 = 2. Moreover, in the quaternary case, all
four characters (0, 1, 2, and 3) are used in each digit of the test patterns without repetition.

Following the above statement, we can conclude that a test consisting of § = 22 binary patterns
with a minimum value of r = 2, for which HD;[T;(2), T;(2)] = maxHD[T;(2), T;(2)] for all
i #j€{0,1,2,3}, satisfies the condition HD(T;, T;) > minHD(T;, T;) = n/r = 6/2 = 3. In-
deed, as can be observed, HD1[To(1), T1(1)] = HD1[To(1), To(1)] = HD1[T1(1), T3(1)] =
HDl[Tz(l), T3(1)] = 3 and HD1[T0(1), T3(1)] = HDl[Tl(l),Tz(l)] = 6. All values Of
HD(T;, T;) are greater than or equal to 3, which confirms that the condition stated in the statement

is fulfilled.

Table 7. Binary controlled random test for n = 6 and its representation in quaternary and octal notation.

O A O S T - S

4

Ty 0 0 1 1 0 1 0 3 1 1 5
T 0 1 1 0 0 0 1 2 0 3 0
T 1 0 0 1 1 1 2 1 3 4 7
T3 1 1 0 0 1 0 3 0 2 6 2

Based on the statement, we propose a formal procedure for constructing controlled
random tests with g = 2" binary patterns and a given value of minHD(T;, T;) > |[n/r]. The
possible values of minHD(T;, T;) depend on the number # of bits in the binary test patterns
T; and T;. For example, for n = 16, the possible test configurations with a given value of

minHD(T;, Tj) > |n/r]| and the number q of test patterns are presented in Table 8.

Table 8. Dependence between the number of bits n = 16 of binary patterns and min HD(T;, T;).

r 23 4 5 6 7 8 9 10 .. 15 16
minHD(T;, T;) = [16/r] & 5 4 3 2 2 2 1 1 .. 1 1
q 4 8 16 32 64 128 256 512 1024 ... 32768 65536

As can be seen from Table 8, the fixed value 7 of the test pattern bit length determines
the possible values of minHD(T;, Tj) for which a test can be constructed based on the
statement. Naturally, the most interesting cases are those where minHD(T;, Tj) attains
acceptably large values, which correspond to the smallest values of r.

The algorithm for generating binary controlled random tests with a given Hamming
distance consists of the steps outlined in Algorithm 1. An extension of this algorithm
(Algorithm 1) can involve selecting not necessarily consecutive r bits of the patterns but any
arbitrary r out of n bits to specify the binary code of characters. The only limitation is the

requirement to select non-overlapping blocks of r bits.
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Algorithm 1 Generation of Binary Controlled Random Tests with a Given Hamming Distance

Input data: the size n of the test patterns (in bits) and the required value of
Rec_minHD(T;, T;), which denotes the minimum Hamming distance between any two
test patterns.

1.  From the inequality
Rec_minHD(T;, Tj) < gJ

determine the largest possible value of r € {1,2,...,n}. Based on this condition,
compute the number of test patterns as g = 2". The minimum Hamming distance
between any two patterns will then satisfy

minHD(T;, T;) > m foralli # j, i,j € {0,1,...,2" —1}.

2. Assign the first r bits of each test pattern Ty, Ty, ..., T, to distinct binary codes
selected randomly from an alphabet of 2" possible r-bit combinations. Each code
is assigned without repetition, starting from Tp to T;_1. As a result, each pattern
contains in the first r bits a unique binary combination corresponding to one of the 2
possible codes.

3. Repeat step 2 for the next | 2| — 1 blocks of 7 bits. In each iteration, assign the next r
bits of all test patterns (e.g., bits r to 2r — 1, 2r to 3r — 1, etc.) to new sets of unique
binary codes of length r, again selected randomly without repetition.

4. If the pattern length n is not divisible by r, i.e, n — 2| -7 > 0, then assign the
remaining bits randomly for all test patterns.

The described algorithm generates test patterns with a guaranteed minimum Ham-
ming distance between any pair of test patterns. By partitioning each test pattern into
independent r-bit blocks and ensuring that each block contains a unique binary code se-
lected from a maximally distinct set, the method guarantees that the resulting test set is both
compact and diverse. The final step introduces randomness in the unused bit positions,
further enhancing the variability of the test without violating the distance constraint. It
should be emphasized that the guaranteed minimum Hamming distance is determined
solely by the disjoint allocation of unique codes in the complete r-bit blocks. When the
pattern length n is not divisible by r, the remaining bits are filled by random padding.
This step only affects the residual part of the patterns and does not reduce the guaranteed
minimum Hamming distance between them. On the contrary, it adds additional variability
to the generated tests while fully preserving the distance constraint.

The computational complexity of Algorithm 1is O(g - n), where g = 2" denotes the
number of generated patterns and 7 is the pattern length. This is significantly more efficient
than classical candidate-selection approaches, which usually require O(g? - n) operations
due to pairwise comparisons.

The following example demonstrates the operation of Algorithm 1 for a specific input
configuration, highlighting the structure of the generated patterns and validating the
achieved minimum Hamming distance.

Example 3. Let the size n of the test patterns be 7, and let the required value of Rec_minHD(T;, T;) = 3.

1. Based on the inequality Rec_minHD(T;, Tj) < |n/r], we obtain r = 2. This is the largest
value of v for which the inequality holds: 3 < |7/2] = 3. Therefore, the generated test T will
consist of 2" = 4 patterns, Ty, T1, Tp, T3, with a guaranteed minimum Hamming distance
minHD(Ti,Tj) > 3.

2. The first two bits t; o and t; 1 of the test patterns are assigned binary values corresponding
to four distinct characters from the quaternary alphabet: 00, 01, 10, and 11. These binary
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codes are assigned randomly, without repetition, starting from Ty to Ts. As a result, each test
pattern contains a unique 2-bit prefix: 10, 11, 00, and 01.

3. Step 2 is repeated |7/2| —1 = 2 times for the next two r-bit blocks, i.e., (tip,ti3)
and (tja,tis). For each block, values are assigned using random permutations of the
quaternary alphabet.

4. The remaining bit t; ¢, since 7 — |7/2] x 2 = 1, is assigned randomly for all patterns.

The resulting controlled random test is presented in Table 9.

Table 9. Controlled random test with minHD(T;, T;) = 3.

T tio ti1 tio ti3 tig tis tig
Ty 1 0 0 0 0 1 1
T, 1 1 1 1 0 0 0
T 0 0 0 1 1 1 1
T3 0 1 1 0 1 0 0

All pairwise Hamming distances between patterns satisfy the required minimum value:

HD(Ty, Ty)

1 5, HD(Tp, Tz)
HD(Ty, T;) =6, ,

») =3, HD(Ty, T)
HD(Ty, T3) = 3, /

3) =6,
HD(T», T3) = 5.

Since all values are greater than or equal to 3, the condition Rec_minHD(T;, T]) > 3 s fulfilled.

It should be noted that the proposed algorithm was intentionally formulated in the
binary domain, since it directly corresponds to the digital world at the low level of hardware
implementation, where the binary alphabet is natural and fundamental. Although the
theoretical framework allows for the use of higher-radix alphabets and non-binary symbols,
our focus on binary patterns reflects the practical context of memory testing and built-in
self-test environments. Extending the method to real non-binary alphabets remains an
interesting direction for future research.

5. Experimental Investigation

This section presents a comparative analysis of the effectiveness of two types of tests:
controlled random tests with a given Hamming distance (CRTs), generated using the
proposed algorithm, and standard random patterns. The comparison is conducted in
the context of their ability to detect multicell faults, particularly Pattern-Sensitive Faults
(PSFs) occurring in RAM. Due to the size of the test patterns and the vast number of
their permutations, the comparisons are based on the average values obtained from the
generated test collections.

The first test collection consists of patterns generated using the proposed algorithm,
based on the controlled random test generation method described earlier. Using this approach,
a controlled random test of length 1024 bits was generated with minHD(T;, T;) = 256. For the
input parameters n = 1024 and Rec_minHD(T;, T;) = 256, the value of r was determined
to be 4, resulting in the generation of 2" = 16 patterns per test. The average value of the
metric M Do (T;, T]) (Equation (5)) for these patterns is 287,092, with a standard deviation
of 34.54.

In contrast, the second test collection consists of 16 purely random patterns of the same
size. The average value of M Dy (T, T]) for these test sets is 273,815, with a standard
deviation of 871.

The basic statistical parameters of the generated test collections are summarized in
Table 10.
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Table 10. Comparison of statistical parameters between CRT and random tests.
Parameter CRT Random Tests
Number of tests in collection 1000 2000
Patterns per test 16 16
Bits per pattern 1024 1024
Average MDroa1 (T, T]) 261,052.62 248,361.75
Standard deviation 34.54 455.55
Coefficient of variation (CV) 0.0132% 0.1834%
Relative error (E,q) 0.00082% 0.00804%
Confidence level 95% 95%

The generated test collections confirm their statistical reliability, as evidenced by low
relative errors (E,,;) and consistent coefficient of variation (CV) values.

Similar test collections of 1024-bit size and comparable statistical parameters were
generated for r = 2, 3, and 5 and will be used in further analyses.

In Table 11, the detailed results for individual values of HDy, HD,, ..., HDg and MD
for r = 4 are compared.

Table 11. Average results for HD1, HD,, ..., HDg and MDry (T;, T;) for r = 4.

Test HD] HDZ HD3 HD4 HD5 HD6 HD7 HDs MDTotal(Ti/ T])
CRT 65,536 49,152 37,711 30,720 24,436 20,520 17,616 15,360 287,092
Random 61,316 45,978 35,612 28,637 23,824 20,211 17,477 15,295 274,354

% Diff 6.88% 6.90% 5.87% 7.27% 2.57% 1.53% 0.80% 0.42% 4.64%

The results presented in Table 11 highlight the comparative performance of the ana-
lyzed CRT and standard random tests across individual HD,, values (HD; to HDg) and
the overall metric MDrya1(T;, T;) for r = 4. On average, the CRT outperforms random
tests across all tested HD values, with percentage differences ranging from 0.42% to 7.27%.
The highest difference (7.27%) was observed for HD,, which aligns with the parameter
r = 4 used in generating the CRTs. This correlation underscores the effectiveness of the
proposed algorithm in targeting specific test conditions based on the selected r parameter.
Although the percentage differences in Table 11 may appear moderate, they are systematic
across all evaluated parameters. More importantly, the subsequent experiments (Table 12
and Figure 1) confirm that these differences translate into noticeable improvements in
memory fault coverage.

In the next set of experiments, conducted in a simulation environment, the focus was
on evaluating the effectiveness of test patterns generated using the proposed algorithm in
detecting multicell RAM faults. Multicell memory faults, such as Pattern-Sensitive Faults
(PSFs), involve dependencies between any k out of N memory cells (N being the memory
size). These faults are triggered when specific binary patterns are present in the related
cells or when particular transitions occur based on predefined conditions. Consequently,
effective detection of such faults requires generating the largest possible number of binary
patterns during testing. These patterns activate the faults and enable their detection.

The simulations analyzed groups consisting of k memory cells for k = 2...10. For each
group, up to 2 distinct k-bit binary patterns (i.e., values ranging from 0 to 2 — 1) could
potentially appear. The objective was to determine the average number of unique k-bit
patterns generated during a march test, with the memory being initialized in each iteration
using test patterns from the CRT with a given Hamming distance. The obtained results
were compared with the results for random tests presented in Table 8.12 in [38].
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Each simulation-based test consisted of a specific number of iterations, determined
by the value of r: 4 iterations for r = 2, 8 iterations for r = 3, and 16 iterations for r = 4.
During each iteration, the simulated memory was initialized with a given test pattern from
the analyzed set, followed by the execution of a transparent version of the MATS+ memory
test. Throughout the simulation, the memory model was monitored, and the number
of unique k-bit binary patterns observed in individual groups of k-cells was recorded.
The results are presented in Table 12.

Table 12. Fault coverage [%] comparison for random tests and CRTs with a given Hamming distance
for different memory fault sizes k and different numbers of iterations (2").

k 3 4 5 6 7 8 9 10
r = 2 (4 iterations)
random [38] 93.74 7767 5642 37.07 2275 1334 7.59 4.31

CRT with given HD, 97.27 8149 5842 3779 2293 1335 758 422

r = 3 (8 iterations)
random [38] 99.69 95.01 81.03 6041 4033 2491 1461 8.28
CRT with given HD, 9998 9752 8458 62.89 4154 2538 1477 8.33

r = 4 (16 iterations)
random [38] 100.00 99.75 9647 8439 6444 4364 27.18 15.88
CRT with given HD, 100.00 99.95 97.85 86.78 66.36 44.64 2755 16.03

Based on the results presented in Table 12, it can be concluded that CRTs consistently
achieve better results than random tests in most cases. The difference is most noticeable for
lower values of r and k, where the CRT outperforms random tests by several percentage
points. For instance, for ¥ = 2 and k = 3, the CRT achieves a fault coverage of 97.27%,
while random tests reach 93.74%. Fault coverage decreases as the value of k increases.
This is expected, since the number of possible binary combinations 2* grows exponentially,
making full coverage harder to achieve. However, the results in Table 12 indicate that CRTs
perform slightly better for larger k compared to random tests, highlighting the greater
ability of a CRT to generate diverse test patterns.

In the final experiment, the average number of unique k-bit test patterns generated in
arbitrary groups of k out of N memory cells using the proposed algorithm was compared
with that obtained using traditional CRT generation methods, including native antirandom
tests [13], concatenated antirandom tests [13], and STPG [40]. The comparison was carried
out for fault groups of size k = 3, using tests generated for r = 3 (i.e., 8 iterations).
During the simulation, the number of distinct k-bit patterns generated in each iteration
was recorded to assess the performance of the proposed method relative to the standard
techniques. The outcomes of this analysis are presented in Figure 1, which illustrates the
differences in the number of generated k-bit patterns across the tested methods.

The results show that the CRT method with a given Hamming distance consistently
outperforms other test generation methods in terms of fault coverage, with one exception in
the second iteration, where it achieves a slightly lower result (76.13%) compared to native
antirandom (77.77%). However, starting from the third iteration, the CRT surpasses all
other methods, demonstrating a faster increase in fault coverage (e.g., between iterations 2
and 3, the CRT rises from 76.13% to 90.05%). In the later iterations (7 and 8), the CRT ap-
proaches near-complete fault coverage, reaching 99.92% and 99.99%, respectively. Although
the differences between the CRT and other methods diminish with a higher number of
iterations, the CRT consistently demonstrates superior effectiveness, confirming its ability
to generate diverse and efficient test patterns even in advanced stages of testing.
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In summary, the experimental evaluation demonstrates that the proposed method
consistently provides superior results compared to both purely random tests and classical
controlled random tests. The improvements are systematic across all examined cases, partic-
ularly in terms of fault coverage and test diversity, while being achieved with significantly
reduced computational effort.

STPG native antirandom
I concatenated antirandom Il CRT with given HD
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«
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2 3 4 5 6 7 8
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Figure 1. Fault coverage comparison for different test generation methods for k = 3and r = 3
(8 iterations).

6. Conclusions

This paper presented a method for generating controlled random tests with a given
Hamming distance, aimed at improving the diversity and effectiveness of test sets used
in computing systems, particularly memory devices. A new dissimilarity measure was
introduced, based on Hamming distances calculated for binary patterns represented in
various numeral systems. This extended measure allows for a more detailed assessment of
differences between patterns compared to the classical Hamming distance alone.

We proposed an algorithm that generates test sets with a predefined minimum Ham-
ming distance, without selecting patterns from large pools of candidates. This approach
reduces computational effort while ensuring sufficient diversity in the generated patterns.

The effectiveness of the proposed method was evaluated through a series of compara-
tive experiments. The results showed that the generated tests outperform not only purely
random test sets but also traditional controlled random tests (CRTs) in several aspects.
Specifically, tests created using the proposed method achieved higher total dissimilarity
values and better coverage of multicell memory faults, particularly for lower numbers of
iterations and smaller fault group sizes. Although some improvements observed in the
experiments may appear moderate, they are systematic across all evaluated cases. More
importantly, the obtained results demonstrate that these differences translate into tangible
practical benefits, as the proposed method consistently achieves higher fault coverage than
random and classical controlled random testing, especially in scenarios with smaller fault
groups and lower iteration counts.

These results suggest that the method may be a practical alternative in contexts
where test diversity and efficiency are important. Future work may include extending the
approach to more complex fault models or exploring its use in different types of systems.
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