НЕРЕДУКТИВНЫЕ ОДНОРОДНЫЕ ПРОСТРАНСТВА СО СВЯЗНОСТЬЮ И НЕНУЛЕВОЙ АЛГЕБРОЙ ГОЛОНОМИИ

«Необходимость сравнивать те или иные геометрические величины в разных точках «кривого» пространства делает понятие связности одним из важнейших в геометрии и физике» [1]. С описанием трехмерных нередуктивных однородных пространств, допускающих связности только ненулевой кривизны, можно ознакомиться в статье [2], также в ней приведен более подробный тематический обзор и обоснование применяемых методов; в данной работе изучаются трехмерные нередуктивные пространства со связностью и ненулевой алгеброй голономии.

Пусть M – дифференцируемое многообразие, на котором транзитивно действует группа \overline{G} , $G = \overline{G}_{r}$ – стабилизатор произвольной точки $x \in M$. Пусть $\overline{\mathfrak{g}}$ – алгебра Ли группы Ли \overline{G} , а \mathfrak{g} – подалгебра, соответствующая подгруппе G. Там, где это не будет вызывать разночтения, будем отождествлять подпространство, дополнительное к \mathfrak{g} в $\overline{\mathfrak{g}}$, и факторпространство $\mathfrak{m} = \overline{\mathfrak{g}}/\mathfrak{g}$. Аффинной связностью на паре $(\overline{\mathfrak{g}},\mathfrak{g})$ называется такое отображение $\Lambda:\overline{\mathfrak{g}}\to\mathfrak{gl}(\mathfrak{m})$, что его ограничение на \mathfrak{g} есть изотропное представ-ление подалгебры \mathfrak{g} , а все отображение Тензор **g** -инвариантным. является кручения $T \in Inv T_2^1(\mathfrak{m})$ и кривизны $R \in Inv T_3^1(\mathfrak{m})$ имеют $T(x_{\mathfrak{m}}, y_{\mathfrak{m}}) = \Lambda(x)y_{\mathfrak{m}} - \Lambda(y)x_{\mathfrak{m}} - [x, y]_{\mathfrak{m}}, \quad R(x_{\mathfrak{m}}, y_{\mathfrak{m}}) = [\Lambda(x), \Lambda(y)] - \Lambda([x, y])$ для всех $x, y \in \overline{\mathfrak{g}}$. Связность с нулевым тензором кривизны еще

называется плоской. Будем говорить, что л имеет нулевое кручение или является связностью без кручения, если T = 0. Под эквиаффинной связностью будем понимать аффинную связность Λ (без кручения), для которой $\operatorname{tr}\Lambda(x)=0$ для всех $x\in\overline{\mathfrak{g}}$. Однородное пространство редуктивно, если алгебра Ли $\bar{\mathfrak{g}}$ может быть разложена в прямую сумму векторных пространств – алгебры Ли \mathfrak{g} и ad(G) –инвариантного подпространства, в противном случае пространство не является редуктивным. Этот класс однородных пространств ввел в рассмотрение П. К. Рашевский, у редуктивных пространств при параллельном переносе сохраняются тензор кривизны и тензор кручения. Если пространство редуктивно, то оно всегда допускает инвариантную связность [2]. Алгебра Ли группы голономии инвариантной связности на паре $(\overline{\mathfrak{g}},\mathfrak{g})$ – это подалгебра алгебры Ли $\mathfrak{gl}(3,\mathbb{R})$ вида $V+[\Lambda(\overline{\mathfrak{g}}),V]+[\Lambda(\overline{\mathfrak{g}}),[\Lambda(\overline{\mathfrak{g}}),V]]+...,$ где Vподпространство, порожденное $\{[\Lambda(x),\Lambda(y)]-\Lambda([x,y])|x,y\in\overline{\mathfrak{g}}\}$. Поскольку множество V порождается операторами кривизны, то если тензор кривизны ненулевой, то и алгебра голономии ненулевая.

Будем описывать пару $(\overline{\mathfrak{g}},\mathfrak{g})$ при помощи таблицы умножения алгебры Ли $\overline{\mathfrak{g}}$. Через $\{e_1,...,e_n\}$ обозначим базис $\overline{\mathfrak{g}}$ $(n=\dim \overline{\mathfrak{g}})$. Будем полагать, что \mathfrak{g} порождается $e_1,...,e_{n-3}$, а $\{u_1=e_{n-2},u_2=e_{n-1},u_3=e_n\}$ — базис \mathfrak{m} . Для нумерации подалгебр используем запись d.n, а для нумерации пар — запись d.n.m, соответствующие приведенным в [2].

Теорема. Если нередуктивная пара $(\bar{\mathfrak{g}},\mathfrak{g})$, коразмерности 3 допускает инвариантные аффинные связности только с ненулевой алгеброй голономии, но не допускает эквиаффинных связностей, то $(\bar{\mathfrak{g}},\mathfrak{g})$ эквивалентна одной и только одной из пар 4.21.24, 4.21.25 (δ =0,1 соответственно), 3.20.22, 3.20.27:

<u>4.21.24</u> , <u>4.21.25</u>									
	$\underline{e_{\scriptscriptstyle 1}}$	$\underline{e_2}$	$\underline{e_3}$	$\underline{e_4}$	\underline{u}_1	\underline{u}	2	$\underline{u_3}$	
$e_{_1}$	0	0	e_3	$e_{_4}$	u_1	и	2	0	
e_2	0	0	$e_{_4}$	O	0	и	1	e_2	
e_3	$-e_3$	$-e_4$	0	0	0	()	u_2	
$e_{\scriptscriptstyle 4}$	$-e_4$	0	0	0	0	0)	$e_4 + u_1$	
u_1	$-u_1$	0	0	0	0	C)	$\alpha e_{_4}$	
u_2	$-u_{2}$	$-u_1$	0	0	0	C)	$\alpha e_{\scriptscriptstyle 3}$ + $\delta e_{\scriptscriptstyle 4}$ -	u_2
u_3	0	$-e_2$	$-u_2$	$-e_4$ $-u$	$-\alpha e_1$	$-\alpha e_3$	$\delta e_4 + u_2$	0	$, \alpha < -1/4,$
3.20.22			$\underline{e}_{_{1}}$	_	$\underline{e_2}$	$\underline{e_3}$	$\underline{u_1}$	$\underline{u_2}$	\underline{u}_3
$e_{_1}$			O		$e_{_2}$	$(1/2)e_3$	$u_{\scriptscriptstyle 1}$	O	$(1/2)u_3$
$e_{_2}$			$-e_2$		O	O	О	$\boldsymbol{u}_{\scriptscriptstyle 1}$	O
$e_{_3}$			$-(1/2)e_3$		O	O	О	$e_{_3}$	$u_{\scriptscriptstyle 1}$,
$u_{_1}$			$-u_{\scriptscriptstyle 1}$		O	O	O	$2u_1$	O
u_{2}			0		$-u_{_1}$	$-e_3$	$-2u_{1}$	O	$e_{3}-u_{3}$
u_3			-(1/1)	2) u_{3}	O	$-u_{_1}$	O	$-e_{_{3}}+u_{_{3}}$	O

В случаях 4.21.24 и 4.21.25 аффинная связность имеет вид:

$$\begin{pmatrix} 0 & 0 & p_{1,3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & q_{1,3} \\ 0 & 0 & p_{1,3} \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} r_{1,1} & -q_{1,3} & 0 \\ 0 & r_{1,1} + 1 & 0 \\ 0 & 0 & r_{1,1} + p_{1,3} + 1 \end{pmatrix},$$

здесь и далее $p_{ij}, q_{ij}, r_{ij} \in \mathbb{R}$ $(i, j = \overline{1,3})$), связность не является эквиаффинной при любых значениях параметров, так как даже $\mathfrak g$ не принадлежит $\mathfrak{sl}(\mathfrak m)$. Аналогично, в случае 3.20.27 аффинная связность имеет вид

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

и не является эквиаффинной. В случае 3.20.22 аффинная связность:

$$\begin{pmatrix} 0 & p_{1,2} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} q_{1,1} & 0 & 0 \\ 0 & q_{1,1} + p_{1,2} & 0 \\ 0 & 0 & q_{1,1} + 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & r_{1,3} \\ 0 & 0 & 0 \\ 0 & p_{1,2} & 0 \end{pmatrix},$$

связность не является эквиаффинной. Прямыми вычислениями получаем, что других трехмерных нередуктивных однородных пространств (допускающих инвариантные связности только только с ненулевой алгеброй голономии), не допускающих эквиаффинных связностей, нет.

ЛИТЕРАТУРА

- 1. Алексеевский Д.В., Виноградов А.М., Лычагин В.В. Основные идеи и понятия дифференциальной геометрии // Итоги науки и техники. Совр. пробл. мат. Фундамент. направл. М.: ВИНИТИ АН СССР. 1988. Т. 28. С. 5–297.
- 2. Можей Н.П. Связности ненулевой кривизны на трехмерных нередуктивных пространствах // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2017. Т. 17, № 4. С. 381–393.