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Abstract. To address the issues of path discontinuity, control
instability, and insufficient global guidance in the traditional
Dynamic Window Approach (DWA) for local path planning, this
paper proposes a Multi-Constraint Dynamic Window Approach
(MC-DWA). The proposed method incorporates multiple
constraints in trajectory evaluation, including heading deviation,
path adherence, curvature variation, and velocity jerk, thereby
improving the smoothness and stability of the planned paths.
Extensive simulation experiments demonstrate that MC-DWA
achieves better path quality and safety than existing methods,
exhibiting enhanced adaptability and robustness.

Keywords: dynamic window approach, global-local synergy,
multi-constraint optimization, local path planning

1. INTRODUCTION

With the advancement of intelligent and automated
technologies, mobile robots are increasingly deployed in
areas such as industry, healthcare, and logistics. As a key
component of autonomous navigation, path planning aims to
generate an optimal, collision-free, and efficient path from the
start to the target [1]. It not only ensures motion safety but
also addresses the challenge of navigating in complex and
dynamic environments.

Path planning algorithms are typically divided into global
and local planning. Global planning assumes a fully known
environment and uses methods like A* and Dijkstra to
compute an optimal path, making it suitable for static
scenarios. Local planning, by contrast, depends on real-time
perception to adapt the robot’s path in response to
environmental changes and obstacles. Given that real-world
environments are often dynamic and partially observable,
local planning plays a critical role in ensuring navigation
safety and task reliability [2].

DWA is a classical local path planning algorithm
proposed by Fox et al. in 1997 [3]. This method generates
feasible short-term trajectories by simulating the robot’s
motion in the velocity space in real time. However, the
traditional DWA algorithm has limited consideration of the
robot’s kinematic and dynamic characteristics during
trajectory generation. It does not adequately account for
factors such as trajectory smoothness, stability, and
curvature variation. As a result, the robot may experience
abrupt turns or sudden velocity changes during motion,
which can negatively impact the stability of the control
system and reduce the reliability of trajectory execution.

To address these limitations, this paper proposes a MC-
DWA. The method introduces several trajectory evaluation
items, including dual-angle heading deviation, global path
adherence, curvature variation control, and jerk minimization.

Dmitry Pertsau
Department of Electronic
Computer Machines BSUIR
Minsk, Belarus
pertsevi@bsuir.by

These constraints are integrated into a unified multi-objective
scoring model, enabling more globally consistent, locally
smooth, and dynamically stable trajectory generation.
Extensive simulations across various complex scenarios show
that MC-DW A significantly outperforms classical DWA and
its variants in terms of path quality, safety, and robustness,
making it a promising solution for real-time autonomous
navigation in dynamic and cluttered environments.

II. METHOD

A. Basic Principles of the Classic DWA Algorithm

The fundamental idea of DWA is to sample admissible
pairs of lincar and angular velocities within a constrained
dynamic space, simulate the resulting short-term trajectories,
and sclect the optimal control command according to a
predefined evaluation function. This enables the robot to
navigate toward the target while avoiding obstacles in
dynamic environments [3]. The set of admissible velocity
commands in DWA is governed by the intersection of three
velocity constraint sets: kinematic, dynamic, and safety
constraints.

Kinematic constraints Vi;, define the basic physical
limits of the robot’s actuators. Specifically, the linear velocity
v and angular velocity w must lie within the hardware-
defined bounds as in Equation (1):

{Vkin = ('U,(U)l ve [vmin' vmax]'w € [wmin’wmax]} (1)

Dynamic constraints Vg,,, account for the robot’s limited
acceleration and deceleration capabilities, ensuring that
sampled velocities are physically reachable within a single
control cycle of duration At. Given the robot’s current linear
and angular velocities (v, w,), and the maximum allowable
linear and angular accelerations (a;'®*,a;®*), the velocity

change over one time step is bounded as follows in
Equation (2):

v € [y, — a®*AL, vy + aj ¥ At]
w € [wo — ay At wo + ay T At] )

Safety constraints V.5, ensure that candidate velocities
do not result in collisions. For each candidate velocity, the
robot simulates the corresponding trajectory and checks
whether it can safely stop before hitting any obstacle.
Assuming a maximum deceleration ay,.., (here, ap,qre =
ay'®®), the required braking distance dy,,x. to come to a full
stop from velocity Vv is given:

v2

dbruke = 2aprake. (3)
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A candidate velocity is considered safe only if the
minimum distance to obstacles along the predicted trajectory,
denoted d,,, . is bigger than d;,.,,. . This constraint
effectively filters out velocity pairs that would result in
collision under emergency braking conditions. The final
dynamic window is defined as the intersection of the three
constraint sets in Equation (4):

de = Vkin n den n Vsafe~ (4)

Each velocity pair (v,w) € Vg, is forward-simulated
over a short time horizon T, generating a corresponding
trajectory. The quality of each trajectory is then assessed
using a weighted evaluation function: G = a - heading +
+B - clearance + v - velocity . In this formulation, the
‘heading’ term measures the angular alignment between the
trajectory endpoint and the target direction, promoting goal-
oriented motion. The ‘clearance’ term represents the shortest
distance between the predicted trajectory and nearby
obstacles, encouraging safer paths. The “velocity” term favors
trajectories with higher forward speeds, which contributes to
time efficiency. The weights o, B, v are tuning parameters
used to balance these three objectives according to the task
requirements. The detailed formula can be seen in [3].

B. Multi-Constraint Enhanced DWA

Although the DWA offers real-time performance and
dynamic obstacle avoidance capabilities, it still exhibits
notable limitations in complex environments. Specifically,
the traditional DWA employs a relatively simplified
evaluation function that typically considers only basic factors
such as goal direction, velocity magnitude, and obstacle
distance. It lacks effective integration of global path guidance,
which can lead to trajectory deviations from the global plan
and susceptibility to local minima [4]. To address these issues,
the proposed MC-DWA incorporates three key categories of
constraint metrics and constructs a comprehensive trajectory
scoring model to enhance the rationality, smoothness, and
robustness of path planning. The specific improvements of
MC-DWA are described as follows.

To enhance directional guidance during navigation, MC-
DWA introduces a dual-heading consistency evaluation
mechanism, which includes goal-oriented consistency and
global path alignment. Specifically, let the predicted
trajectory endpoint orientation be denoted as 8,,,..q4 . the
direction toward the goal as 8., and the direction of the
final segment of the global path as 8,4 . The angular
deviations between these directions are calculated using
Equation (5):

{Aggoal = |6pred - Hgoall

. 5
Aefinal = |6pred - Hfinall ( )

Based on this, the heading consistency score is computed
as shown in Equation (6):
T[—Aegoal

H(v, W) =4, - + 2, - Tl ©)

™
where A; and A, arc weighting factors that balance the
contributions of goal direction and path direction alignment,
respectively (here we setA; = A, = 0.5).

However, when the robot is far from the target, heading-
based scoring alone may be insufficient to provide strong
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attraction toward the goal [5]. To address this, a goal distance
factor is incorporated into the evaluation function. An
exponential attraction function is used to introduce a
nonlinear response to distance variations, as defined in
Equation (7):

Gaee (v, W) = —exp(a - dg(v, ®)), )

where d, (v, w) represents the Euclidean distance between
the predicted trajectory endpoint and the goal, and o = 0.5 is
a tunable parameter that controls the strength of the attractive
force. Therefore, the heading guidance and target alignment
evaluation function is denoted as O(v,w) , and its
computation is given:

O0(v,w) = Hw, w) + Gy (v, w). ®)

Then, to address the issue in classical DW A where local
path planning may deviate significantly from the global
reference path, which causes the robot to fall into local
minima. We introduce a global path adherence constraint.
Specifically, let the global path generated by a global planner
(e.g.. A*) be denoted as Pyyopg; = {P1, Py, ..., P} where each
P; = (x;,y;) represents a waypoint in the global path. At
each control cycle, the algorithm first identifies the index
i*of the global path point closest to the robot’s current
position X, = (x.,y.). Then, a local global path segment
Pyycqr comsist of m consecutive nodes starting from Pyypq
is selected. Then, given a predicted trajectory consisting of T
points, denoted as T,.eq = {t1,tz...,ty} . the path
adherence metric is defined as the maximum deviation
between the predicted trajectory and the selected local global
path segment. The computation process is described:

i* = argmin qi<i || B — Xc||2, &)
PBocal = Py, Piryys oy Pipmoa s (10)
D(v,w) = —max; <jcnMinpep, ., [[ti =P |]2- (11)

In classical DWA, the lack of temporal continuity in
decision-making often causes abrupt changes in velocity and
steering, leading to discontinuous trajectories and unstable
robot motion [4]. To address this issue, MC-DWA
introduces a penalty term based on the variation in motion
state from the previous time step during candidate velocity
selection. In addition, MC-DWA enhances the trajectory
evaluation function by incorporating constraints on
trajectory curvature variation and jerk (i.e., the rate of change
of acceleration), optimizing trajectory smoothness and
dynamic stability from both spatial and dynamic
perspectives. Specifically, the curvature variation is defined
as the second-order difference between consecutive
trajectory points, and is computed using:

1 —
Cvar(v' w) = _EZ?’:E

where ¢ is a small constant to prevent division by zero. This
expression captures the local bending intensity of the
trajectory. Furthermore, jerk metrics are introduced for both
lincar and angular velocities to suppress control shocks
during execution can be calculated:

Yit2—2YVi+1+Yi | (12)
(Xip1=x)%+ g1~y +e
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This design limits abrupt changes in velocity commands,
improving trajectory  controllability and execution
smoothness, particularly for mobile platforms requiring high
trajectory continuity. The overall smoothness and stability
evaluation function denoted by S(v,w), and is computed
using (14):

SV, w) = Coor (v, @) + [, (v, 0) + /0, (v, ®) (14)

On the other hand, dynamic stability control is especially
critical during high-speed turns. For mobile platforms with
significant velocity or center of mass height (e.g., differential-
drive robots or automated forklifts), sharp turning at high
speeds may cause skidding or even rollover. To mitigate this,
MC-DWA incorporates constraints on curvature radius and
lateral acceleration during the velocity space filtering stage.
Specifically, the maximum admissible angular velocity under
a given linear velocity is restricted based on the lateral
acceleration threshold a,,,, as formulated:

Vige = {(U, (l.))l'l] W < alat|}~ (15)

This constraint ensures that the resulting centrifugal force
during turning does not exceed the platform's stability limit,
thereby enhancing dynamic controllability and operational
safety. Accordingly, in MC-DWA, the admissible velocity
space of the dynamic window is computed as Equation (16):

de = Vkin n den n Vsafe n Vlat~ (16)

Finally, to effectively integrate the aforementioned
constraints, MC-DWA  constructs the following
comprehensive trajectory evaluation function in (17):

Score(v,w) = wg - O(v, w) + wp - D(v, w) + wg

-S(v, w) a7

Here, wg, wp and wg are weighting factors, which can
be changed to adapted to specific applications. All the values
are set to 1 in this paper.

III. EXPERIMENT

A. FExperiment Setups

The MC DWA algorithm framework was implemented on
the MATLAB R2024a platform. To systematically evaluate its
path planning performance and control stability, a total of 50
two-dimensional grid maps were designed, covering typical
navigation challenges such as dense obstacle regions and long
corridor intersections. Each map includes a defined start and
goal point, with a guaranteed feasible global reference path.

All evaluation metrics were statistically derived from these
50 representative test scenarios, which feature varying map
structures, obstacle densities, and dynamic obstacle patterns.
This diverse task sctup ensures strong generalization and
realistic challenge levels, thereby providing a more objective
and comprehensive validation of the proposed method’s

robustness and adaptability in complex dynamic environments.

The robot's control and physical parameters used during the
simulation are summarized in Table L.

TABLE L SIMULATION PARAMETERS
Name Value Name Value
Time step (At) 0.1s Robot radius 04
Horizon (T) 2.0s Safe margin 0.2
Max step 500 Maximum lateral 1.0 m/s?
acceleration (a;4,)
Maximum linear Maximum angular
velocity (1) 2.0m/s velocity (@, z0) 1.57 rad/s
Minimum linear Minimum angular
velocity (Vi) 0.0 m/s velocity (@,5) -1.57 rad/s
Maximum linear > | Maximum angular 5
acceleration (aF?%) 0.4 m/s acceleration (a?*) 0.78 rad/s
Minimum linear , | Minimum angular N
acceleration (a'™) -0.4 m/s acceleration (al™) -0.78 rad’s

B.  Comparison with other improved DWA algorithms

To comprehensively evaluate the practical performance
of the proposed MC-DWA, we conducted a systematic
comparison with the classical DWA algorithm as well as
three representative improved variants [6-8].

To ensure fairness, all algorithms were evaluated under the
same initial conditions and map settings, using a unified
framework to assess performance across multiple dimensions.
The evaluation metrics include Minimum Safe Distance
(MSD), Time Step (TS), Path Length (PL), and Path Curvature
(PC), which collectively reflect path safety, efficiency,
smoothness, and control stability. The quantitative results are
summarized in Table IL.

TABLE 1L COMPARISON WITH OTHER DWA METHODS
Method MSD PL PC s
Classic-DWA[3] 0.20 35.67 0.706 357
E-DWA[6] 0.19 3041 0.513 304
Fuzzy-DWA[7] 0.16 35.15 0.792 352
Pred-DWA[8] 0.22 33.04 0.763 330
MC-DWA(ours) 0.53 37.97 0.323 380

Table presents a comparative analysis of the proposed
MC-DWA against the classical DWA and three improved
variants, namely Energy-Efficient DWA (E-DWA), Fuzzy
Adaptive DWA (Fuzzy-DWA), and Predictive DWA (Pred-
DWA). Overall, MC-DWA  demonstrates  superior
performance in terms of path safety, smoothness, and control
stability, validating the effectiveness of its multi-constraint
fusion strategy. For MSD, MC-DWA achieves a minimum
obstacle clearance of 0.53, significantly higher than all other
methods, indicating enhanced safety and better avoidance
behavior. This is attributed to the global path adherence
constraint, which helps maintain safe distances in dense
environments. In PC, MC-DWA achieves the lowest average
curvature (0.323), while other methods exceed 0.7, showing
that MC-DWA produces much smoother trajectories. This
improvement results from the use of curvature and jerk
constraints, which reduce oscillations and improve control
consistency. Regarding PL, MC-DWA generates a slightly
longer trajectory (37.97) than E-DWA and Pred-DWA but
remains comparable to Classic DWA and Fuzzy-DWA. The
marginal increase in path length is a reasonable trade-off for
improved smoothness and directional consistency enabled by
the dual-heading guidance. In TS, MC-DWA requires
380 steps to reach the goal, slightly higher than others, with E-
DWA being the most time-efficient. However, the improved



stability and safety justify this minor cost, especially in
dynamic or risk-prone environments.

C. Visualization comparison

To provide an intuitive comparison of path planning
performance across different environments, experimental
results were visualized.

As shown in Fig 1, the paths generated by the proposed
MC-DWA algorithm, the classical DWA, and A* algorithm
are illustrated under normal and densely obstructed
environments, respectively. It can be observed from plot that
in the normal environment, although the classical DWA is
able to reach the target successfully, its generated path tends
to closely follow the boundaries of static obstacles, posing a
higher risk of collision. In more complex environments with
dense obstacles, the classical DWA fails to complete
navigation due to the lack of effective global guidance and
dynamic obstacle avoidance strategies. In contrast, the
proposed MC-DWA successfully completes the navigation
task in both environments. Generated trajectories maintain
good adherence to the global path and consistently keep a
safe distance from surrounding obstacles throughout the
motion process.

Comparison of path planning methods Comgparison of path planning methods
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Fig. 1.
DWA and global A* methods in different maps

Visualization of comparison with classic

Furthermore, Fig. 2 provides a visual comparison in two
typical complex environments.
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Fig. 2. Visualization of comparison with different
DWA methods in different challenging maps

As shown in Fig 2a, the scenario includes a distant
obstacle that poses a critical hindrance to the planned path.
The results indicate that, except for MC-DWA, all other
algorithms fail to navigate around the obstacle and
eventually become stuck. This issue primarily stems from the
lack of effective target-oriented guidance, causing traditional
algorithms to lose directional cues in the vicinity of the
obstacle. In contrast, MC-DW A incorporates an exponential
attraction mechanism into its trajectory evaluation, which
enhances the goal-directed driving force while maintaining
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safety, enabling the robot to traverse complex terrain and
proceed smoothly toward the target. Fig 2b presents a highly
complex environment composed of densely distributed
obstacles. In this scenario, the classical DWA and other
improved methods are generally limited by local information
and tend to fall into local minima, halting progress. MC-
DWA, however, introduces a global path adherence
constraint, enabling local planning to better align with global
navigation intent. This mechanism allows the robot to escape
local traps and successfully reach the goal. Throughout the
process, the generated path maintains safe distances from
obstacles while exhibiting good continuity and dynamic
stability.

IV. CONCLUSION

This paper presents an improved MC-DWA to address key
limitations of the traditional DW A in local path planning. MC-
DWA introduces several constraints into a unified scoring
framework, significantly enhancing trajectory quality,
smoothness, and environmental robustness while maintaining
real-time performance. Experiments on various simulated maps
demonstrate that MC-DWA outperforms the classical DWA
and representative improved methods in several evaluation
metrics.

Nonetheless, MC-DWA remains a manually designed
heuristic method, with fixed scoring functions and weight
parameters, limiting its scalability in highly dynamic or high-
dimensional tasks. Future work will explore integrating MC-
DWA with Deep Reinforcement Learning (DRL), using its
constraint structure as policy guidance or initialization to
combine  rule-based  reliability  with  data-driven
adaptability [9]. We also plan to deploy MC-DWA on
platforms such as ROS2 and Gazebo to further assess its
generalization and real-world applicability.
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