Министерство образования Республики Беларусь Учреждение образования Белорусский государственный университет информатики и радиоэлектроники

УДК 004.896

Сальников Даниил Андреевич

Модели и средства проектирования интеллектуальных систем персонального медицинского обслуживания

АВТОРЕФЕРАТ

на соискание степени магистра наук по специальности 7-06-0611-03 – искусственный интеллект

Научный руководитель Голенков В.В. доктор технических наук, профессор

Введение

Современные системы здравоохранения сталкиваются с системным противоречием: экспоненциальный рост объема медицинских данных не сопровождается адекватными методами их интерпретации. Эта проблема приобретает особую актуальность в контексте Республики Беларусь, где высокий технологический потенциал информационного сектора контрастирует с фрагментарностью цифровизации медицинских услуг.

Доминирование закрытых экосистем, создает искусственные барьеры интероперабельности из-за использования проприетарных стандартов представления знаний. Существующие подходы описания медицинских знаний демонстрируют принципиальные ограничения: реляционные базы данных не поддерживают контекстуальные связи, графовые модели страдают от отсутствия стандартизированных метаонтологий, а статистические методы игнорируют причинно-следственные зависимости.

Настоящее исследование предлагает подход к проектированию интеллектуальных систем персонального медицинского обслуживания на основе технологии OSTIS. Научная новизна исследования определяется синтезом семантических технологий с принципами доказательной медицины, учитывая уникальные показатели человеческого организма (биомаркеры), что открывает перспективы для достижения технологического суверенитета в сфере цифрового здравоохранения.

Объектом исследования являются интеллектуальные системы персонального медицинского обслуживания. Предметом исследования являются методы и средства разработки интеллектуальных систем персонального медицинского обслуживания, методы и средства, используемые при анализе отклонений от нормы.

Из основных задач исследования можно выделить:

- анализ предметной области;
- проектирование онтологии и разработка базы знаний;
- разработка математической модели, проектирование решателя задач;
- разработка архитектуры системы, тестирование.

Текст диссертации проверен системой "Антиплагиат", доля заимствований соответствует норме, установленной кафедрой. Цитирования обозначены ссылками на публикации, указанные в "Списке используемых источников".

Общая характеристика работы

Цель и задачи проводимых исследований

Целью диссертационной работы является исследование существующих и разработка новых моделей и средств проектирования интеллектуальных систем персонального медицинского обслуживания.

Указанная цель определяет следующие задачи исследования:

- 1 Анализ предметной области интеллектуальных систем персонального медицинского обслуживания и решаемые ими проблемы.
- 2 Формализация отдельных фрагментов предметных областей. Разработка базы знаний.
- 3 Разработка модели и архитектуры интеллектуальной системы персонального медицинского обслуживания.
- 4 Разработка алгоритмов выявления отклонений от нормы, в соответствии с вводимыми пользователем данными.
- 5 Разработка отдельных компонентов интеллектуальной системы персонального медицинского обслуживания.
- 6 Сборка и тестирование системы, выявление и устранение ошибок.

Объектом исследования являются интеллектуальные системы персонального медицинского обслуживания

Предметом исследования являются методы и средства разработки интеллектуальных систем персонального медицинского обслуживания, методы и средства, используемые при анализе отклонений от нормы.

Связь работы с приоритетными направлениями исследований и запросами реального сектора экономики

Тема диссертации соответствует приоритетному направлению «Цифровые информационно-коммуникационные и междисциплинарные технологии, основанные на них производства» согласно пункта 1 перечня приоритетных направлений научной, научно-технической и инновационной деятельности на 2021–2025 годы, утвержденных Указом Президента Республики Беларусь «О приоритетных направлениях научной, научно-технической и инновационной деятельности на 2021–2025 годы» от 07.05.2020 года № 156.

Диссертационное исследование выполнено на базе учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (кафедра интеллектуальных информационных технологий). Работа проводилась в ходе выполнения следующих научно-исследовательских программ и проектов: Персональный медицинский ассистент — проектпобедитель финала республиканского молодежного конкурса «100 идей для Беларуси».

Личный вклад

Диссертационное исследование является квалификационной научной работой, выполненной соискателем самостоятельно на основе изучения отечественной и иностранной литературы, научных статей и прочих источников.

Основные выводы, теоретические положения и практические разработки принадлежат автору диссертации и составляют содержание данной работы.

Опубликование результатов диссертации

По материалам выполненных исследований опубликовано 6 научных работ, в том числе 2 главы монографии, 4 статьи в сборниках материалов конференций.

Апробирование результатов диссертации

Основные результаты диссертационной работы докладывались и обсуждались на конференции «Открытые семантические технологии проектирования интеллектуальных систем», (Минск, 2025).

Краткое содержание работы

В ходе работы над первой главой осуществлен комплексный анализ предметной области, выявлены ключевые требования к интеллектуальным системам персонального медицинского обслуживания: достоверность результатов, прозрачность алгоритмов диагностики, учет гетерогенности популяции, интероперабельность, унификация знаний и снижение нагрузки на медицинский персонал. На основе сравнительного анализа современных платформ и исторически значимых систем обоснован выбор технологии OSTIS для проектирования, обеспечивающей семантическую совместимость.

Во второй главе разработаны онтологии верхнего уровня, база знаний с использованием языка представления знаний SCg, содержащая свыше 1000 объектов и сущностей. Применение технологии OSTIS обеспечило унификацию представления медицинских знаний в семантическом пространстве, что решает проблему фрагментации данных в аналогичных системах и упрощает поддержку жизненного цикла базы знаний.

В третьей главе предложена математическая модель, интегрирующая обязательные, исключающие симптомы, временные параметры, веса признаков и демографические коэффициенты для расчета вероятности заболеваний. На основе модели разработаны алгоритмы, спроектированы и реализованы всагенты диагностики по симптомам и биомаркерам: лейкоцитам, тромбоцитам, эритроцитам, гормональным параметрам. Проведена отладка и тестирование решателя задач.

В четвертой главе представлена архитектура системы, с выделением клиентского слоя, слоя микросервисов и API для интеграции с платформой OSTIS. Функциональное тестирование подтвердило корректность работы всех компонентов. Система соответствует требованиям безопасности и имеет потенциал для масштабирования за счет модульности.

Заключение

Проведенное исследование подтвердило эффективность семантического подхода при проектировании интеллектуальных систем персонального медицинского обслуживания. Ключевым результатом работы стала разработка целостной методологии, интегрирующей онтологическое моделирование медицинских знаний, формализацию диагностических правил и архитектурные решения для обеспечения интероперабельности.

Созданная многоуровневая онтологическая система, включающая универсальные концепты и специализированные предметные области, позволила преодолеть проблему семантической фрагментации данных. Применение технологии OSTIS обеспечило непротиворечивое представление медицинских знаний с соблюдением стандартов.

Разработанная математическая модель диагностики продемонстрировала принципиально новые возможности анализа симптомокомплексов и биомаркеров, учитывая временные параметры проявления симптомов, весовые коэффициенты признаков и демографические корреляторов. Тестирование sc-агентов подтвердило эффектиность разработанной модели.

Микросервисная архитектура разработанной системы решила задачу интеграции платформы OSTIS с клиентскими слоями через стандартизированный API-интерфейс. Реализованные механизмы поддержки медицинской документации и криптографической защиты данных обеспечивают соответствие законодательству Республики Беларусь.

Практическая значимость исследования заключается в создании унифицированной диагностической платформы, готовой к пилотному внедрению. Работа создает предпосылки для достижения технологического суверенитета в сфере цифрового здравоохранения. Дальнейшее развитие предложенных решений позволит сформировать экосистему персонализированной медицины.

Результаты работы отображены в 6 научных работах, из них 4 статьи и 2 главы монографии.

В заключение, автор выражает благодарность и большую признательность Шункевичу Д. В., Самодумкину С. А. за поддержку, помощь и обсуждение результатов исследования.

Список опубликованных работ

- 1–А. Модели и средства проектирования интеллектуальных систем персонального медицинского обслуживания / Д. А. Сальников [и др.] // Информационные технологии и системы 2023 (ИТС 2023) = Information Technologies and Systems 2023 (ITS 2023) : материалы Международной научной конференции, Минск, 22 ноября 2023 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. Минск : БГУИР, 2023. С. 75–76.
- 2–А. Подходы к анализу биометрических данных в интеллектуальных медицинских системах / В. А. Крищенович [и др.] // Информационные технологии и системы 2023 (ИТС 2023) = Information Technologies and Systems 2023 (ІТЅ 2023) : материалы Международной научной конференции, Минск, 22 ноября 2023 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. Минск : БГУИР, 2023. С. 61–62.
- 3–A. Krischenovich, V. Integration and Standardization in New Generation Intelligent Medical Systems Based on OSTIS Technology = Интеграция и стандартизация в интеллектуальных медицинских системах нового поколения на основе технологии OSTIS / V. Krischenovich, D. Salnikov, V. Zahariev // Открытые семантические технологии проектирования интеллектуальных систем = Open Semantic Technologies for Intelligent Systems (OSTIS) : сборник научных трудов / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. В. Голенков [и др.]. Минск, 2024. Вып. 8. С. 157–164.
- 4–А. Сальников, Д. А. Представление медицинских знаний в интеллектуальных системах / Д. А. Сальников // Информационные технологии и системы 2024 (ИТС 2024) = Information Technologies and Systems 2024 (ITS 2024) : материалы международной научной конференции, Минск, 20 ноября 2024 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол. : Л. Ю. Шилин [и др.]. Минск, 2024. С. 65–66.
- 5–А. Сальников, Д. А. Биометрические показатели в интеллектуальных медицинских системах / Д. А. Сальников, В. А. Крищенович // Информационные технологии и системы 2024 (ИТС 2024) = Information Technologies and Systems 2024 (ITS 2024) : материалы международной научной конференции, Минск, 20 ноября 2024 г. / Белорусский государственный университет информатики и радиоэлектроники ; редкол. : Л. Ю. Шилин [и др.]. Минск, 2024. С. 67–68.

6–A. Salnikov, D. Design principles of intelligent personalized healthcare systems = Принципы проектирования интеллектуальных систем персонального медицинского обслуживания / D. Salnikov // Открытые семантические технологии проектирования интеллектуальных систем = Open Semantic Technologies for Intelligent Systems (OSTIS) : сборник научных трудов / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: В. В. Голенков [и др.]. – Минск, 2025. – Вып. 9. – С. 173–180.