РАЗРАБОТКА МОДУЛЯ ДЛЯ ПРЕДОБРАБОТКИ ДОКУМЕНТОВ ОБНАРУЖЕНИЯ ЗАИМСТВОВАНИЙ В ТЕКСТЕ

Крез К. С., Ефименко Д. Д., Войнилович Н. Ю. Кафедра проектирования информационно-компьютерных систем, Белорусский государственный университет информатики и радиоэлектороники Минск, Республика Беларусь E-mail: k.krez@bsuir.by

В статье рассматриваются основные этапы предварительной обработки *.pdf u *.docx-документов для обнаружения заимствований в тексте и принципы их работы. Выявлены ключевые проблемы предварительной обработки *.pdf u *.docx-документов. Предложены пути их решения в том числе использование специализированных библиотек для языка Python.

Введение

В условиях роста объемов цифровой информации и широкого распространения автоматизированных систем анализа текстов особую значимость приобретает задача эффективной предварительной обработки данных. Одним из ключевых этапов данного процесса является очистка текста, направленная на удаление «шумовых» и «нерелевантных» элементов, препятствующих корректному проведению лингвистического и семантического анализа [1].

Особую сложность представляет обработка файлов в форматах *.pdf и *.docx, поскольку они включают не только текстовые данные, но и графические материалы, метаданные и элементы верстки. В *.pdf-документах текст, как правило, представлен в виде множества независимых блоков, разделенных линиями и координатными сетками, что делает затруднительным его прямое использование в алгоритме. В документах *.docx значительная часть информации содержится в технических метках и стилях, не имеющих смысловой нагрузки, но влияющих на корректность извлечения контента.

В связи с этим актуальной задачей является разработка модуля, обеспечивающих автоматическую очистку текстов от технических и структурных артефактов, с сохранением только релевантной смысловой информации.

І. Реализация процесса очистки

Процесс очистки текстовых данных в разработанной системе реализован в модуле text_cleaning.py [2], который представляет собой совокупность последовательно выполняемых процедур, направленных на удаление «шумовых, графических, технических и структурных» элементов документа [3]. Реализация данного модуля основана на принципах модульности, расширяемости и независимости от конкретного формата исходного файла. Это позволяет применять его как к документам формата *.pdf, так и к *.docx, обеспечивая единый подход к формированию очищенного текста. Этапы очистки текстового документа:

- 1. Удаление ссылок на графические элементы направлен на исключение всех упоминаний графических объектов рисунков, схем, диаграмм и таблиц, которые не несут содержательной информации.
 - Для удаления подобных ссылок используются регулярные выражения, позволяющие находить и удалять подписи и текстовые отсылки к иллюстрациям. Наиболее часто применяемые паттерны:
 - r'(Рисунок|Таблица|рисунок|таблица) \s*\d+ ([-]?\d+) *\s*[-]?\s*.*' - удаление подписей к рисункам и таблицам;
 - r'\b(на рисунке|На рисунке|На рисунках)\b.*?[\n.]*' удаление ссылок на графические элементы внутри текста.
- 2. Удаление технических элементов документа часто присутствуют в отчетах, учебных и нормативных документах. Они не несут смысловой информации, однако могут существенно влиять на корректность токенизации и разметки текста. Для устранения подобных артефактов используются следующие паттерн:
 - удаление номеров страниц: $r'\n\s^*\d+\s^*\n'$;
 - удаление стандартных заголовков (например, шапок государственных документов): г'Министерство образования Республики Беларусь.*?Минск\s*\d{4}';
 - удаление служебных обозначений и маркировок: $r'\Pi P + [A-R](s+[-]+)?'$.
- 3. Удаление структурных элементов документа связанных с организационной структурой документа, таких как оглавления (содержание), списки использованных источников, приложения, ведомость и т.д. Эти части не несут содержательной значимости и лишь дублируют информацию, уже содержащуюся в структуре текста.

Удаление осуществляется по ключевым словам (например, «СОДЕРЖАНИЕ», «СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧ-НИКОВ», «ПРИЛОЖЕНИЕ», «ВЕДОМОСТЬ») и по регулярным выражениям, описывающим строки, содержащие только последовательности точек.

- 4. Нормализация пробелов и переносов строк, когда после удаления структурных и технических элементов выполняется нормализация текста. Цель данной этапа обеспечение единообразного форматирования для последующих этапов анализа.
 - Множественные пробелы, табуляции и повторяющиеся переносы строк заменяются на одиночные пробелы с помощью регулярного выражения r'\s+'. В результате формируется ровный, непрерывный текст без лишних разрывов и неформатированных фрагментов.
- 5. Обработка заголовков и структурирование текста направлены на обеспечение логической целостности документа посредством корректной идентификации разделов и глав. Функция is_chapter_heading() анализирует каждый текстовый блок на соответствие определённым паттернам, отражающим структуру документа:
 - r'^\d+\s+[A-Я\s]+\$' нумерованные заголовки, записанные прописными буквами;
 - r'^\d+\.\d+\s+[A-Я][а-я\s]+' иерархические заголовки;
 - r'^[A-Я\s]+\$' ненумерованные заголовки, оформленные заглавными буквами.

На основе найденных заголовков выполняется разделение текста по разделам, где каждая глава представлена заголовком и соответствующим ей очищенным содержанием.

В отличие от *.pdf и *.docx, где очистка выполняется после извлечения содержимого, для файлов формата *.docx очистка интегрирована непосредственно в процесс извлечения. Система извлекает только текстовые параграфы, игнорируя технические метки и элементы форматирования, не влияющие на смысловую структуру. Это способствует значительному снижению объёма

Удаление осуществляется по ключевым постобработки и повышает качество итогового словам (например, «СОДЕРЖАНИЕ», текста.

II. ПРАКТИЧЕСКАЯ ЧАСТЬ

Практическая часть исследования направлена на комплексную оценку производительности разработанного модуля текстовой очистки text_cleaning.py. Для обеспечения репрезентативности результатов была сформирована тестовая выборка, включающая: тип документа (курсовая и дипломная работа), формат документа (*.pdf и *.docx), кол-во страниц.

Заключение

Представленный модуль очистки *.pdf и *.docx документа использует минимальный набор этапов таких как: удаление ссылок на графические элементы, удаление технических элементов документа, удаление структурных элементов документа, нормализация пробелов и переносов строк, обработка заголовков и структурирование текста. В ходе работы была рассмотрена реализация данного процесса в рамках модуля text_-clining.py.

Практическая часть показала, что: статистически значимые показатели производительности модуля со средним временем обработки 3.31 ± 0.02 мс/страницу; эмпирически подтверждена линейная зависимость временных характеристик обработки от объема документа.

Таким образом, предложенное решение представляет законченный модуль предобработки текстовых данных, обладающую теоретической обоснованностью и практической эффективностью для интеграции в программное средство для проверки академической добросовестности.

- 1. Разработка программного модуля распознавания документов на основе машинного обучения [Электронный ресурс]. Режим доступа: https://apni.ru/article/11072-razrabotka-programmnogo-modulya-raspoznavaniya-dokumentov-na-osnove-mashinnogo-obucheniya. Дата доступа: 14.09.2023.
- Textclean: Text cleaning tools [Electronic resource]. Mode of access: https://github.com/trinker/ textclean. – Date of access: 14.09.2023.
- Хобсон Лейн, Ханнес Хапке, Коул Ховард. Обработка естественного языка в действии / Л. Хобсон, Х. Хапке, К. Ховард. – СПб.: Питер, 2020. – С. 68–140.

Таблица 1 – Результаты очистки текста в документах

Тип документа	Кол-во стр.	Измерение, мс.						Сред.
								знач., мс.
		1	2	3	4	5	6	
Курс. работа 1 (*.pdf)	67	374,94	374,83	374,93	374,83	374,76	374,85	374,87
Курс. работа 2 (*.docx)	67	379,23	379,12	379,24	379,13	379,21	379,23	379,19
Диплом. работа 1	89	387,34	387,31	387,29	387,34	387,31	387,31	387,31
(*.pdf)								
Диплом. работа 2	89	387,59	387,61	387,58	387,59	387,59	387,61	387,60
(*.docx)								