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Abstract. The problem of generating true random 
numbers and unique identifiers is more relevant than 
ever in the modern digital world. This paper analyzes the 
bits of a binary counter acting as a number's recorder of 
impulses generated by the physically unclonable 
functions (PUF) based on a configurable ring oscillator 
(CRO). The results of the conducted experiments using 
FPGA chips and an analytical study of the PUF CRO 
model show the possibility of generating unique stable 
identifiers and true random numbers at the same time. 
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I. INTRODUCTION 
Security is paramount in nowadays interconnected 

world, innovative solutions are constantly evolving. 
Robust methods of protection are highly desirable for 
sensitive data and systems. Physical Unclonable 
Functions (PUFs) offer a unique approach to security. 
PUFs based on extracting and measuring unique 
physical characteristics of semiconductor crystals of 
digital devices are the basic elements of physical 
cryptography [1]. Their unpredictable nature makes 
them incredibly difficult to clone or replicate, cause 
fake and manipulated PUFs are not able to generate the 
true IDs. This technology has great potential for 
improving security in various applications, as it has a 
simple structure and is capable of solving two problems 
at the same time. According to various rattling sounds 
(jitters), caused by various factors, which include 
instability of the supply voltage, thermal noise of the 
environment and the semiconductor devices, 
imperfection of the measuring equipment, etc. PUF-
circuits can also, in addition to identification, solve the 
problem of generating true random numbers.  

PUF generates an output bit sequence as response to 
an input (challenge): Rn = PUF(CHn), where n ∈ [0, 2L – 1]. 
The response of a PUF to a given challenge should show 
uniqueness, reliability, and unpredictability [2].  
The PUF scheme is represented in Fig. 1. 

 
Fig. 1. Scheme of the CRO PUF 

This is a reduced circuit scheme of the CRO PUF 
for the counter, full scheme is in [4]. The general 
scheme of the CRO can be represented as a 
programmable delay circuit and a controlled inverter, 
implemented, as a rule, using a NAND2 gate, which are 
united by a feedback loop [3, 4]. To build a PUF circuit 
based on the CRO, it is necessary to have a counter 
CNT (Measure phase) and a control unit CONTROL, 
which generates the necessary sequence of signals. In 
addition, CONTROL generates the response value of 
the CRO based on the supplied request value CHn 
(Select/Switch phase) in the determined measuring 
window. 

II. EXPERIMENT DESCRIPTION  

A. Time parameters of ring oscillator 
The frequencies of CRO circuits are inherently 

unpredictable and random. To measure the frequency 
(or period) of signals generated by the CRO, the 
sampling frequency must, according to the Kotelnikov 
theorem, exceed at least twice the frequency of the 
signal under investigation. Measurements were carried 
out on FPGA rapid prototyping boards with a system 
frequency of 50 MHz. Accordingly, CRO frequencies 
up to 25 MHz can be measured with confidence. If the 
signal period (the time interval between two rising 
edges of a periodic digital signal) must be determined, 
the signal can be applied to the synchronization input 
of a binary counter implemented on the FPGA. On the 
selected FPGA family, a 32-bit counter can reliably 
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operate at up to 180 MHz; therefore, CRO frequencies 
up to 180 MHz can be measured using such devices. 

The width of the measurement window (multiplier 
kfactor) and the bit depth of the registering counter affect 
the accuracy of measuring the frequency of the CRO 
signal. With repeated M measurements on the same 
window MW, different values of the registering counter 
are observed, caused by various factors, which can 
include instability of the voltage supply, temperature 
noise of the environment and the FPGA crystal, 
imperfection of the measuring equipment, etc. 

To increase the resolution of the measurement 
circuit, let us estimate the period (frequency) of the CRO 
signal by feeding it to the synchronization input of the 
binary synchronous counter in the measurement time 
window MW = kfactor ⋅ Psys, kfactor = 2i, i ∈ ℤ, which is a 
factor of the stationary period Psys of the system 
synchronization signal. Such a measurement method 
will allow us to estimate the frequencies of  
Fcro ≤180 MHz. The measurement accuracy of Pcro depends 
on the window size: Pcro_i =MW/ m

nR = 2i ⋅ Psys / m

nR , or value 
λi = Psys ⋅ Pcro-1 = m

nR ⋅ 2-i, where m

nR is value registered by 
the counter in m-th measurement with kfactor = 2i, m ∈ [0, 
M - 1]. 

The number of clock signals  in a certain time 
window is used as a quantitative measure. When 
converting the values m

nR  into binary form, the division 
between the stable (signal) and unstable (noise) parts is 
visible. The registered values in repeated measurements 
can be represented by the probabilities of the 
appearance of a single symbol in each digit of the 
counter.
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value of the j-th digit of the counter in the m-th 
measurement in a fixed window. The counter length 
affects the group size, also let us denote 

0 1max( , )j j jP P P= . 

As can be seen in Fig. 2, the values of all significant 
digits can be divided into three groups (subsets): 

• The group of stable digits G0, which includes 
digits for which Pj = 1. 

• The group of conditionally stable digits G1, which 
includes all 𝐵𝐵𝑗𝑗,  for which either  
1>Pj >0,5+ε, where ε is a small value 
characterizing the deviation from the value of 0,5. 

• The group of highly unstable digits G2, for which 
Pj  <  0,5 + ε. 

Due to the 32-bit counter (see Fig. 1) the values of 
i ∈[0,30] and M = 1000 were used in all experiments. 
The maximum value of i = 30 is used because next 
equation: 

 0 1 2 2 2 2
log log ( 2 ) log ,m i

n i i iG G G R i Nλ λ+ + = = ⋅ = + =      
where  302

log 30 32λ + = .  

B. Tests for normal distribution 
It was hypothesized that the data from the CRO PUF 

counter form a normal discrete distribution. To test the 
hypothesis of normality there are graphical and 
statistical tests. Visually, there are histograms with an 
overlaid normal curve and Q–Q [6] plot to see if data 
quantiles line up with theoretical normal quantiles.  

Combining both approaches give a quantitative 
decision and an intuitive sense of how and where any 
deviations occur. All data sets under study passed visual 
tests. The Q-Q test shows deviations at the ends, as 
already mentioned in the previous study on the 
assessment of the unstable part. Normality also was 
tested using the Shapiro–Wilk [6], Anderson–
Darling [6], and Pearson tests [6], which compare set’s 
distribution with the ideal normal. In static tests there 
are already deviations from the normal distribution, but 
the aim is to show the similarity of the digit-wise 
probabilities with the ideal model of the normal 

distribution. 
Fig. 2. Devision on groups in PUF and Model data 
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In Fig. 3 there are examples of graphic tests for 
i  = {21,22}. 

     а       b 

Fig. 3. Graphical tests for datasets, i=21 (a), i=22 (b) 

III. PROGRAM MODEL OF NORMAL DISTRIBUTION  
Since the data has similarities with a normal 

distribution, there is need to construct a mathematical 
model of the ideal normal distribution to predict 
theoretically the functionality of the selected CRO PUF 
with known mean and variance. There is need to make 
sure that the bitwise probabilities of model data Model

jP
and of experimental data PUF

jP will be almost the same.  

A. Software Model description 
To confirm this hypothesis, a software mathematical 

model of the СRO PUF scheme with a counter was built 
based on the numpy library of the Python language, 
which generates a discrete set Umodel of a given size with 
fixed values of the mean μmodel and variance σ2

model.  
Model is based on np.random.normal function with 

rounding to the nearest integer. 

B. Comparison of PUF and model data 
In Fig. 3 comparison with groups of Umodel and UPUF 

for different i (kfactor) is represented. 
First, it is necessary to determine the deviation of model 

estimates from experimental ones using the Euclidean 
distance. Let us PUF

iV to be a vector of PUF data, Model
iV  

to be vector with the same size of modeled data. Each 
component of vector represents the value Pj, then the 
maximum Euclid distance between PUF

iV and Model
iV   

can be estimated as max
2( ) log .em i iD i i Nλ= + =    

Distance of similarity between vectors PUF
iV  и 

Model
iV  is estimated through their normalized Euclidean 

distance ( )norm
emD i . In Fig. 4, it shown that ( )norm

emD i is 
close to 0,01:  
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Fig. 4. The plot of ( )norm
emD i  

The Fig. 3 shows that the groups sizes are almost the 
same. This proves that the mathematical model can 
indeed be used to replicate the work of the CRO PUF. 

IV. EXPERIMENTS WITH DIFFERENT CRO PUFS  
ON DIFFERENT FPGAS 

Experimental results are illustrated with datasets 
from four similar FPGAs (instances F0, F1, F2, F3) 
with four similar CRO PUFs (instances C0, C1, C2, 
C3). In each FPGA four PUFs were located in different 
places. In figure 6 there is heatmap of Pj values from 
16 combinations.  

It was shown that the counter values can indeed be 
divided into three groups, and the bits of the stable 
groups G0 and G1 can be used as identifiers, cutting off 
the highly unstable part of G2. The hypothesis is that all 
identifiers will be different. For the experiment i = 21 
and M = 500 were chosen.  

As it is shown in Fig. 5, |G0|, |G1| are different for all 
instances, and |G2|, is almost the same.  

 
Fig. 5. |G2| estimation for data with different i 
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A. Estimation of highly unstable group G2 
The length c = |G2| of highly unstable group G2 can 

be estimated with metrics, based on min/max ( 1
theorc ): 

2

1 log (max( ) min( ))theor U Uc −=    , 

where U = {Umodel, UPUF}) values and σ ( 2
theorc =  

= ⌈ log2(6σ) ⌉).  
In theoretical normal distribution 99,7 % values are 

in range of (-3σ, 3σ), but as PUF distribution has 
deviations at the ends, as it was shown in Fig. 5, the 
metrics, 2

theorc is more accurate, than 1
theorc . 

Size of group G2 can be estimated in Fig. 6 with 
expression c ≤ 2

theorc ≤ 1
theorc . 

 

B. Identification with stable groups G0, G1 
Like in many articles [7], the metrics most usually 

employed to evaluate PUF performance are based on 
the average Hamming distances (HD) evaluated on 
PUF responses of different PUF instances (HDinter) or 
different measurements of the same PUF response 
(HDintra). IDx:y is identifier for each instance Fx:Cy, for 
the experiment x, y ∈ [0,3]. The Hamming distance 
between the identifiers of two instances is the number 
of distinct characters divided by its length.  

HDintra is the arithmetic (HDa) or geometric (HDg) 
mean between all pairs {y1, y2} for fixed x. 

HDinter is the arithmetic (HDa) or geometric (HDg) 
mean between all pairs {x1, x2} for fixed y. 

First identifier was built with length |ID| =  
= min(|G0|) = 6 (Fig. 7) for all observed sets. Results  
of HDintra and HDinter are in the Tabl. Ⅰ. 

 

TABLE I.  INTRA- AND INTER- UNIQUENESS FOR |ID| = 6 

HDintra HDinter 
 HDa HDg  HDa HDg 

F0 0,250 0,236 C0 0,194 0,000 
F1 0,361 0,340 C1 0,389 0,340 
F2 0,333 0,333 C2 0,278 0,252 
F3 0,333 0,303 C3 0,252 0,236 

 
A key advantage of the geometric mean is its 

immediate identification of identical values, as 
observed in C0. In this case the uniqueness is weak, 
since there are repeating examples. The length of fully 
stable group not enough for good uniqueness.  

According to the maximum likelihood estimation, 
the length of unique identifier can be expanded up with 
values, where Pj > 0,5 + ε, |ID| = min (|G0| + |G1|) = 12 
(Fig. 7). 

TABLE II.  INTRA- AND INTER- UNIQUENESS FOR |ID| = 12 

HDintra HDinter 
 HDa HDg  HDa HDg 

F0 0,417 0,407 C0 0,375 0,360 
F1 0,431 0,411 C1 0,389 0,376 
F2 0,458 0,446 C2 0,319 0,280 
F3 0,403 0,394 C3 0,403 0,394 

As can be seen in Fig. 6 red group has gone. Now 
there are only two groups, stable and highly unstable.  
It can be seen that the identifiers are different and have 
good intra- and inter-uniqueness. 

Also, the ID length can be estimated with metrics 
2
theorc : 

|G0| + |G1| > N - ⌈log2(6σ)⌉. 

This metrics can help to draw a boundary between 
unstable and stable group. For example, in experiment 
log2(6σexp) = ⌈ 11,9⌉ = 12, N = 23. 

Fig. 6. Distribution of bit probabilities before the maximum likelihood estimation of group (G2 (a),  
gray zone is Pj < 0,55) and after (b) 

a b 
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Fig. 7. Group’s sizes distribution for experimental data 

Without any checking of length groups, only with 
σ the ID length can be chosen. For experimental data 
the ID length is |ID| = 23 – 12 = 11. 

TABLE III.  INTRA- AND INTER- UNIQUENESS FOR |ID| = 11 

HDintra HDinter 
 HDa HDg  HDa HDg 

F0 0,409 0,399 C0 0,364 0,339 
F1 0,424 0,410 C1 0,424 0,410 
F2 0,455 0,445 C2 0,303 0,272 
F3 0,394 0,389 C3 0,394 0,381 

The scores are slightly lower than those for |ID| = 12, 
but still satisfy the conditions of uniqueness and 
difference. 

CONCLUSUON 
CRO PUF is a simple design that exploits the same 

hardware to generate TRNG response and unique 
identifier without the need of changing it.  

An estimation of a highly unstable group was given, 
suggesting that so many channels could be used as a 
source of randomness. To ensure greater randomness, 
various manipulations can be made with these data. 
Ways to expand the unique identifier were also 
provided. It was shown that identifiers from CRO PUF 
are indeed distinct and unique, and have good intra- and 
inter-uniqueness. 
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