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Abstract. The problem of generating true random
numbers and unique identifiers is more relevant than
ever in the modern digital world. This paper analyzes the
bits of a binary counter acting as a number’s recorder of
impulses generated by the physically unclonable
functions (PUF) based on a configurable ring oscillator
(CRO). The results of the conducted experiments using
FPGA chips and an analytical study of the PUF CRO
model show the possibility of generating unique stable
identifiers and true random numbers at the same time.
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I. INTRODUCTION

Security is paramount in nowadays interconnected
world, innovative solutions are constantly evolving.
Robust methods of protection are highly desirable for
sensitive data and systems. Physical Unclonable
Functions (PUFs) offer a unique approach to security.
PUFs based on extracting and measuring unique
physical characteristics of semiconductor crystals of
digital devices are the basic elements of physical
cryptography [1]. Their unpredictable nature makes
them incredibly difficult to clone or replicate, cause
fake and manipulated PUFs are not able to generate the
true IDs. This technology has great potential for
improving security in various applications, as it has a
simple structure and is capable of solving two problems
at the same time. According to various rattling sounds
(jitters), caused by various factors, which include
instability of the supply voltage, thermal noise of the
environment and the semiconductor devices,
imperfection of the measuring equipment, etc. PUF-
circuits can also, in addition to identification, solve the
problem of generating true random numbers.

PUF generates an output bit sequence as response to
an input (challenge): R, = PUF(CH), where n € [0, 2-—1].
The response of a PUF to a given challenge should show
uniqueness, reliability, and unpredictability [2].
The PUF scheme is represented in Fig. 1.
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Fig. 1. Scheme of the CRO PUF

This is a reduced circuit scheme of the CRO PUF
for the counter, full scheme is in [4]. The general
scheme of the CRO can be represented as a
programmable delay circuit and a controlled inverter,
implemented, as a rule, using a NAND2 gate, which are
united by a feedback loop [3, 4]. To build a PUF circuit
based on the CRO, it is necessary to have a counter
CNT (Measure phase) and a control unit CONTROL,
which generates the necessary sequence of signals. In
addition, CONTROL generates the response value of
the CRO based on the supplied request value CH,
(Select/Switch phase) in the determined measuring
window.

Il. EXPERIMENT DESCRIPTION

A. Time parameters of ring oscillator

The frequencies of CRO circuits are inherently
unpredictable and random. To measure the frequency
(or period) of signals generated by the CRO, the
sampling frequency must, according to the Kotelnikov
theorem, exceed at least twice the frequency of the
signal under investigation. Measurements were carried
out on FPGA rapid prototyping boards with a system
frequency of 50 MHz. Accordingly, CRO frequencies
up to 25 MHz can be measured with confidence. If the
signal period (the time interval between two rising
edges of a periodic digital signal) must be determined,
the signal can be applied to the synchronization input
of a binary counter implemented on the FPGA. On the
selected FPGA family, a 32-bit counter can reliably



operate at up to 180 MHz; therefore, CRO frequencies
up to 180 MHz can be measured using such devices.

The width of the measurement window (multiplier
kractor) @nd the bit depth of the registering counter affect
the accuracy of measuring the frequency of the CRO
signal. With repeated M measurements on the same
window MW, different values of the registering counter
are observed, caused by various factors, which can
include instability of the voltage supply, temperature
noise of the environment and the FPGA crystal,
imperfection of the measuring equipment, etc.

To increase the resolution of the measurement
circuit, let us estimate the period (frequency) of the CRO
signal by feeding it to the synchronization input of the
binary synchronous counter in the measurement time
WlndOW MW: kfactor' Psys, kfactor = 2|, | E Z, WhICh |S a
factor of the stationary period Pss of the system
synchronization signal. Such a measurement method
will allow us to estimate the frequencies of
Fero<180 MHz. The measurement accuracy of Pcro depends

on the window size: Pero i=MW/R" = 2'- Pgs/R", or value
2i=Pgys- Pegl= R™- 27, where R"is value registered by

the counter in m-th measurement with Kacior = 2', m € [0,
M - 1].

The number of clock signals in a certain time
window is used as a quantitative measure. When

converting the values R" into binary form, the division

between the stable (signal) and unstable (noise) parts is
visible. The registered values in repeated measurements
can be represented by the probabilities of the
appearance of a single symbol in each digit of the

counter. p! :Mfl.fBjm , P’ =1-p', where B[ is the
m=0

value of the j-th digit of the counter in the m-th

measurement in a fixed window. The counter length

affects the group size, also let us denote

P =max(P’,P).
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As can be seen in Fig. 2, the values of all significant
digits can be divided into three groups (subsets):

e The group of stable digits Go, which includes
digits for which P; = 1.

e The group of conditionally stable digits G1, which
includes all  B;  for  which either
1>P; >0,5+e, where ¢ is a small value
characterizing the deviation from the value of 0,5.

o The group of highly unstable digits G, for which
Pi < 0,5+e¢.

Due to the 32-bit counter (see Fig. 1) the values of
i €[0,30] and M = 1000 were used in all experiments.
The maximum value of i =30 is used because next
equation:

lc|+|6|+]G|= flogz R—| = lrlogz(/il -2')_I =[log 2 [+i=N,,
where [ log, 2, |+30=32.

B. Tests for normal distribution

It was hypothesized that the data from the CRO PUF
counter form a normal discrete distribution. To test the
hypothesis of normality there are graphical and
statistical tests. Visually, there are histograms with an
overlaid normal curve and Q-Q [6] plot to see if data
quantiles line up with theoretical normal guantiles.

Combining both approaches give a quantitative
decision and an intuitive sense of how and where any
deviations occur. All data sets under study passed visual
tests. The Q-Q test shows deviations at the ends, as
already mentioned in the previous study on the
assessment of the unstable part. Normality also was
tested using the Shapiro-Wilk [6], Anderson-
Darling [6], and Pearson tests [6], which compare set’s
distribution with the ideal normal. In static tests there
are already deviations from the normal distribution, but
the aim is to show the similarity of the digit-wise
probabilities with the ideal model of the normal
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Fig. 2. Devision on groups in PUF and Model data

distribution.



In Fig. 3 there are examples of graphic tests for
i ={21,22}.
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Fig. 3. Graphical tests for datasets, i=21 (a), i=22 (b)

I1l. PROGRAM MODEL OF NORMAL DISTRIBUTION

Since the data has similarities with a normal
distribution, there is need to construct a mathematical
model of the ideal normal distribution to predict
theoretically the functionality of the selected CRO PUF
with known mean and variance. There is need to make

sure that the bitwise probabilities of model data P**

and of experimental data P"”" will be almost the same.

A. Software Model description

To confirm this hypothesis, a software mathematical
model of the CRO PUF scheme with a counter was built
based on the numpy library of the Python language,
which generates a discrete set Umodel Of @ given size with
fixed values of the mean umogel and variance o?model.

Model is based on np.random.normal function with
rounding to the nearest integer.

B. Comparison of PUF and model data

In Fig. 3 comparison with groups of Umegel and Upye
for different i (Kractor) is represented.

First, it is necessary to determine the deviation of model
estimates from experimental ones using the Euclidean

distance. Letus V,""" to be a vector of PUF data, V,""***
to be vector with the same size of modeled data. Each
component of vector represents the value P;, then the

maximum Euclid distance between VipUF and ViM°de'
can be estimated as p™ (i) = [[log, 4, |+i = /N

Distance of similarity between vectors VipUF "

V Model

i is estimated through their normalized Euclidean

distance D" (i). In Fig. 4, it shown that D> (i) is
close to 0,01:

D:n?rm(i): 1 .\/Nil(ViPUF(j)_ViModel (j))z
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Fig. 4. The plot of D™ (i)

The Fig. 3 shows that the groups sizes are almost the
same. This proves that the mathematical model can
indeed be used to replicate the work of the CRO PUF.

IV. EXPERIMENTS WITH DIFFERENT CRO PUFs
ON DIFFERENT FPGAS

Experimental results are illustrated with datasets
from four similar FPGAs (instances FO, F1, F2, F3)
with four similar CRO PUFs (instances CO, C1, C2,
C3). In each FPGA four PUFs were located in different
places. In figure 6 there is heatmap of P; values from
16 combinations.

It was shown that the counter values can indeed be
divided into three groups, and the bits of the stable
groups Go and G can be used as identifiers, cutting off
the highly unstable part of G,. The hypothesis is that all
identifiers will be different. For the experiment i = 21
and M =500 were chosen.

As it is shown in Fig. 5, |Go|, |G1| are different for all
instances, and |G|, is almost the same.
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Fig. 5. |G2| estimation for data with different i




A. Estimation of highly unstable group G-
The length ¢ = |G| of highly unstable group G can

be estimated with metrics, based on min/max (Ctlheor ):
Cireor =] 109, (Max(U) — min(U)) ],

where U = {Umogel, Upur}) values and o ( C

= [10g2(60) ])-

In theoretical normal distribution 99,7 % values are
in range of (-30, 30), but as PUF distribution has

deviations at the ends, as it was shown in Fig. 5, the

metrics, c;.. is more accurate, thanc; .

2 —
theor —

Size of group G can be estimated in Fig. 6 with

. 1
expression ¢ <C

2
< Ctheor '

theor —

B. Identification with stable groups Go, G1

Like in many articles [7], the metrics most usually
employed to evaluate PUF performance are based on
the average Hamming distances (HD) evaluated on
PUF responses of different PUF instances (HDinwr) OF
different measurements of the same PUF response
(HDinra). 1Dy is identifier for each instance Fx:Cy, for
the experiment x, y € [0,3]. The Hamming distance
between the identifiers of two instances is the number
of distinct characters divided by its length.

HDina is the arithmetic (HDa) or geometric (HDg)
mean between all pairs {y, y.} for fixed x.

HDinter is the arithmetic (HDa) or geometric (HDg)
mean between all pairs {x1, x2} for fixed y.

First identifier was built with length |ID] =
= min(|Go|) = 6 (Fig. 7) for all observed sets. Results
Of HDintra and HDineer are in the Tabl. T.

o R 0.44 0,53 0.47T 0.47 0.48 054 0.51 050 0.50 0.51 051
048 049 6,52 0,51 0.50 0,51 0.53 0.55 0,49 0.50

68 0.50 0.50 0.49 0.53 050 0.48 0.53 051 0.48 0.52 D51
0,52 051 0.47T 048 050 0.49 049 0.48 0.52 0.48 0.50
BBl 0.50 049 0.49 050 050 0.51 0.50 052 0.46 0.48 D52
049 047 6,52 0,52 0.48 043 0.50 0.46 0,53 0.53
051 D48 0.50 0.52 0.52 048 .45 0.47 0.49 D.49
45 0,50 0.55 049 0,49 D.47 042 0.52 0.54 0,50 0.95
7] 051 053 049 D51 0.49 049 052 0.47 0.46 D53
052 D46 .52 0,52 0.49 048 0.48 0.48 0,50 0.51
X7l 052 0.49 0.51 0.53 0.50 0.52 D.47 0.50 0.47 D51
051 052 0,48 0.49 0.48 049 0.47 051 0.54 0.50

051 0.49 048 0,57 0.49 0.51 050 0.51 0.49 052

TABLE I. INTRA- AND INTER- UNIQUENESS FOR |ID| =6

HDintra HDinter

HDa HDg HDa HDyq

FO | 0,250 | 0,236 | CO | 0,194 | 0,000

F1 | 0,361 | 0,340 | C1 | 0,389 | 0,340

F2 | 0,333 | 0,333 | C2 | 0,278 | 0,252

F3 | 0,333 | 0,303 | C3 | 0,252 | 0,236
A key advantage of the geometric mean is its
immediate identification of identical wvalues, as

observed in CO. In this case the uniqueness is weak,
since there are repeating examples. The length of fully
stable group not enough for good uniqueness.

According to the maximum likelihood estimation,
the length of unique identifier can be expanded up with
values, where P; > 0,5 + ¢, |ID] = min (|Go| + |G1|) = 12
(Fig. 7).

TABLE Il. INTRA- AND INTER- UNIQUENESS FOR |ID] =12

HDintra HDinter

HDa | HDg HDa HDyq
FO 0,417 0,407 Co0 0,375 0,360
F1 0,431 0,411 C1 0,389 0,376
F2 | 0458 | 0,446 | C2 0,319 0,280
F3 | 0403 | 0,394 | C3 0,403 0,394

As can be seen in Fig. 6 red group has gone. Now
there are only two groups, stable and highly unstable.
It can be seen that the identifiers are different and have
good intra- and inter-uniqueness.

Also, the ID length can be estimated with metrics
2
theor *

c
|Go| +|G1| > N - [log2(60)].

This metrics can help to draw a boundary between
unstable and stable group. For example, in experiment
[092(66exp) = [ 11,9] = 12, N = 23.

00 0.4 0.53 0.47 0.47 0.48 0.54 0.51 0.50 0,50 051 0.51
0.48 0.49 0.52 0,51 0.50 051 0.53 0,55 0.49 0.50

055

I0.45

Fig. 6. Distribution of bit probabilities before the maximum likelihood estimation of group (G: (a),
gray zone is Pj < 0,55) and after (b)
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Fig. 7. Group’s sizes distribution for experimental data

Without any checking of length groups, only with
o the ID length can be chosen. For experimental data
the ID length is [ID| = 23 - 12 = 11.

TABLE I1l. INTRA- AND INTER- UNIQUENESS FOR |ID| = 11

HDimra HDinter

HDa HD, HDa HD,
FO 0,409 0,399 CO0 0,364 0,339
F1 0,424 0,410 C1 0,424 0,410
F2 0,455 0,445 C2 0,303 0,272
F3 0,394 0,389 C3 0,394 0,381

The scores are slightly lower than those for |ID| = 12,
but still satisfy the conditions of uniqueness and
difference.

CONCLUSUON

CRO PUF is a simple design that exploits the same
hardware to generate TRNG response and unique
identifier without the need of changing it.
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An estimation of a highly unstable group was given,
suggesting that so many channels could be used as a
source of randomness. To ensure greater randomness,
various manipulations can be made with these data.
Ways to expand the unique identifier were also
provided. It was shown that identifiers from CRO PUF
are indeed distinct and unique, and have good intra- and
inter-uniqueness.

REFERENCES

[1] Ch. H. Chang, M. Potkonjak (eds.), “Secure System Design
and Trustable Computing”, Switzerland, Springer, 2016,
549 p. DOI:10.1007/978-3-319-14971-4.

Y. Gao, S. F. Al-Sarawi and D. Abbott, “Physical unclonable
functions”, Nature Electronics, vol. 3, Feb. 2020, pp. 81-91.

A. A. lvanyuk, V. N. Yarmolik, “Configurable ring oscillator
with controlled interconnections”, Security of Information
Technologies, vol. 31, no. 2, pp. 121-133. DOI:10.26583/
bit.2024.2.08.

A. A. lvaniuk, “Investigation of the physically unclonable
function of a configurable ring oscillator”, Informatics,
vol. 22(1), 2025, pp. 73-89. (In Russ.). DOI:10.37661/1816-
0301-2025-22-1-73-89.

A. A lvaniuk, V. N. Yarmolik, “Physically unclonable
functions based on a controlled ring oscillator”, vol. 30, no. 3,
2023, pp. 90-103 (In Russ.). DOI:10.26583/bit.2023.3.06.

A. Ghasemi, S. Zahediasl, “Normality tests for statistical
analysis: a guide for non-statisticians”, Int. J. Endocrinol
Metab., vol. 10(2), Spring, Apr 20. 2012, pp. 486-9.
DOI:10.5812/ijem.3505.

A Unified Multibit PUF and TRNG Based on Ring Oscillators
for Secure 10T Devices, IEEE Internet of Things Journal,
2023.

(2]
(3]

(4]

(5]

(6]

(7]



