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В работе рассматривается проблема калибровки МЭМС-акселерометров, применяемых в микроконтрол- 
лерных навигационных системах. Показано, что традиционные методы компенсации ошибок (устранение 
смещения нуля и погрешности масштаба) имеют ограниченную эффективность. Предложено использова­
ние методов машинного обучения, позволяющих адаптивно снижать систематические и случайные ошибки 
измерений. Для иллюстрации подхода приведено моделирование сигнала акселерометра с добавлением шума 
и смещения, а также его коррекция с применением линейной регрессии,. Полученные результаты демон­
стрируют снижение среднеквадратической ошибки и подтверждают перспективность использования 
машинного обучения для повышения точности инерциальных навигационных систем.

В ве д е н и е

М икроэлектромеханические датчики
(М Э М С ) занимают клю чевое м есто в современ­
ны х навигационных и управляю щ их системах 
благодаря низкой стоим ости , ком пактности и 
возм ож ности  интеграции с микроконтроллера­
ми [1]. Однако точн ость М ЭМ С-акселерометров 
ограничивается рядом ф акторов: смещением 
нуля, температурны м дрейф ом , ш умами и пере­
крёстными погрешностями. Классические методы 
калибровки, такие как ш естипозиционный тест 
и использование ф ильтра Калмана, позволяю т 
частично ком пенсировать данные ош ибки, но 
им ею т ограничения при учёте нелинейных и 
нестабильных составляющ их. В связи с этим ак­
туальной задачей является применение методов 
машинного обучения (ML) для калибровки и кор­
рекции выходных данных М ЭМ С-акселерометров 
в составе микроконтроллерны х инерциальных 
навигационных систем (INS).

I. О ш и в к и  МЭМС-АКСЕЛЕРОМЕТРОВ

К  типовым источникам погреш ностей аксе­
лерометров относят [2]:

-  смещение нуля (bias), изменяющееся со вре­
менем и температурой;

-  масштабный коэффициент (scale factor), за­
висящий от  условий эксплуатации;

-  перекрёстные чувствительности 
(misalignment);

-  случайные шумы.
На рисунке 1 представлена упрощённая схе­

ма формирования ошибок М ЭМ С-акселерометра.
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II. М е т о д ы  к а л и в р о в к и

Классические подходы вклю чаю т [3]:
-  статическую калибровку в нескольких фик­

сированны х полож ениях (ш естипозицион­
ный тест);

-  динамическую калибровку с использовани­
ем эталонных траекторий;

-  применение фильтра Калмана для совмест­
ной оценки параметров модели и состояния 
системы.

Ограничением указанных методов является 
их недостаточная эф ф екти вн ость при наличии 
нелинейных и изменяющихся ошибок.

Таблица 1 -  Сравнение методов калибровки
Метод Учет

нелиней­
ностей

Вычисли­
тельные
ресурсы

Точность

Шести- 
позицион­
ный тест

низкий низкие средняя

Фильтр
Калмана

частичный средние выше

Машинное
обучение

высокий зависит 
от модели 
(TinyML -  
низкие)

высокая

Рис. 1 -  Схема формирования ошибок 
МЭМС-акселерометра

III. П ри м е н е н и е  и м о д е л и р о в а н и е  
м е т о д о в  м а ш и н н о го  о в у ч Е н и я

М етоды машинного обучения позволяют мо­
делировать сложные зависимости меж ду «сы ры ­
ми» данными акселерометра и истинными зна­
чениями ускорений. П ерспективными являются 
следующие направления:

-  использование регрессионны х моделей и 
нейросетей для предсказания смещения и 
масштабных коэффициентов [4];

-  гибридны е подходы (M L-корректор  +  
фильтр Калмана) [5];
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-  внедрение технологий TinyM L, позволяю ­
щ их выполнять коррекцию  непосредствен­
но на микроконтроллере с ограниченными 
ресурсами [6].

Общий алгоритм применения ML можно опи­
сать следующ им образом:

1. Сбор данных с акселерометра в различных 
условиях (температура, ориентация).

2. Обучение ML-модели на эталонных данных.
3. Интеграция обученной модели в прошивку 

микроконтроллера.
4. Использование модели для коррекции изме­

рений в реальном времени.

Сигнал идеального акселерометра мож но 
описать выражением

atrue (t) — A  ■ sin(wt). ( 1)

Ilk

/ш w/ \

\
—  Истинны й сигнал

—  После калибровки (ML)
-------------------------------1------------------------------- 1—

С учётом  смещения и ш умов измеренный 
сигнал имеет вид

ameasured (t) (1 +  e) ■ atrue (t) +  b +  n(t) ,  (2)

где e -  ош ибка масштаба, b -  смещение нуля, 
n (t) -  гауссовский шум.

Калибровка выполняется методом линейной 
регрессии:

acalibrated(t') — а  ■ ameasured(t') +  в , (3)

где коэф ф ициенты а , в  подбираю тся методом 
наименьших квадратов.

К ачество восстановления оценивается по 
среднеквадратической ошибке:

1 N
MSE — (atrue(ti) asignal (t i) )2 . (4)

i= 1

И спользуя соотнош ения (1 )-(4 ), был про­
ведён модельный эксперимент, в ходе которого 
сгенерирован сигнал идеального акселерометра 
atrue(t) и искажённый сигнал ameasured(t) с до­
бавлением смещения и шумов. Д ля коррекции 
измерений применялся метод линейной регрессии 
(3), позволяющий подобрать коэффициенты а  и 
в  таким образом, чтобы минимизировать средне­
квадратическую ошибку (4).

Результаты эксперимента показали, что при­
менение регрессионной модели позволяет эф ф ек­
тивно компенсировать систематические погреш­
ности и уменьшить уровень шума. На рисунке 2 
приведено сравнение исходного и откалиброван­
ного сигналов, из которого видно, что восстанов­
ленный сигнал значительно ближ е к истинным 
значениям ускорений.
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Рис. 2 -  Сравнение измеренного и откалиброванного 
сигналов акселерометра

В модельном эксперименте использовались 
параметры: N  — 500, b — 0.2 м /с  , scale factor e — 
1.3, n (t) ~  N (0 , (0.1 м /с 2) 2). После калибров­
ки методом линейной регрессии (а  — 0.7613, 
в  — -0 .1509 ) среднеквадратическая ошибка сни­
зилась более чем на 95%, а восстановленный сиг­
нал практически совпал с истинным, что подтвер­
ж дает эф ф ективность ML-подхода.

IV . За к л ю ч е н и е

Применение методов машинного обучения 
для калибровки М ЭМС-акселерометров в составе 
микроконтроллерных INS является перспектив­
ным направлением, позволяющим повысить точ­
ность навигационных решений. В отличие от клас­
сических методов, ML-подходы способны учиты­
вать нелинейные и изменяющиеся погреш ности. 
Развитие технологий TinyM L делает возможной 
реализацию подобных алгоритмов даж е на ма­
ломощных микроконтроллерах. Перспективными 
задачами являю тся исследование оптимальных 
архитектур нейросетей, адаптивная калибровка 
в реальном времени и интеграция ML-методов в 
комбинированные INS.
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