ИИ КАК ИНСТРУМЕНТ ОБОСНОВАНИЯ СТРАТЕГИЧЕСКИХ И ТАКТИЧЕСКИХ РЕШЕНИЙ В СИСТЕМЕ ЖКХ РЕСПУБЛИКИ БЕЛАРУСЬ

Лазаревич И. М., Мосин Н. А., Савицкий Р. М. Кафедра экономики, экономической информатики
Белорусский государственный университет информатики и радиоэлектороники
Минск, Республика Беларусь
Е-mail: i.lazarevich@bsuir.by

В статье обоснована необходимость применения жилищно-коммунальным хозяйством Республики Беларусь ИИ при обработке заявок населения, составлен предположительый план реализации проекта, выделены возможные выгоды от его внедрения.

Введение

Оптимизация процессов оказания услуг жилищно-коммунальным хозяйством (ЖКХ) является первоочередной задачей, нацеленной на повышение качества обслуживания населения. На текущий момент у ЖКХ Республики Беларусь сформированы механизм получения информации о проблемах в обслуживании населения и информационная база заявок. С целью устранения повторяющихся проблем, возникших при обслуживании тех или иных объектов, возможно применение интеллектуальных информационных технологий, например искусственный интеллект (ИИ).

I. Основная часть

ИИ представляет собой комплекс инструментов, позволяющих решать задачи (восприятие, обучение, рассуждение, выявление проблем и принятие решений по их устранению), выполняемые человеком или группой лиц, и реализованных компьютерными системами.

В функции ЖКХ входит обработка обращений от населения, связанных с авариями и поломками, качеством обслуживания. Часто работники ЖКХ устраняют проблему временно, не выявляя основные причины и закономерности, что способствует возникновению различного рода проблем: повторение обращения граждан, сокращение эффективности работы организации, повышение тарифов населения и др. Следовательно традиционные методы обработки обращений и устранения повторяющихся проблем не эффективны и им требуется доработка.

При том, что ИИ имеет высокую цену разработки; представляет собой сложную систему, состоящую из огромного количества компонентов, которую нужно создавать и поддерживать; хранение самого машинного интеллекта и пакетов данных на серверах требуют огромного количества места, бесконечную отладку и модификацию, использовать нейронную сеть надо в тех областях, где процессы могут быть полностью оптимизированы [1]. ИИ позволит сократить время на рутинные задачи, мониторинг и устранение сбоев. Для этого целесообразно выявить закономерности между обращениями граждан и системой работы ЖКХ, сформировать модель ИИ с блоком анализа и устранения различного рода проблем системы. Поэтому для реализации проекта необходимо использовать [2]:

- 1. Машинное обучение для анализа заявок;
- 2. Нейронные сети для прогнозирования аварий;
- 3. Обработка естественного языка для обработки и понимания текстов обращения граждан;
- 4. Аналитические системы для проведения глубокого исследования с целью предложения новых методов оптимизации работы.

Но стоит понимать, чтобы интеграция произошла успешно и была эффективна, необходимо не только собрать статистические данные и построить алгоритмы, но и грамотно контролировать сам этап обучения, исключая возможность появления статистически несвязанных результатов, обеспечивающих низкую эффективность работ. Возможные этапы достижения цели представлены в таблице [3]:

Таблица 1 – Этапы реализации проекта

Название
Анализ текущего состояния цифровизации
и автоматизации управления в ЖКХ
Определение основных групп обращения
граждан
Разделить основные группы обращений на
кластеры
Разработать концептуальную модель ин-
теллектуальной системы обработки кла-
стеров на основе машинного обучения и
анализа тестовых данных
Сформировать основные подходы для ана-
литического выявления повторяющихся и
критических проблем в системе ЖКХ
Разработать и протестировать основные
алгоритмы построения стратегических ре-
шений
Провести профилактику неисправностей
на основе прогнозных данных модели
Оценить экономическую эффективность
внедрения модели в систему ЖКХ

Возможные выгоды от внедрения ИИ в систему ЖКХ:

- 1. Решение типовых проблем системы (оперативное реагирование на заявки);
- 2. Оптимизация маршрута движения дежурной бригады. Например, если поступило 5-7 одинаковых заявок из жилого комплекса о том, что нет горячей воды, дежурная группа будет автоматически направлена на общий узел подачи горячей воды. Данный подход позволит сократить время на выяснение причины поломки и уменьшить время простоя служб;
- Контроль нагрузки на структурные подразделения ЖЭС. В случаях выявления неравномерной нагрузки работников (бригад) ИИ составит рекомендации по перенаправлению трудовых ресурсов. Данный подход позволит сделать систему гибкой и эффективной, повышая интенсивность труда и снижая время обработки заявок [4];
- 4. Составление плана по оптимизации расходов. Например, если в пределах жилищно ремонтно-эксплуатационных объединений (ЖРЭО) или жилищно-эксплуатационных служб (ЖЭС) происходят регулярные поломки оборудования, то ИИ предоставит план ремонта, согласно которому работа специалистов не прекратиться. Данный подход позволит поэтапно заменять оборудование на новое, не прекращая обслуживание населения;
- Подготовка возможного плана развития ЖКХ в целом и его структурных подразделений (ЖРЭО, ЖЭС) и др.

Не смотря на преимущества интеграции ИИ в систему ЖКХ, его развертывание сопровождается рядом сложностей:

- 1. Необходим большой объем статистических данных. Для успешного обучения модели необходимо подготовить набор данных, включающий в себя не только идеальные данные, но и ошибочные. Такой подход поможет сделать анализ более успешным [5].
- 2. Нужны постоянные инвестиции в разработку и развитие ИИ, а также нужно успешно интегрировать его в существующие системы, при этом не нарушив работу.
- 3. Необходима переподготовка части персонала. По сколько ИИ является новой технологией, части персонала будет трудно адаптироваться к работе [6]. Поэтому необходимо будет ввести обучающие курсы, следовательно это может снизить эффективность

работы ЖКХ, так как часть персонала будет на переобучении.

Необходимо утвердить стандарты сбора, очистки, а также настроить процедуры валидации и обмена данными между подразделениями и механизмы, скорытия персональных данных. Эти инструменты помимо точности прогнозов снижают риск санкционированного использования сервисов систем, которые не соответствуют требованиям законодательства. При грамотном подходе, структурированном анализе и последовательному выполнению работы данные сложности будут устранены.

II. Заключение

Внедрение в работу системы ЖКХ ИИ позволит повысить качество и скорость обработки обращений граждан, формировать стратегический и тактический планы профилактики и устранения цикличных неисправностей и проблем системы, прогнозировать объем финансовых расходов на устранение системных проблем сферы ЖКХ. ИИ позволит снизить нагрузку на систему ЖКХ, способствуя повышению эффективности принятий решений и улучшения качества обслуживания населения, а также начнёт этап формирования «умного города», где большинство процессов будет автоматизировано и работать на основе ИИ.

III. Список литературы

- Мосин Н. А. Влияние искусственного интеллекта на экономические процессы / Н.А. Мосин, Н.А. Ходаренок // актуальные вопросы экономики и информационных технологий: м-лы 60-й юбил. науч. конференции аспирантов, магистрантов и студентов УО «Белорусский государственный университет информатики и радиоэлектроники», 22 апреля 2024 г., Минск, Беларусь. – 2024. – С. 110-113.
- 2. Sergey Ablameyko Использование систем искусственного интеллекта при обеспечении общественной безопасности в «умном городе»: юридические аспекты / Nadzeya V. Shakel, Rykhard Bohush // Vestnik of Polotsk State University Part D Economic and legal sciences, Полоцк, Беларусь. 2021.
- John J. Artificial Intelligence for Smart Cities: A Comprehensive Review / J. John // MDPI. – 2025.
- Zhu D. City AI: a strategic framework for urban artificial intelligence / D. Zhu // Springer. – 2025
- Artificial Intelligence in Smart Cities Applications, Barriers and Future Directions: A Review / (A comprehensive review paper) // ResearchGate. – 2024
- 6. OECD. AI for advancing smart cities Issues note (desk review + 70 case studies) / OECD. 2025
- Sanchez-Gallegos D. D. Smart Cities: A Systematic Review of Emerging Technologies / D.D. Sanchez-Gallegos // MDPI. – 2025.
- Шиюй Т. Использование цифровых технологий в развитии умных городов: опыт Республики Беларусь / Т. Шиюй // CyberLeninka. – 2023
- 9. Синь В. Искусственный интеллект как фактор развития «умного города» / В. Синь // Elib.BSU. 2024