ЭФФЕКТИВНОСТЬ МЕТОДОВ ПРОГНОЗИРОВАНИЯ НАДЕЖНОСТИ ЭЛЕМЕНТОВ ЭЛЕКТРОННОЙ АППАРАТУРЫ

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники», г. Минск, Республика Беларусь, доцент, кандидат технических наук, доцент

Требования к надежности электронной аппаратуры, в том числе функционирующей в системах телекоммуникаций, могут быть обеспечены использованием элементов повышенного уровня безотказности в составе электронных устройств. Одним из способов получения таких элементов является их отбор из партии (выборки) однотипных элементов, используя методы индивидуального прогнозирования по информативным параметрам [1]. Под информативным будем понимать такой электрический параметр изделия электронной техники, в том числе полупроводниковых приборов и интегральных микросхем, значения которого в начальный момент времени несут информацию о надежности изделия в будущие моменты времени, т.е. для заданной наработки. Само прогнозирование выполнят по модели прогнозирования, которую получают, используя результаты предварительных исследований, представляющих собой обучающий эксперимент с изделиями интересующего типа. Суть таких экспериментов рассматривается в [1, с. 66-67]. Основу модели прогнозирования составляет прогнозирующая функция, определяемая для каждого нового однотипного

экземпляра при прогнозировании его надежности. В практике возникает вопрос, какому методу прогнозирования и, следовательно, методу получения прогнозирующей функции отдать предпочтение.

Методы прогнозирования, исследуемые на эффективность в данной работе:

- 1. Метод статистических решений в предположении нормальных законов распределения информативных параметров в классах надежных (обозначен через K_1) и потенциально ненадежных (обозначен через K_2) элементов для интересующей заданной наработки. При этом предполагается, что информативные параметры элементов в каждом классе уровня надежности (K_1 и K_2) являются независимыми. С методом можно ознакомиться в [1, с. 82-84].
- 2. Метод потенциальных функций. Суть метода описана в [1, с. 84-86]. Метод считается одним из самых эффективных с точки зрения получения вероятности правильного распознавания класса надежности экземпляров (класс K_1 или K_2) для заданной наработки.
- 3. Метод пороговой логики, предполагающий преобразование информативных параметров в двоичный код («единица» или «нуль») с принятием решения о классе уровня надежности экземпляра (K_1 или K_2) по набору для этого экземпляра двоичных чисел. Метод описан в [1–3].
- 4. Метод пороговой логики, предполагающий преобразование информативных параметров в троичный код («единица», «нуль» или «неопределенность»). С сутью этой модификации метода пороговой логики можно ознакомиться в [4].

Количественные характеристики, используемые для оценки эффективности методов прогнозирования:

- вероятность правильных прогнозов $P_{\text{прав}}$ класса надежности элементов для заданной наработки;
- вероятность ошибочных прогнозов $P_{\rm om}$ класса надежности элементов для заданной наработки;
- вероятность правильных прогнозов надежных экземпляров, $P(K_1)$;
- вероятность правильных прогнозов потенциально ненадежных экземпляров, $P(K_2)$;
- риски изготовителя $P_{\text{изг}}$ и потребителя $P_{\text{потр}}$, соответствующие максимальному значению вероятности принятия по результатам прогнозирования правильных прогнозов (вероятности $P_{\text{прав}}$).

Рассматриваемые нечисловых характеристики:

- необходимость вычисления значения прогнозирующей функции для каждого прогнозируемого однотипного экземпляра, не принимавшего участия в обучающем эксперименте;
- степень сложности автоматизации метода, используемого для получения и применения модели прогнозирования.
- В таблице 1, как пример оценки эффективности моделей прогнозирования, приведены значения вероятностей правильных прогнозов $P_{\text{прав}}$ для экземпляров обучающей и контрольной выборок. Вероятности получены для полевых транзисторов типа КП744A в случае использования в качестве информативных следующих электрических параметров:
 - а) порогового напряжения затвор–исток, $U_{\text{зи.пор}}$;
 - б) емкости затвор–сток, C_{3C} ;
 - в) емкости затвор-исток, $C_{3\text{И}}$.

Объем обучающей выборки составлял составлял 172, контрольной — 152 экземпляра. Наработка транзисторов для нормальных условий, пересчитанная с учетом коэффициента ускорения испытаний — 80 тыс. ч, для которой 79 экземпляров оказались представителями класса K_1 , а 93 экземпляра — представителями класса K_2 . В качестве критерия надежности рассматривалось соответствие сопротивления сток-исток полевого транзистора в открытом состоянии (параметр $R_{\text{Си.отк}}$) норме, приводимой в технической документации ($R_{\text{Си.отк}} \leq 0,27$ Ом).

Таблица 1 – Показатели эффективности методов прогнозирования надежности транзисторов КП744А

Метод получения прогнозирующей функции	Особенность метода (его разновидности) и прогнозирующей функции	Порог разделения классов	Вероятность правильных прогнозов класса надежности, $P_{\text{прав}}$	
			обучающая выборка	контрольная выборка
Метод статистических решений	Гипотеза о нормальном распределении информативных параметров в классах K_1 и K_2 , логарифм отношения правдоподобия	0	0,913	0,908
Метод потенциальных функций	Использование суммарного потенциала, наводимого на прогнозируемый экземпляр всеми экземплярами обучающей выборки	0	0,930	0,928
Метод пороговой логики	Преобразование информативных параметров в двоичный код (1 или 0), использование близости к классу K_1	1,704	0,878	0,875
Метод пороговой логики	Преобразование информативных параметров в двоичный код (1 или 0), использование частной информации о классах K_1 и K_2	0 бит	0,884	0,882

Теория связи, системы и сети передачи данных

Метод пороговой логики	Преобразование информативных параметров в троичный код $(1, 0, R$ – неопределенность), использование близости к классу K_1	0,924	0,914
Метод пороговой логики	Преобразование информативных параметров в троичный код (1, 0, R — неопределенность), использование частной информации о классах K_1 и K_2	0,924	0,921

Из результатов, приведенных в таблице 1, видно, что модификация метода пороговой логики на основе преобразования информативных параметров в троичный код (с использованием для прогнозируемого экземпляра частной информации о его принадлежности к классам K_1 и K_2) по вероятности правильных прогнозов незначительно уступает лишь методу потенциальных функций. Однако модель прогнозирования в этой модификации метода пороговой логики может быть представлена набором троичного кода и соответствием каждому набору определенного класса надежности экземпляра по прогнозу, что в отличие от метода потенциальных функций, вообще не требует проведения математических вычислений по определению прогнозирующей функции для каждого нового прогнозируемого однотипного экземпляра.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Боровиков С. М. Статистическое прогнозирование для отбраковки потенциально ненадежных изделий электронной техники / С. М. Боровиков. М.: Новое знание, 2013. 343 с.
- 2. Метод прогнозирования надежности изделий электронной техники / С. М. Боровиков [и др.] // Доклады НАН Беларуси. -2006. Т. 50, № 4. С. 105-109
- 3. Прогнозирование надежности изделий электронной техники методом пороговой логики / С. М. Боровиков [и др.] // Доклады БГУИР. -2006. -№ 2(14). C. 49-56.
- 4. Боровиков С. М. Статистическое имитационное моделирование в исследовании эффективности моделей прогнозирования надежности изделий по информативным параметрам / С. М. Боровиков // ВІG DATA и анализ высокого уровня: Сб. науч. статей X Международ. науч.-практ. конф. / Минск (13 марта 2024 г.). Ч. 2. Минск, 2024. С. 122–131.