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Efficient computational technologies of decomposing basis graphs in linear-fractional multiflow programming problems 
with a nested constraint structure are considered. An example of basis graphs decomposition for solving large sparse 
linear systems for mathematical model of one linear-fractional programming problem are given.

In t r o d u c t io n

Decom position of the sparse linear underdeter­
mined system with incidence m atrix o f the graph 
are considered. Systems o f this type appear in non- 
homogeneous flow programming problems.

W e construct the algorithms of decom position 
of the sparse underdetermined linear systems by sep­
arating the variables according to the sets of arcs of 
spanning trees, cyclic arcs and no basis arcs. Effec­
tive algorithms and decomposition technologies have 
been developed for solving sparse systems o f linear 
algebraic equations with a multigraph incidence ma­
trix in the linear-fractional multiflow programming 
problems with a nested constraint structure are con­
sidered. A n  im plem entation o f the sparse systems 
solutions in the com puter algebra system W olfram  
M athem atica with using the technologies o f  root 
trees are considered. T he example o f decom posi­
tion for basis graphs o f the sparse systems o f linear 
algebraic equations is given.

I. M a t h e m a t ic a l  m o d e l  of 
lin e a r - f r a c t io n a l  o p t im iz a t io n  p r o b le m

w it h  l in e a r  c o n s t r a in t s

For the multinetwork G =  (I ,U ) we consider 
the following linear-fractional program m ing prob­
lems with linear constraints

£  £  p j  x j  +  в  
p (x ) (i,j)GU k£K(i,j)
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=  a „ p  =  1,1;

x kj  >  0,k e  K o ( i , j ) , ( i j ) e  Uo; (3)

0 <  xk, <  dkj, e  K i ( i , j ) , ( i , j ) e  U , x k  >  0,

k e  K ( i , j ) \ K i ( i , j ) , ( i , j ) e  U \ Uo; 

I+  (U k) =  { j  e  I k: ( i , j ) k e  U k};

Here K  (|K|< ж ) is a set o f different prod ­
ucts (types o f flow) transported through the multi­
network G . W ithout loss o f generality, let's put 
K  =  { 1 , . . .  ,|K |}.

Let us denote the connected network corre­
sponding to a certain type k o f flow with S k =  
( I k ,U k), where I k is the set o f nodes and U k is the 
set of arcs which are available for the flow of type k, 
k e  K . Also, we define for each node i e  I  the set of 
types o f flows K ( i )  =  {k  e  K :i  e  I k} and for each 
multiarc ( i , j ) e  U the set K ( i , j ) =  {k  e  K : ( i , j ) k e  
U k}. W e assume that the denom inator q (x) o f the 
objective function (1) does not change sign on a set 
o f multiflows X , x e  X .

T he work is devoted to m ethods, algorithms 
and technologies decomposition of basis multigraphs 
for constructing the optim al solutions o f linear- 
fractional program m ing problem  (1 )- (4 ). W e use 
m odern innovative technologies o f sparse m atrix 
analysis [2], algorithmic graph theory and theoreti­
cal com puter science.

II. E x a m p l e  o f basis  g r a p h s  d e c o m po sitio n

For a multinetwork G =  (I ,U ), I  =  {1 ,2 ,3 ,4 ,5}, 
U =  {(1 ,2 ),(2 ,3 ), (4,1),(4,2), (4 ,3),(5 ,1),(5 ,2), (5 ,4 )} 
consider a sparse underdetermined system o f linear 
algebraic equations (5) -  (6 ). M ultinetwork G pre­
sented as a combination of networks S k (see Fig. 1 ):
S k =  ( I k,U k), k e  K  =  {1 ,2 ,3 },

Figure 1 -  Multinetwork G =  (I,U ), Combination of 
networks S k , k £ K  =  {1,2,3}

U i =  { (1 ,2 ^  ,(4 ,2^  ,(5 ,1^  ,(5 ,2 )1 ,(5 ,4 )1},
U 2 =  { (1 ,2 )2, (2 ,3 )2, (4 ,1 )2, (4 ,3 )2, (5 ,4 )2},
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U3 =  {(1 ,2 )3, (4 ,1)3, (4 ,2 )3, (5 ,1)3, (5 ,4)3}.
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Figure 3 -  Basis graph UT U U2 of the system 
(5)- (6) for k =  2. The arcs of basis graph (k =  2) for 

the system (5) are marked in bold

Basis graphs(support)
{1 ,2 ,3 } for the multinetwork 
the system  (5) -  (6) [1] is represented on fig­
ures 2 - 4 , where U f — {(1 ,2 )5, (4 ,2 )5, (5 ,4 )5}, 
U2 — {(1 ,2 )2,(2, 3 )2 ,(4 ,3 )2,(5 ,4 )2} , U3 —
{ (  1 ,2)3,(4 ,2 )3,(4 ,3 )3,(5 ,4 )3 -  sets o f  arcs o f  span-

Figure 4 -  Basis graph UTU  UC of the system 
(5)- (6) for k =  3. The arcs of basis graph (k =  3) for 

the system (5) are marked in bold

W e are build a general solution to  a sparse 
underdetermined system (5) -  (6) relative to the ba­
sis multigraph (support) (see Fig. 2 - 4) U ^U  UjC, 
k e  K  — {1 ,2 ,3 } o f  the network S  — (1 ,U ) for the 
system (5) -  (6 ).

Based on the decom position  o f  basis multi­
flows we find the flows for the arcs o f  the set Ujc,

ning trees U^, U 2, Uy o f  the graphs S 1 — (1 5,U 5), k e  K  — {1 ,2 ,3 }: 
S 2 — (12,U2 ), S f — (13,U/3) respectively (marked 
with bold lines), UC — UC U UC U UC -  set of cyclic 
arcs, UC — {(5 ,1 )5,(5 ,2 )5} ,  U2 — {(4 ,1 )2} , U3 — 0.

, 2 ^  ( —449 j  123y4 ,1 — 85y5 ,1),34
1

,1 ^  (3311 — 8 8 9 $ !  j  69 7 y f,0  ,

4 1
504 j  152y3,1

— 7y53 1.

Figure 2 -  Basis graph U^ U Uc o f the system 
(5)- (6) for k =  1. The arcs of basis graph (k =  1) for 

the system (5) are marked in bold

17 17
Then we compute the flows for the arcs of the 

set U^, k e  K  — {1 ,2 ,3 }.
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