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Efficient computational technologies of decomposing basis graphs in linear-fractional multiflow programming problems

with a nested constraint structure are considered. An example of basis graphs decomposition for solving large sparse
linear systems for mathematical model of one linear-fractional programmaing problem are given.

INTRODUCTION

Decomposition of the sparse linear underdeter-
mined system with incidence matrix of the graph
are considered. Systems of this type appear in non-
homogeneous flow programming problems.

We construct the algorithms of decomposition
of the sparse underdetermined linear systems by sep-
arating the variables according to the sets of arcs of
spanning trees, cyclic arcs and no basis arcs. Effec-
tive algorithms and decomposition technologies have
been developed for solving sparse systems of linear
algebraic equations with a multigraph incidence ma-
trix in the linear-fractional multiflow programming
problems with a nested constraint structure are con-
sidered. An implementation of the sparse systems
solutions in the computer algebra system Wolfram
Mathematica with using the technologies of root
trees are considered. The example of decomposi-
tion for basis graphs of the sparse systems of linear
algebraic equations is given.

I. MATHEMATICAL MODEL OF
LINEAR-FRACTIONAL OPTIMIZATION PROBLEM
WITH LINEAR CONSTRAINTS

For the multinetwork G = (I,U) we consider
the following linear-fractional programming prob-
lems with linear constraints
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Here K (|K|< o0) is a set of different prod-
ucts (types of flow) transported through the multi-
network G. Without loss of generality, let’s put
K={1,...,|K|}.

Let us denote the connected network corre-
sponding to a certain type k of flow with S¥ =
(I*.U*), where I* is the set of nodes and U* is the
set of arcs which are available for the flow of type k,
k € K. Also, we define for each node ¢ € I the set of
types of flows K (i) = {k € K:i € I*} and for each
multiare (i,j) € U the set K(i,5) = {k € K:(i,j)*
U*}. We assume that the denominator g(x) of the
objective function (1) does not change sign on a set
of multiflows X, x € X.

The work is devoted to methods, algorithms
and technologies decomposition of basis multigraphs
for constructing the optimal solutions of linear-
fractional programming problem (1)-(4). We use
modern innovative technologies of sparse matrix
analysis [2], algorithmic graph theory and theoreti-
cal computer science.

II. EXAMPLE OF BASIS GRAPHS DECOMPOSITION

For a multinetwork G = (I,U), I = {1,2,3,4,5},
U = {(12)(2,3), (4,1),(42), (43),(5,1),(5.2), (5.4))
consider a sparse underdetermined system of linear
algebraic equations (5) — (6). Multinetwork G pre-
sented as a combination of networks S* (see Fig. 1):
Sk =(I*U"), ke K ={1,2,3},

Figure 1 — Multinetwork G = (I,U), Combination of
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U = {(1,2), (4,1)%, (4,2), (5,1), (5,4)*}.
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Basis graphs(support) UFJUE, k € K =
{1,2,3} for the multinetwork G = (I,U) for
the system (5) — (6) [1] is represented on fig-
ures 2 — 4, where UL = {(1,2)}, (4,2)!, (5,4)'},
0772“ = {7(]—72)27(273)27(473)2:(574)2}3 UTS“ =
{(1,2)3,(4,2)3,(4,3)3,(5,4)® — sets of arcs of span-
ning trees U}, U2, U of the graphs S = (I',U!),
S§% = (I2,U%), 83 = (I*,U?) respectively (marked
with bold lines), Uc = UL |JUZ Y UZ — set of cyclic

ares, Ué’ ={(5:1)(5:2)"}, Ug’ = {(4,1)*}, ’g =

Figure 2 — Basis graph U |J U of the system
(5)-(6) for k = 1. The arcs of basis graph (k = 1) for
the system (5) are marked in bold
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Figure 3 — Basis graph U7 |JUZ of the system
(5)—(6) for k = 2. The arcs of basis graph (k = 2) for
the system (5) are marked in bold
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Figure 4 — Basis graph US| JUZ of the system
(5)-(6) for k = 3. The arcs of basis graph (k = 3) for
the system (5) are marked in bold

We are build a general solution to a sparse
underdetermined system (5) — (6) relative to the ba-
sis multigraph (support) (see Fig. 2 — 4) UF|J UL,
ke K = {1,2,3} of the network S = (I,U) for the
system (5) — (6).

Based on the decomposition of basis multi-
flows we find the flows for the arcs of the set UL,
ke K=1{123}:

1
xhy — ) (—449 + 123y3 ; — 8512 4 ),

1 . .
aky — o (3311 — 889y3 , + 69742 )
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Then we compute the flows for the arcs of the
set UF, k € K = {1,2,3}.
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