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Многокомпонентные сплавы системы Al–Li широко используются в 

аэрокосмической и других высокотехнологичных отраслях благодаря 
низкой плотности, высоким удельным прочности и модулю упругости, 
устойчивости к коррозионному растрескиванию и коррозионной усталости, 
а также высокой вязкости при криогенных температурах. Легирование 
сплавов магнием в сочетании с Zr и редкоземельными элементами (Sc, Er) 
способствует формированию когерентных наноразмерных выделений типа 
«ядро–оболочка» со структурой L1₂, улучшая прочностные и коррозионные 
свойства и расширяя применимость сплавов при повышенных температурах 
[1, 2]. Однако при традиционном литье сплавов Al–Li и Al–Mg–Li 
образуются крупные частицы первичных фаз, снижающие прочность и 
вязкость. Для реализации потенциала наноразмерного упрочнения при 
последующем отжиге представляют интерес методы высокоскоростной 
кристаллизации (скорость охлаждения ≥ 10⁶ К/с), обеспечивающие высокую 
фазовую и структурную гомогенность и позволяющие эффективно 
модифицировать как существующие, так и новые композиции сплавов. 

В работе синтезирован промышленный сплав системы Al–Mg–Li–Sc–
Zr марки 1421 методом высокоскоростной кристаллизации с целью 
исследования термической стабильности микроструктуры, фазового 
состава и механических свойств быстрозатвердевших (БЗ) фольг в широком 
температурном диапазоне. Микроструктуру фольг исследовали с помощью 
растровой электронной микроскопии (РЭМ). Размеры выделений вторых 
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фаз определяли методом секущих. Измерение микротвёрдости в ходе 
отжига оценивали по результатам измерений по Виккерсу. 

Сверхбыстрая закалка из расплава промышленного деформируемого 
сплава 1421 (Al–5.8% Mg–8.1% Li–0,03% Zr–0.11% Sc) (ат.%) 
осуществлялась методом одностороннего охлаждения [3] при скорости 
охлаждения не ниже 106 К/с. Полученные фольги имели толщину 60-100 
мкм и ширину 5-10 мм. Поперечное сечение свежезакаленных и 
отожженных фольг в интервале температур от 80 до 380°С (с выдержкой 1 
ч) было изучено с помощью РЭМ в режиме детектирования обратно 
отраженных электронов. Размер D выделений вторых фаз и их объемную 
долю V определяли методом секущих с погрешностью ~ 13%. 
Микротвердость фольг измерялась на приборе MVD 402 Wolpert Wilson 
Instruments. Использовалась нагрузка в 50 г, время выдержки под нагрузкой 
составляло 30 с. Погрешность измерений составила 4%. 

На основе РЭМ-изображений поперечного сечения свежезакалённых 
и отожжённых фольг на рис. 1 построены гистограммы распределения 
магнийсодержащих фаз по размерам, включая (Sc,Zr)-содержащую фазу (Х 
фаза переменного состава Al(Mg,Sc,Zr,Li)x типа «ядро–оболочка» [3]) (рис. 
1д). Во всех случаях эмпирические кривые распределения частот имеют 
чётко выраженный максимум, существенно отклоняются от нормального 
закона (положительная асимметрия) и с высокой достоверностью 
аппроксимируются логнормальным законом (табл. 1). Средний размер 
частиц D , определённый методом секущих, превышает моду распределения 
(xₘₐₓ) как в свежезакалённых, так и в отожжённых образцах. Коэффициент 
вариации (CV) составляет более 33 % — порогового значения для 
однородной совокупности — и выше для отожжённых фольг, что указывает 
на повышенную неоднородность распределения магнийсодержащих фаз 
после отжига. По-видимому, это связано с тем, что при низкотемпературном 
отжиге в сплавах системы Al–Mg происходит коагуляция кластеров 
легирующих элементов и по всему объему матричного твердого раствора 
зарождаются зоны Гинье-Престона (ЗГП). Одновременное формирование 
выделений различного фазового состава в процессе отжига обуславливает 
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повышенную дисперсность и неоднородность распределения частиц вторых 
фаз в отожжённых образцах в сравнении с более однородным 
распределением частиц γ-фазы (Al₃Mg₄) [3] в свежезакалённых фольгах.  

 
Рисунок 1 – Гистограммы распределения частиц интерметаллидных фаз по 

размерам и их аппроксимация логнормальным законом: 
(а) — магнийсодержащая γ-фаза в свежезакалённой фольге сплава 1421; 

(б–г) — магнийсодержащие фазы в фольгах после отжига 
при 80 °C, 300 °C и 380 °C соответственно; 

(д) и (е) — (Sc,Zr)-содержащая фаза в фольгах, 
отожженных при 300°С и 380 °C соответственно; 

(е) — зависимость суммарной объёмной доли магнийсодержащих фаз от 
температуры отжига и размера выделений. 

Обнаружено, что в качестве характеристики размера выделений 
предпочтительно использовать среднее значение x , поскольку в этом 
случае доверительные интервалы, полученные методом секущих и на 
основе аппроксимации экспериментальных данных логнормальным 
распределением, находятся в хорошем согласии (см. табл. 1). Ширина и 
амплитуда maxf  пика распределения частиц по размерам изменяются на 

различных стадиях эволюции выделений — зарождения, роста и коагуляции 
— что коррелирует с изменением их объёмной доли V (рис. 1е).  
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На рис. 2 представлено относительное изменение микротвёрдости 
фольг сплава 1421 при различных температурах термической обработки. 
Наибольшее увеличение микротвёрдости в интервале 300–380 °C 
обусловлено упрочняющим вкладом дисперсных выделений Li-
содержащих фаз S₁ (Al2LiMg) и Х [3]. В то же время рост среднего размера 
магнийсодержащих выделений с ростом температуры отжига и 
сопровождающийся снижением их суммарной объёмной доли не приводит 
к разупрочнению материала. 

Таблица 1. 
Влияние термической обработки на распределение 

частиц интерметаллидных фаз по размерам в фольгах сплава 1421 

Анализ 
Метод 

секущих 
OriginPro 

Условия бработки D , 
мкм 

V, % 
xmax,  
мкм 

<x>, 
мкм 

maxf , 
% 

CV, 
% 

COD 
(R2) 

Магнийсодержащие фазы 
Свежезакаленная 

фольга 
0,68 1,12 0,66 0,64 32,0 38,38 0,89 

Tотж = 80°С 0,34 11,66 0,25 0,30 51,97 45,56 0,98 
Tотж = 300°С 0,44 10,48 0,32 0,38 44,65 43,73 0,99 
Tотж = 380°С 0,57 1,97 0,37 0,51 25,27 71,0 0,83 

(Sc, Zr)-содержащая фаза 
Tотж = 300°С 0,30 0,58 0,16 0,21 57,15 62,79 0,99 
Tотж = 380°С 0,44 1,15 0,37 0.44 36,70 45,91 0,98 

Таким образом, обнаружено, что микроструктура свежезакалённых и 
отожжённых фольг сплава 1421 характеризуется логнормальным 
распределением размеров интерметаллидных выделений c высокой 
степенью достоверности аппроксимации (R² = 0,83–0,99). При 
высокотемпературном отжиге в микроструктуре преобладают включения 
вторых фаз, характерный размер которых на ~25 % ниже среднего значения. 
В ходе термической обработки наблюдается рост степени структурной 
неоднородности, что проявляется в увеличении коэффициента вариации 
распределения частиц. Эволюция ширины и амплитуды пиков 
распределения частиц магнийсодержащих и (Sc,Zr)-содержащей фаз 
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отражает изменение их объёмной доли на последовательных стадиях 
структурно-фазовых превращений, что свидетельствует о тесной 
взаимосвязи между кинетикой выделения, морфологией частиц и фазовой 
стабильностью в условиях термической обработки. Установлено 
упрочнение фольг при высокотемпературном отжиге, обусловленное 
выделением дисперсных Li-содержащих метастабильных фаз. 
Максимальное повышение микротвёрдости зафиксировано в интервале 
температур 300-380 °C, когда формируются частицы фазы Х размером около 
0,3-0,4 мкм.  

 

Рисунок 2 – Зависимость 
относительного изменения 

микротвёрдости фольг 
сплава 1421 от среднего 

размера магнийсодержащих 
выделений при изотермическом 

отжиге в различных 
температурных режимах 
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