

Research Papers

Enhanced energy storage performance in oxygen-deficient $\text{Ca}_{0.28}\text{Ba}_{0.72}\text{Nb}_2\text{O}_6$ -based tungsten bronze ceramics

Lang Zhang^a, Jie Wang^a, Matjaz Spreitzer^b, Leontev Viktor Sergeevich^c, Yasemin Tabak^d, Atilla Evcin^e, Alexander Korotkevich^f, Dawei Wang^g, Ying Yuan^{h,i}, Lei Cao^{a,i,*}, Yao Hu^{j,**}, Kaixin Song^{a,***}

^a College of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China

^b Advanced Materials Department, Jozef Stefan Institute, Ljubljana 1000, Slovenia

^c Institute of Electronic and Information Systems, Yaroslav-the-Wise Novgorod State University, ul. B. St. Petersburgskaya, 41, 173003 Velikiy Novgorod, Russia

^d Quantum Metrology Laboratory, TUBITAK National Metrology Institute, Gebze 41470, Turkey

^e Materials Science and Engineering Department, Afyon Kocatepe University, Afyonkarahisar 03204, Turkey

^f Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki street, 220013 Minsk, Belarus

^g Precision Acousto-optic Instrument Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China

^h National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054, PR China

ⁱ State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China

^j Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, PR China

ARTICLE INFO

Keywords:

Tetragonal tungsten bronze
Dielectrics
Energy storage
Relaxor ferroelectrics
Defect
Oxygen vacancies

ABSTRACT

The development of high-power technology and modern electronic devices imposes stringent demands on the energy storage performance of capacitors. Achieving an optimal balance between polarization and dielectric breakdown strength is essential for improving energy storage density. This study proposes a strategy to enhance polarization without compromising dielectric breakdown strength by deliberately introducing defects. In this context, a series of non-stoichiometric $\text{Ca}_{0.7}\text{Ba}_{1.5}\text{La}_{0.2}\text{Nb}_{5-x}\text{Fe}_x\text{O}_{15-\delta}$ ceramics were prepared. Investigations into the structure and electrical behavior suggested that defects did not stabilize ferroelectricity, rather, they served as sources of random fields and incommensurate modulation structure that enhanced the relaxor behavior. Nevertheless, defects introduced additional polarization, and contributed to the asymmetry of the $P-E$ loops and the fluctuation of the polarization response at high temperature/frequency. Furthermore, the maintenance of high BDS is attributed to the trapping of carriers by defects and the improvement of electrical homogeneity, which is confirmed by defect analysis and complex impedance spectroscopy. As a result, a releasable energy density of 3.42 J/cm^3 and an efficiency of 86.23% are obtained in defect-rich $\text{Ca}_{0.7}\text{Ba}_{1.5}\text{La}_{0.2}\text{Nb}_{4.875}\text{Fe}_{0.125}\text{O}_{15-\delta}$ ceramics. Meanwhile, a discharge energy density of 2.24 J/cm^3 and a power density of 171.97 MW/cm^3 are achieved, which also shows excellent stability to the use environment. This work provides valuable insights into the improvement of the energy storage performance of relaxors and other weakly polar dielectrics.

1. Introduction

As a key device in pulse power systems, pulse power capacitors play an important role in their miniaturization, high integration and light weight. Ceramic capacitors are capable of discharging a substantial

amount of energy in a brief period, enabling the output of large currents, as this discharge process relies solely on the electrostatic field [1]. However, their energy density remains considerably lower compared to other energy storage systems, such as supercapacitors. The energy release process of the dielectrics can be described by the external electric

* Correspondence to: L. Cao, College of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China.

** Corresponding authors.

E-mail addresses: LeiC@hdu.edu.cn (L. Cao), huyao93@zju.edu.cn (Y. Hu), kxsong@hdu.edu.cn (K. Song).