

Phase stabilization strategy for robust high $Q \times f$ values in MgSiO_3 -based ceramics for millimeter-wave applications

Jin Fang ^a, Minmin Mao ^{a,*}, Yuxuan She ^a, Yutao Yang ^a, Yingjie Ren ^b, Hadi Barzegar Bafrooei ^c, Mahdi Feizpour ^c, Alexander Korotkevich ^d, Viktor Sergeevich Leontev ^e, Mikhail P. Kuz'min ^f, Shuqing Song ^g, Weiquan Zhang ^g, Kaixin Song ^{a,*}

^a College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

^b Zhuhai Wazam New Materials Co.,Ltd., Zhuhai 519175, China

^c Department of Materials Science and Engineering, School of Engineering, Meybod University, Yazd 89616-99557, Iran

^d Belarusian State University of Informatics and Radioelectronics, 6 P.Brovki Street, Minsk 220013, Belarus

^e Yaroslav-the-Wise Novgorod State University, Veliky Novgorod 173003, Russia

^f Irkutsk National Research Technical University, Str. Lermontov, 83, Irkutsk, Irkutsk region, Russia

^g Zhejiang Xinha Material Technology Co., Ltd, Jinhua 322118, China

ARTICLE INFO

Keywords:

MgSiO_3

Microwave dielectric property

Millimeter-wave

ABSTRACT

MgSiO_3 ceramics hold promise for millimeter-wave applications owing to their low relative permittivity and cost-effectiveness, but their performance is limited by polymorphism and phase transitions. To mitigate these challenges, we strategically introduced Ge^{4+} ions to stabilize the orthoenstatite (OEN) phase and prepared $\text{MgSi}_{1-x}\text{Ge}_x\text{O}_3$ ceramics via a solid-state method. X-ray diffraction (XRD) and Raman spectroscopy confirmed a phase transition from clinoenstatite (CEN) to OEN with increasing Ge^{4+} concentration, resulting in a predominantly OEN phase at $x \geq 0.15$. Scanning Electron Microscopy (SEM) revealed that Ge^{4+} influenced grain size, uniformity and density. The relative permittivity ϵ_r increased from 6.07 ± 0.11 – 7.10 ± 0.09 with increasing x , while the temperature coefficient τ_f decreased monotonically. Optimal $Q \times f$ values of $140,000 \pm 11,000$ GHz at 13.1 GHz and $216,880 \pm 12,840$ GHz at 24.4 GHz were achieved at $x = 0.15$. After one year, the microwave dielectric properties remained robust, underscoring the potential of MgSiO_3 for practical millimeter-wave applications.

1. Introduction

From the advent of 2 G, 3 G and 4 G networks to the current 5 G era, communication technological advancements have led to a remarkable increase in signal transmission speeds and a shift to higher frequency bands, reaching into the microwave spectrum (300 MHz to 300 GHz) [1]. Signal transmission necessitates the use of base stations as conduits. To accommodate signals across a spectrum of frequency bands, these stations must be equipped with critical materials for efficient signal transmission. For high-frequency signals, microwave dielectric ceramics are considered as an excellent choice for the transmission medium. The ideal parameters of the ceramics include a low relative permittivity to minimize cross-coupling with conductors, thereby reducing the propagation time of electronic signals; a high-quality factor (low dielectric loss) to mitigate transmission losses and ensure the integrity of electronic signal transmission; and a near-zero temperature coefficient of

resonant frequency to enhance frequency stability across a range of operating temperatures [2].

In the case of microwave ceramics with a low relative permittivity, the central material systems are Al_2O_3 , Mg_2SiO_4 , MgSiO_3 , $\text{Y}_2\text{Ba}_2\text{Cu}_3\text{O}_7$, and $\text{Mg}_4\text{Nb}_2\text{O}_9$ [3–7]. Among these, magnesium silicates are particularly advantageous due to their natural abundance, ease of extraction, and cost-effectiveness [8]. Additionally, the silica-oxygen tetrahedra within magnesium silicate structures contain numerous covalent bonds, which contribute to their low relative permittivity and low dielectric loss [9]. This combination of properties makes magnesium silicates a more widely utilized and thoroughly researched material in the field of microwave ceramics. Magnesium silicates, specifically Mg_2SiO_4 and MgSiO_3 , are characterized by their elemental ratios, with Mg_2SiO_4 having a ratio of $\text{Mg:Si:O} = 2:1:4$ and MgSiO_3 a ratio of $\text{Mg:Si:O} = 1:1:3$. Mg_2SiO_4 has been extensively studied due to its low relative permittivity ($\epsilon_r \sim 6.8$) and ultra-high $Q \times f$ value (270,000 GHz) [4]. However, its

* Corresponding authors.

E-mail addresses: mmm@hdu.edu.cn (M. Mao), kxsong@hdu.edu.cn (K. Song).