

Crystallization behavior and microwave dielectric properties of low loss MgO-Al₂O₃-SiO₂-MnO₂-ZnO and MgO-Al₂O₃-SiO₂-GeO₂ microcrystalline glass-ceramics for LTCC substrate applications

Yuxiang Shen ^a, Huan Liu ^{a,*}, Raz Muhammad ^b, Yang Yao ^a, Xueqing Yu ^a, Alexander Korotkevich ^c, Minmin Mao ^a, Lei Cao ^a, Bing Liu ^a, Haishen Ren ^d, Huixing Lin ^d, Matjaz Spreitzer ^e, Mikhail P. Kuz'min ^f, Ruzhong Zuo ^g, Kaixin Song ^{a,*}

^a College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

^b Department of Physics, Abdul Wali Khan University, Mardan, KP 23200, Pakistan

^c Belarusian State University of Informatics and Radioelectronics, 6 P.Brovki Street, Minsk 220013, Belarus

^d Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201899, China

^e Advanced Materials Department, Jozef Stefan Institute, Ljubljana 1000, Slovenia

^f Department of Non-ferrous Metals, Irkutsk National Research Technical University, 83 Lermontov St, Irkutsk, Russian Federation

^g Anhui Key Laboratory of Low Temperature Co-fired Materials, School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China

ARTICLE INFO

Keywords:

LTCC
Cordierite
MgO-Al₂O₃-SiO₂ system
Glass ceramics
Microwave dielectric properties

ABSTRACT

In this study, 21.9 mol% MgO - 20.3 mol% Al₂O₃ - 54.6 mol% SiO₂ + 1.6 mol% MnO₂ + 1.6 mol% ZnO and 23.1 mol% MgO - 20.9 mol% Al₂O₃ - 55.0 mol% SiO₂ + 1.0 mol% GeO₂ were prepared by low-temperature co-firing method. The effects of nucleating agents and sintering temperature on the crystallization behavior, microstructure and microwave dielectric properties of MASMZ and MASG glass-ceramics were investigated. It was found that both glass-ceramics were able to precipitate stable α -cordierite crystalline phases at relatively low temperatures. Crystallization kinetics analysis showed that MASMZ glass-ceramics crystallized more easily than MASG glass-ceramics. MASMZ glass-ceramics exhibited optimal dielectric properties at 925 °C: $\epsilon_r = 4.74$, $\tan\delta = 8.1 \times 10^{-4}$, $\tau_f = -14$ ppm/°C. MASG glass ceramics achieved optimal dielectric properties at 950 °C: $\epsilon_r = 4.46$, $\tan\delta = 1.11 \times 10^{-3}$, $\tau_f = -27$ ppm/°C. Especially, the excellent chemical stability and compatibility of MASMZ and MASG glass-ceramics with silver at high temperatures were verified, indicating the potential of MASMZ and MASG glass ceramics as LTCC substrate materials.

1. Introduction

With the rapid progress of modern technology, traditional high-temperature co-fired ceramic technology is no longer sufficient to meet the demands for portability and integration of electronic components. To address the challenge of the miniaturizing electronic components, they need to be embedded inside rather than on the surface, and the selected substrate material must possess excellent electrical insulation properties and be compatible with the physical, chemical, and electromagnetic properties of the internal components. Therefore, the low-temperature co-fired ceramics (LTCC) technology emerged at the right moment [1–3]. Among various substrate materials, glass-ceramics have attracted significant attention due to their excellent dielectric

properties and adjustable thermal expansion coefficients. Cordierite glass-ceramics, in particular, stand out for their low relative permittivity (ϵ_r), low dielectric loss ($\tan\delta$), and low thermal expansion coefficients, making them ideal LTCC substrate materials [4–8]. However, their high sintering temperature limits their application in the LTCC field. Adding crystal nucleating agents during the glass preparation stage has become a key research direction in the development of cordierite glass-ceramics [9–14].

For instance, Liu et al. studied the evolution of phases, microstructure, luminescence, and mechanical properties of MgO-Al₂O₃-SiO₂-based glass-ceramics doped with Cr₂O₃ [15]. Luo et al. [16] investigated the formation of α -cordierite glass-ceramics in MgO-Al₂O₃-SiO₂ systems with and without the addition of B₂O₃, finding that an appropriate

* Corresponding authors.

E-mail addresses: liuhuan9430@163.com (H. Liu), kxsong@hdu.edu.cn (K. Song).