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Аннотация. В настоящей работе предложен подход к описанию 

процесса шифрования с использованием изоморфизма групп обратимых 

элементов ассоциативных колец с единицей. Показано, что такой подход 

позволяет моделировать преобразование данных, их разделение на 

логически независимые компоненты и применение различных режимов 

обработки − изоморфизма и  антиизоморфизма. В качестве конкретной 

реализации рассмотрен пример на основе колец Z3 и M2(Z2), в котором 

центральный идемпотент определяет разложение кольца на прямую сумму 

и обеспечивает согласованное применение разных алгебраических 

преобразований к частям сообщения. Полученные конструкции могут быть 

использованы при построении гибридных криптографических схем, 

обеспечивающих дополнительные возможности для защиты информации. 
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Настоящее исследование основано на результатах автора, которые 

были опубликованы в работе [1]. Цель данной работы − описать 

криптографическую систему, где открытый текст представлен как элемент 

группы обратимых элементов ассоциативного кольца с единицей. 

Пусть 𝑅 и 𝑆 − ассоциативные кольца с единицей, множества 

открытых/закрытых ключей. Разложения в прямую сумму 𝑅 = 𝑅1⨁𝑅2, 𝑆 =
𝑆1⨁𝑆2 могут соответствовать разделению данных на независимые 

компоненты, каждая из которых обрабатывается по-разному. Группы 

обратимых элементов 𝑈(𝑅) и 𝑈(𝑆) можно представить как группы 

шифрования/расшифрования. Пусть в 𝑅 определена ортогональная система 

идемпотентов ℎ𝑖, ∑ ℎ𝑖
3
𝑖=1 = 1, 𝑅ℎ𝑖𝑅 = 𝑅, в 𝑆 − система 𝑔𝑗, ∑ 𝑔𝑗

2
𝑗=1 = 1, 

𝑆𝑔𝑗𝑆 = 𝑆. Ортогональные идемпотенты могут представлять собой 

разделение данных на части. Центральный идемпотент 𝑒 ∈ 𝑅 определяет 

какая часть сообщения обрабатывается изоморфизмом 𝜃1: 𝑅1 → 𝑆1, какая 

антиизоморфизмом θ2: 𝑅2 → 𝑆2. Процесс преобразования данных, 

защищенных с помощью одной криптографической схемы, в 

эквивалентные данные, защищенные другой схемой, можно описать как 

изоморфизм φ: 𝑈(𝑅) → 𝑈(𝑆). 

Теорема. Если существует изоморфизм между группами обратимых 

элементов φ, то существует кольцевой изоморфизм 𝜃1, кольцевой 
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антиизоморфизм θ2, такие, что φ(𝐴) = θ1(𝑒𝐴) + θ2((1 − 𝑒)𝐴), где 𝑒 ∈ 𝑅, 

𝐴 ∈ 𝐸(𝑅), 𝐸(𝑅) − группа преобразований, порожденная элементом 1 +
𝑒𝑖𝑥𝑒𝑗. 

Теорему можно использовать не только в абстрактной математике, но и 

в современной криптографии. Приведем пример, реализующий данный 

результат. 

Пусть кольцо 𝑅 моделирует систему данных или шифрования, в 

которой информация может быть разделена на две независимые части (𝑅 =
𝑅1⨁𝑅2). Здесь 𝑅1 = 𝑍3 − кольцо вычетов по модулю 3 − содержит три 

элемента {0, 1, 2} с операциями сложения и умножения по модулю 3. 

Например, это может быть цифровая подпись или короткий ключ. 

𝑅2 = 𝑀2(𝑍2) − кольцо матриц размера 2 × 2 над 𝑍2, содержит  

24 = 16 элементов. К примеру, это кольцо может использоваться для 

сложных структур, таких как блоки шифруемого текста. Аналогично, 𝑆 =
𝑆1⨁𝑆2, где 𝑆1 = 𝑀2(𝑍2), 𝑆2 = 𝑍3. То есть кольца 𝑅 и 𝑆 имеют одинаковые 

компоненты, но они расположены в обратном порядке. Если представить 

переход от 𝑅 к 𝑆, то его можно рассматривать как переход между двумя 

различными криптографическими схемами. 

Группы 𝑈(𝑅) и 𝑈(𝑆) − группы обратимых элементов над 

ассоциативными кольцами 𝑅 и 𝑆, соответствуют обратимым операциям 

шифрования и расшифрования. 

Группа 𝑈(𝑅) представляет собой совокупность обратимых 

преобразований, действующихй на парах − один элемент из 𝑍3, другой − из 

𝑀2(𝑍2): 

𝑈(𝑅) = 𝑈(𝑍3) ⊕ 𝑈(𝑀2(𝑍2)). 

Здесь 𝑈(𝑍3) = {1, 2}, поскольку эти два элемента имеют обратные по 

умножению в кольце вычетов 𝑍3. Группа невырожденных матриц размера 

2 × 2 над 𝑍2 − 𝑈(𝑀2(𝑍2)) − содержит шесть элементов: 

(
1 0
0 1

), (
1 1
0 1

), (
1 0
1 1

), (
0 1
1 0

), (
1 1
1 0

), (
0 1
1 1

). 

Аналогично, U(S) = U(M2(Z2)) ⊕ U(Z3). Прямая сумма коммутативна 

с точностью до изоморфизма. 

Существование изоморфизма φ: 𝑈(𝑅) → 𝑈(𝑆) групп обратимых 

элементов означает, что группы шифрования/расшифрования совпадают с 

точностью до перестановки частей. Иначе, обе системы допускают 

эквивалентные наборы. 

Заметим, что кольца 𝑅1 и 𝑆1 не изоморфны как целые, но можно 

рассмотреть вложение − инъективный гомоморфизм из Z3 в M2(Z2). 

Вложение позволяет сохранить структуру части данных при отображении 

одного кольца в другое. Антиизоморфизм можно представить в виде 

транспонированной матрицы: θ2(𝐴) = 𝐴𝑇. Это дополняет степень защиты, 

усложняя восстановление исходного сообщения без знания точного типа 
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отображения. В качестве центрального идемпотента выберем  

𝑒 = (1,0) ∈ 𝑅. Тогда 𝑒𝐴 = (𝑎, 0), (1 − 𝑒)𝐴 = (0, 𝑏), где 𝐴 = (𝑎, 𝑏) ∈ 𝑅. 

Приведенный пример показывает, как можно формализовать процесс 

шифрования данных, разделенных на части при помощи алгебраических 

преобразований. Такая схема может быть применена при построении 

гибридных криптосистем, где разные части сообщения защищаются 

разнвми методами, но при этом сохраняется согласованность между 

группами. 

В перспективе планируется рассмотреть общие классы колец и 

исследовать устойчивость схем к различным типам криптоатак. 
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CRYPTOGRAPHIC ASPECTS OF ISOMORPHISM  

OF REVERSIBLE ELEMENT GROUPS 

 

Abstract. In this paper, we propose an approach to describing the encryption 

process using the isomorphism of the groups of invertible elements of 

associative rings with identity. We show that this approach allows us to model 

data transformation, partitioning into logically independent components, and 

applying different processing modes, such as isomorphism and anti-

isomorphism. As a specific implementation, we consider an example based on 

the rings Z3 and M2(Z2), where the central idempotent determines the 

decomposition of the ring into a direct sum and ensures the consistent 

application of different algebraic transformations to different parts of the 

message. The resulting designs can be used to build hybrid cryptographic 

schemes that provide additional information protection capabilities. 

Keywords: public key, private key, encryption group, decryption group, and 

isomorphism. 

 

  


