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In this work, we demonstrate an extremely low annealing processing
at 300 �C for the crystallization of Hf0.5Zr0.5O2 (HZO) films with the
adoption of microwave annealing (MWA). Compared to conven-
tional annealingmethods, an enhanced double remnant polarization
(2Pr) of 55.4 μC/cm2, a higher maximum dielectric constant, and
nearly wakeup-free were realized by modulating the power of the
microwave. It is believed that the increasing loss factor of zirconia
with rising temperature allowsmore energy to be extracted from the
microwave and transferred to the ferroelectric HZO molecules,
which facilitates the crystallization at low temperature. Further-
more, an amorphous indium gallium zinc oxide ferroelectric field-
effect transistor treated with microwave annealing was fabricated,
and a competitive memory window of 1.5 V was substantially
achieved. These findings offer insights into the integration of HfO2
ferroelectric materials in non-volatile memory devices compatible
with back-end-of-line (BEOL) in the future.

Keywords: Microwave annealing, Hf0.5Zr0.5O2, Ferroelectric capaci-
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INTRODUCTION

Due to its compatibility with complementary metal-oxide-
semiconductor technology and sub-10-nm scalability, the Zr-doped
HfO2 (Hf0.5Zr0.5O2 [HZO]) ferroelectric (FE) device has garnered
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significant attention. It is considered as one of the most promising
candidates for next-generation embedded non-volatile memories and
logic devices1–4. With continuous innovations in internal computation,
artificial intelligence, flexible synapses and machine learning, HfO2-
based FE devices compatible with BEOL process, including FE ca-
pacitors (FeCAPs), FE field-effect transistors (FeFETs), FE tunnel
junctions, and FE random-access memory, have become focal points for
future monolithic three-dimensional integration applications5–8. In the
industry, high-temperature annealing processes have demonstrated
significant usages, including the activation of ion implantation and the
supplementation of nitrogen for TiN materials. Nonetheless, low-
temperature annealing techniques for FE materials are essential in the
BEOL process. The conventional annealing processes, including rapid
thermal annealing (RTA) and furnace annealing (FA), which utilize a
single mode of energy transfer, often result in the degradation of FE
properties when the annealing temperature is reduced. This degradation
poses significant challenges for the integration of FE devices9–14.

For the integration of FE devices into memory systems compatible
with the BEOL process, significant attempts have been made to fully
balance the ferroelectricity and thermal budget. These efforts encom-
pass interlayer engineering15–19, electrode engineering20–22, interface
engineering23, and modifications to the annealing process rooted in
conventional processes24. Nonetheless, the non-ideal effects introduced
by these methods, such as imprint and wakeup effects, continue to
present substantial obstacles for the integration and application in the
BEOL processes. Ultimately, this is primarily ascribed to the single
energy transfer mechanism of conventional annealing processes, which
necessitates additional design modifications in both structure and pro-
cess to compensate for the performance degradation resulted from
reduced annealing temperatures. Our previous work has reported high-
performance amorphous indium gallium zinc oxide (α-IGZO) thin-film
transistors processed at a minimal temperature of 189.6 �C via MWA25.
In addition, Joh et al. presented a focus MWA method, which can
effectively crystallize the HZO thin film into FE phase at a low process
temperature26. Chen et al. investigated the FE HZO dielectric in metal-
insulator-metal devices and metal-oxide-semiconductor capacitors by
comparing the RTA and MWA27. All the aforementioned observations
demonstrate that MWA shows significant advantages in device inte-
gration during BEOL processes. However, the impact of the process
details of MWA on the performance of FE devices and non-ideal effects
still requires further exploration.
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In this work, an ultra-low crystallization temperature of approxi-
mately 300 �C was achieved by using MWA on the HZO film under the
microwave power of 1400 W. Furthermore, a competitive 2Pr of
55.4 μC/cm2, lower Ec of 1.09 MV/cm, higher maximum dielectric
constant and nearly wakeup free were demonstrated by modulating the
power of annealing. In addition, an FeFET with a 10-nm α-IGZO
channel annealing with MWA was fabricated, and an excellent MW of
1.5 V was obtained. The ultra-low crystallization temperature and high-
quality FE properties provide an alternative approach for further
memory devices compatible with BEOL.
RESULTS AND DISCUSSIONS

Fig. 1a and b depict the process flow and schematic of the FeCAP,
respectively. Fig. 1c shows the schematic diagram of the MWA
Fig. 1 | Fabrication and schematic of the processes. a, The process flow and b, schem
Abbreviation: FE, ferroelectric.

Fig. 2 | Ferroelectricity of the capacitors annealed at MWA with different microw
powers under 3.5 V at 1 kHz. c, The extracted Pr and Ec as a function of microwave

Abbreviations: MWA, microwave annealing; I–V, dynamic current-voltage; P–V, po
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process. In the MWA system, eight magnetrons were used as
microwave sources, with a frequency of 5.8 GHz. To enhance the
microwave absorption efficiency and improve the heating unifor-
mity, quartz and silicon carbide wafers were typically placed inside
the chamber as microwave susceptors. Prior to supplying the mi-
crowave power, a purge with 1200 s of N2 gas was performed
within the cavity to ensure the integrity of the gaseous environ-
ment inside.

Fig. 2a and b show the remnant polarization-voltage (P–V) and
dynamic current-voltage (I–V) loops of the capacitor under 3.5-V
sweeping with different microwave powers from 700 to 2800 W. The
extracted Pr and Ec as a function of microwave power are presented in
Fig. 2c. The capacitors annealed at 1400, 2100 and 2800 W exhibit the
2Pr of 26.8, 52.3 and 55.4 μC/cm2, respectively. In addition, as the
microwave power reached 2800 W, the Ec of the FeCAP was contin-
uously decreased to 1.09 MV/cm. This presents a significant advantage
atic of FE capacitor. c, The schematic diagram of the microwave annealing process.

ave powers. a, P–V and b, dynamic I–V loops of capacitor with various annealing
power. d, Annealing temperature as a function of time for various MWA processes.

larization-voltage.
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that distinguishes it from the existing literatures18,23,24,28,29. Fig. 2d
shows the temperature as a function of time for various MWA powers,
where the temperature is measured in real time with the adoption of an
infrared pyrometer. MWA facilitates the development of ferroelectricity
in the capacitor at the temperature of ~300 �C with the power of
1400 W, although the cavity temperature remains below 400 �C during
the maximum power of MWA process up to 2800 W, which is fully
compatible with the BEOL process. The reduced thermal budget is
believed to be ascribed to the ability of MWA to directly transfer energy
to the target material by vibration of polar molecules, which avoids
excessive time and energy consumption during the annealing process.
Additionally, during the process of microwave energy transfer, it will
selectively couple with materials that exhibit higher dielectric losses,
and the loss factor tends to increase with temperature, implying that
HZO could absorb more energy for improved crystallization25–27,30.

Fig. 3a–c present the P–V curves obtained by the positive-up-
negative-down test under the operating voltage (Vop) of 0.5 to 4.0 V.
The extracted 2Pr and 2Ec as a function of Vop for each annealing
process are summarized in Fig. 3d. Comparative analysis shows that
capacitors treated with MWA and RTA demonstrate enhanced 2Pr at
low Vop below 2.0 V, exhibiting a superior ferroelectricity in contrast
to the capacitor treated with FA. Moreover, the capacitor treated with
MWA shows a lower 2Ec than that treated with conventional
annealing process. Fig. 3e shows the butterfly-shaped curves of
dielectric constant-voltage (ε–V) for the capacitors treated with
different annealing processes, indicating the existence of ferroelec-
tricity31–33. The dielectric constants of the monoclinic phase (m-
phase), orthorhombic phase (o-phase), and tetragonal phase (t-phase)
of most HfO2-based FE films are known to be ~17 to 20, 25 to 30,
and 35 to 40, respectively34. It can be seen that the capacitor treated
Fig. 3 | The ferroelectricity of fabricated capacitors treated with different annea
different Vop from 0.5 to 4.0 V at 1 kHz. The extracted d, 2Pr and 2Ec as a function of
3.5 MV/cm. f, The GIXRD results of the HZO films treated with RTA and MWA. A

thermal annealing; FA, furnace annealing; Vop, operating voltage; GIXRD, grazing-
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with MWA exhibits a higher dielectric constant than those annealed
at RTA and FA, which primarily stems from the improved FE-phase
ratio18,35. As shown in Fig. 3f, the diffraction peaks of the HZO films
treated with MWA occur at a higher 2q angle than the those treated
with RTA. Furthermore, the HZO films treated with RTA exhibit an
additional diffraction peak around 31.8�, suggesting a more complex
internal phase structure.

Fig. 4a–f show the P–V loops under 2 to 3 V after wakeup cycling
of capacitors treated with different annealing processes. Notably, the
capacitors annealed with MWA and FA show their stability after
applying 10 wakeup cycles. In contrast, the capacitor annealed at RTA
shows a progressive increase in Pr with continuous wakeup pulses
application until reaching its stability after 104 cycles. Under the high
Vop of 3 V, the capacitor treated with MWA exhibits a notably stable
Pr and Ec. Ten devices from each of annealing processes were
randomly selected under uniform environmental conditions to deter-
mine their wakeup ratios and maximum Pr, which are summarized in
Fig. 4g– i. The capacitor treated with MWA exhibits the lowest
wakeup ratio among the above processes under 2 and 3 V sweeping.
This enhancement could arise from the unique energy transmission in
MWA, contributing to an improved phase structure within the HZO
films and a more uniform distribution of oxygen vacancies than con-
ventional annealing processes36,37.

An FeFET with α-IGZO channel was subjected to MWA at the
power of 2800 W for 300 s under N2 atmosphere was prepared. To
minimize the leakage current and optimize the interface between the
α-IGZO channel and HZO thin film, a 2-nm aluminum oxide layer
was introduced as an interfacial layer38,39. Fig. 5a and b show the key
processes and schematic structure of the α-IGZO FeFET, respectively.
Fig. 5c presents the cross-sectional transmission electron microscopy
ling processes. The P–V curves treated with a, MWA, b, RTA and c, FA under
Vop. e, Forward and reverse sweeps of dielectric constant-voltage between −3.5 and
bbreviations: P–V, polarization-voltage; MWA, microwave annealing; RTA, rapid

incidence X-ray diffraction; HZO, Hf0.5Zr0.5O2.
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Fig. 4 | The wakeup effect of the FE capacitors treated with different processes. The P–V loops under a–c, 2 V and d–f, 3-V sweeping after wakeup cycles. Extracted
wakeup ratios (1–Pr_initial/Pr_max) under g, 2 V and h, 3-V sweeping. i, The extracted 2Pr_max under different operating electric fields. Abbreviations: P–V, polarization-

voltage; FE, ferroelectric.
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(TEM) images of the α-IGZO FeFET structure. A clear and sharp
interface between the channel and the FE layer guarantees its good
interfacial property. Fig. 5d illustrates the high-angle annular dark
field (HAADF) image of the fabricated α-IGZO FeFET and the energy
dispersive X-ray spectroscopy (EDS) mapping diagrams of all the
elements along the corresponding position. Fig. 5e shows the dual
sweep Id-Vg curves of the α-IGZO FeFET with the gate voltage
ranging from 1.0 to 3.5 V. It is noticeable that a threshold voltage (Vth)
shift is observed under different gate voltages. This phenomenon is
attributed to the accumulation of the positively charged oxygen va-
cancies, which are generated by the ionization of neutral
oxygen vacancies within the semiconductor channel. These positively
charged vacancies migrate and accumulate at the interface between the
channel and the dielectric layer25. Once the gate voltage is removed,
the need to maintain charge balance with the FE domains will cause
the positively charged oxygen vacancies to become pinned at
the interface.
CHIP | VOL 4 | SPRING 2025 Liu, Y. et al. Chip 4,
On the other hand, the hydrogen donors introduced into the dielectric
layer during the processes may migrate toward the channel under the in-
fluence of a negative gate voltage, ionizing to generate extra carriers and
positive charges and leading to a threshold voltage shift40. A stable FE-
type counterclockwise hysteresis is observed for the FeFET and the
memroy window (MW) at a constant current of W/L × 10−7 A41,42. The
extracted MW as a function of sweeping voltage is presented in Fig. 5f,
showing that the maximumMW of 1.5 V is achieved under the sweeping
voltage of 3.5-V. It is essentially close to its saturated MW even at 2.5 V.
Fig. 5g depicts the output characteristics of the α-IGZO FeFET treated by
MWA at 2800W.With the increase in Vds, the slope of the output curves
also shows an increasing trend, suggesting the effective control ability of
the gate voltage over the α-IGZO FeFET. Fig. 5h shows the output char-
acteristics of the 10-nm α-IGZO FeFET in the linear region. Observations
reveal the device’s commendable linearity and saturation characteristics,
highlighting a robust ohmic contact between the Cr/Au electrode and the
α-IGZO channel layer.
100120 (2025) 4 of 7
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Fig. 5 | The structure and electrical characteristics of the α-IGZO FeFET treated with MWA. a, The process flow and b, the schematic structure of fabricated α-IGZO
FeFET. c, Cross-sectional TEM and d, HAADF and EDS mapping images of the FeFET. e, Transfer characteristics under different gate voltages from 1.0 to 3.5 V with a
fixed Vds of 100 mV. f, The extracted MW as a function of applied voltage. g, Output characteristics of the FeFET. h, The output characteristics in linear region. Ab-
breviations: α-IGZO, amorphous indium gallium zinc oxide; MWA, microwave annealing; FeFET, ferroelectric field-effect transistor; TEM, transmission electron mi-
croscopy; HAADF, high-angle annular dark field; EDS, energy dispersive X-ray spectroscopy; MW, memory window.
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CONCLUSION

In summary, we have achieved an ultra-low annealing temperature of
approximately 300 �C with the adoption of the MWA process under
1400 W. Compared to conventional processes, a superior 2Pr of
55.4 μC/cm2, lower Ec of 1.09 MV/cm, and nearly wakeup free were
demonstrated in the FeCAPs treated with MWA under 2800 W.
Additionally, a considerable MW of 1.5 V was achieved in α-IGZO
FeFETs. These findings suggest that the application of MWA is a
feasible approach to optimize both the ferroelectricity and memory
properties for FE device compatible with BEOL.

METHODS

Fabrication of the ferroelectric capacitor Firstly, 30-nm tungsten
(W) bottom electrodes were deposited onto the p-Si/SiO2 (90 nm) sub-
strate by physical vapor deposition (PVD). Next, the 10-nm HZO thin
CHIP | VOL 4 | SPRING 2025 Liu, Y. et al. Chip 4,
film was prepared by plasma-enhanced atomic layer deposition (PEALD)
at 280 �C, using Hf[N(CH3)2]4, Zr[N(CH3)2]4, and oxygen plasma as the
Hf, Zr, and oxygen sources, respectively. Afterwards, photolithography
and PVD were used to pattern and sputter the 30-nm W top electrodes
with an area of 100 × 100 μm2. Finally, the FeCAPs with conventional
HZO film were subjected to MWA under different microwave powers
from 700 to 2800 W for 300 s under N2 atmosphere, and the MWA
process was performed using DGST-axom 200 at 5.8 GHz.

Fabrication of the amorphous indium gallium zinc oxide ferro-
electric field-effect transistor Firstly, a 50-nm W bottom gate was
grown by PVD at room temperature on a 90-nm SiO2/P-Si substrate.
Accordingly, a 15-nm HZO FE layer was prepared using PEALD at
280 �C. The deposited reactant precursors are consistent with the
preparation of FeCAPs. Subsequently, a 2-nm Al2O3 layer was
deposited onto the stack by thermal atomic layer deposition at 200 �C.
Al(CH3)3 and H2O were chosen as aluminum and oxygen precursors.
100120 (2025) 5 of 7
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Then, the device went through MWA at the power of 2800 W for 300 s
under N2 atmosphere for crystallization. After that, a 10 nm α-IGZO
was deposited by PVD at room temperature, and the active channel
layer was patterned by photolithography and wet etching (diluted HCl).
The channel length and width are 10 and 20 μm, respectively. Finally,
photolithography and electron beam evaporation were applied to pattern
and form source and drain electrodes of Cr/Au (10/50 nm).

Measurement of the fabricated devices The microstructure and
element analysis of the fabricated FeFETs were characterized by TEM
(TalosF200XG2), HAADF, and EDS. The electrical performance was
measured using a semiconductor device analyzer (Agilent B1500A) in a
dark box at room temperature. The ferroelectricity of the devices was
measured by FE test system (Precision Premier II).
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